R. Lechner

J. Kepler University, Linz

October, 2015

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

2 One parameter

Overview

1 Operators with large diagonal

2 One parameter

3 Two parameters

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

• Let X be a Banach space and $T: X \to X$ a linear operator.

Find conditions on X and T such that the identity on X factors through T, i.e.

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^p (Pelczynski), ℓ^{∞} (Lindenstrauss), L^1 (Enflo-Starbird), L^p (Johnson-Maurey-Schechtman-Tzafriri), ℓ^p_n (Bourgain-Tzafriri).
- Generically, we expect that T has a large diagonal with respect to an unconditional basis in X.

• Let X be a Banach space and $T: X \to X$ a linear operator.

Find conditions on X and T such that the identity on X factors through T, i.e.

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^p (Pelczynski), ℓ^{∞} (Lindenstrauss), L^1 (Enflo-Starbird), L^p (Johnson-Maurey-Schechtman-Tzafriri), ℓ^p_n (Bourgain-Tzafriri).
- Generically, we expect that T has a large diagonal with respect to an unconditional basis in X.

$$\begin{array}{cccc} X & \xrightarrow{\mathrm{Id}} X \\ E & & \uparrow \\ F & & \uparrow \\ X & \xrightarrow{} & X \end{array} & \|E\| \|P\| \leq C. \end{array}$$

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^p (Pelczynski), ℓ^∞ (Lindenstrauss), L^1 (Enflo-Starbird), L^p (Johnson-Maurey-Schechtman-Tzafriri), ℓ^p_n (Bourgain-Tzafriri).
- Generically, we expect that T has a large diagonal with respect to an unconditional basis in $\boldsymbol{X}.$

$$\begin{array}{ccc} X & \xrightarrow{\operatorname{Id}} X \\ E & & \uparrow \\ F & & \uparrow \\ X & \xrightarrow{} & X \end{array} & \|E\| \|P\| \leq C. \end{array}$$

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^p (Pelczynski), ℓ^∞ (Lindenstrauss), L^1 (Enflo-Starbird), L^p (Johnson-Maurey-Schechtman-Tzafriri), ℓ^p_n (Bourgain-Tzafriri).
- Generically, we expect that T has a large diagonal with respect to an unconditional basis in $\boldsymbol{X}.$

$$\begin{array}{ccc} X & \xrightarrow{\operatorname{Id}} X \\ E & & \uparrow \\ V & & \uparrow \\ X & \xrightarrow{} & X \end{array} & \|E\| \|P\| \le C. \end{array}$$

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^p (Pelczynski), ℓ^∞ (Lindenstrauss), L^1 (Enflo-Starbird), L^p (Johnson-Maurey-Schechtman-Tzafriri), ℓ^p_n (Bourgain-Tzafriri).
- Generically, we expect that T has a large diagonal with respect to an unconditional basis in $\boldsymbol{X}.$

$$\begin{array}{ccc} X & \xrightarrow{\operatorname{Id}} X \\ E & & \uparrow \\ V & & \uparrow \\ X & \xrightarrow{} & X \end{array} & \|E\| \|P\| \leq C. \end{array}$$

- The problem has finite dimensional (quantitative) and infinite dimensional (qualitative) aspects.
- Classical examples include: ℓ^p (Pelczynski), ℓ^∞ (Lindenstrauss), L^1 (Enflo-Starbird), L^p (Johnson-Maurey-Schechtman-Tzafriri), ℓ^p_n (Bourgain-Tzafriri).
- Generically, we expect that T has a large diagonal with respect to an unconditional basis in $X. \label{eq:cond}$

- Let X be a Banach space and $T: X \to X$ a linear operator.
- Suppose that X has an unconditional basis (b_n)_{n∈N}, and let b^{*}_n ∈ X^{*} be the nth coordinate functional.
- We say that T has large diagonal (relative to (b_n)) if $\inf_{n \in \mathbb{N}} |\langle Tb_n, b_n^* \rangle| > 0.$
- For many Banach spaces X we know that the identity factors through operators T with large diagonal, i.e.

- Classical examples include:
- *®* with the unit vector basis (Pelczynski)
- L^p with the Haar basis (Andrew)
- Can the identity operator on X be factored through each operator on X with large diagonal for all Banach spaces X with an unconditional basis?

- Let X be a Banach space and $T: X \to X$ a linear operator.
- Suppose that X has an unconditional basis $(b_n)_{n \in \mathbb{N}}$, and let $b_n^* \in X^*$ be the n^{th} coordinate functional.
- We say that T has large diagonal (relative to (b_n)) if $\inf_{n \in \mathbb{N}} |\langle Tb_n, b_n^* \rangle| > 0.$
- For many Banach spaces X we know that the identity factors through operators T with large diagonal, i.e.

- Classical examples include:
- *®* with the unit vector basis (Pelczynski)
- L^p with the Haar basis (Andrew)
- Can the identity operator on X be factored through each operator on X with large diagonal for all Banach spaces X with an unconditional basis?

- Let X be a Banach space and $T: X \to X$ a linear operator.
- Suppose that X has an unconditional basis $(b_n)_{n \in \mathbb{N}}$, and let $b_n^* \in X^*$ be the n^{th} coordinate functional.
- We say that T has large diagonal (relative to (b_n)) if $\inf_{n \in \mathbb{N}} |\langle Tb_n, b_n^* \rangle| > 0.$
- For many Banach spaces X we know that the identity factors through operators T with large diagonal, i.e.

- Classical examples include:
- *C* with the unit vector basis (Pelczynski)
- *L^p* with the Haar basis (Andrew)
- Can the identity operator on X be factored through each operator on X with large diagonal for all Banach spaces X with an unconditional basis?

- Let X be a Banach space and $T: X \to X$ a linear operator.
- Suppose that X has an unconditional basis $(b_n)_{n \in \mathbb{N}}$, and let $b_n^* \in X^*$ be the n^{th} coordinate functional.
- We say that T has large diagonal (relative to (b_n)) if $\inf_{n \in \mathbb{N}} |\langle Tb_n, b_n^* \rangle| > 0.$
- For many Banach spaces X we know that the identity factors through operators T with large diagonal, i.e.

- Classical examples include:
- ℓ^p with the unit vector basis (Pelczynski)
- L^p with the Haar basis (Andrew)
- Can the identity operator on X be factored through each operator on X with large diagonal for all Banach spaces X with an unconditional basis?

- Let X be a Banach space and $T: X \to X$ a linear operator.
- Suppose that X has an unconditional basis $(b_n)_{n \in \mathbb{N}}$, and let $b_n^* \in X^*$ be the n^{th} coordinate functional.
- We say that T has large diagonal (relative to (b_n)) if $\inf_{n \in \mathbb{N}} |\langle Tb_n, b_n^* \rangle| > 0.$
- For many Banach spaces X we know that the identity factors through operators T with large diagonal, i.e.

$$\begin{array}{ccc} X & \xrightarrow{\operatorname{Id}} X \\ E & & \uparrow \\ F & & \uparrow \\ X & \xrightarrow{} & X \end{array} & \|E\| \|P\| \le C. \end{array}$$

- Classical examples include:
- ℓ^p with the unit vector basis (Pelczynski)
- L^p with the Haar basis (Andrew)
- Can the identity operator on X be factored through each operator on X with large diagonal for all Banach spaces X with an unconditional basis?

- Let X be a Banach space and $T: X \to X$ a linear operator.
- Suppose that X has an unconditional basis $(b_n)_{n \in \mathbb{N}}$, and let $b_n^* \in X^*$ be the n^{th} coordinate functional.
- We say that T has large diagonal (relative to (b_n)) if $\inf_{n \in \mathbb{N}} |\langle Tb_n, b_n^* \rangle| > 0.$
- For many Banach spaces X we know that the identity factors through operators T with large diagonal, i.e.

$$\begin{array}{ccc} X & \xrightarrow{\operatorname{Id}} X \\ E & & \uparrow \\ V & & \uparrow \\ X & \xrightarrow{T} X \end{array} & \|E\| \|P\| \le C. \end{array}$$

- Classical examples include:
- ℓ^p with the unit vector basis (Pelczynski)
- L^p with the Haar basis (Andrew)
- Can the identity operator on X be factored through each operator on X with large diagonal for all Banach spaces X with an unconditional basis?

- Let X be a Banach space and $T: X \to X$ a linear operator.
- Suppose that X has an unconditional basis $(b_n)_{n \in \mathbb{N}}$, and let $b_n^* \in X^*$ be the n^{th} coordinate functional.
- We say that T has large diagonal (relative to (b_n)) if $\inf_{n \in \mathbb{N}} |\langle Tb_n, b_n^* \rangle| > 0.$
- For many Banach spaces X we know that the identity factors through operators T with large diagonal, i.e.

$$\begin{array}{ccc} X & \xrightarrow{\operatorname{Id}} X \\ E & & \uparrow \\ F & & \uparrow \\ X & \xrightarrow{} & X \end{array} & \|E\| \|P\| \le C. \end{array}$$

- Classical examples include:
- ℓ^p with the unit vector basis (Pelczynski)
- L^p with the Haar basis (Andrew)
- Can the identity operator on X be factored through each operator on X with large diagonal for all Banach spaces X with an unconditional basis?

- Let X be a Banach space and $T: X \to X$ a linear operator.
- Suppose that X has an unconditional basis $(b_n)_{n \in \mathbb{N}}$, and let $b_n^* \in X^*$ be the n^{th} coordinate functional.
- We say that T has large diagonal (relative to (b_n)) if $\inf_{n \in \mathbb{N}} |\langle Tb_n, b_n^* \rangle| > 0.$
- For many Banach spaces X we know that the identity factors through operators T with large diagonal, i.e.

$$\begin{array}{ccc} X & \xrightarrow{\operatorname{Id}} X \\ E & & \uparrow \\ F & & \uparrow \\ X & \xrightarrow{} & X \end{array} & \|E\| \|P\| \le C. \end{array}$$

- Classical examples include:
- ℓ^p with the unit vector basis (Pelczynski)
- L^p with the Haar basis (Andrew)
- Can the identity operator on X be factored through each operator on X with large diagonal for all Banach spaces X with an unconditional basis?

- Let X be a Banach space and $T: X \to X$ a linear operator.
- Suppose that X has an unconditional basis $(b_n)_{n \in \mathbb{N}}$, and let $b_n^* \in X^*$ be the n^{th} coordinate functional.
- We say that T has large diagonal (relative to (b_n)) if $\inf_{n \in \mathbb{N}} |\langle Tb_n, b_n^* \rangle| > 0.$
- For many Banach spaces X we know that the identity factors through operators T with large diagonal, i.e.

$$\begin{array}{ccc} X & \xrightarrow{\operatorname{Id}} X \\ E & & \uparrow \\ F & & \uparrow \\ X & \xrightarrow{} & X \end{array} & \|E\| \|P\| \le C. \end{array}$$

- Classical examples include:
- ℓ^p with the unit vector basis (Pelczynski)
- L^p with the Haar basis (Andrew)
- Can the identity operator on X be factored through each operator on X with large diagonal for all Banach spaces X with an unconditional basis?

Answer:

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

There is an operator T on a Banach space X with an unconditional basis such that T has large diagonal, but the identity operator on X does not factor through T.

Main ingredients for the proof:

- X is the space X_G (Gowers) with an unconditional basis.
- Fredholm theory.

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

The identity on mixed-norm Hardy spaces $H^{p}(H^{q})$, $1 \leq p, q < \infty$ factors through any operator T with large diagonal relative to the bi-parameter Haar basis.

うして ふゆう ふほう ふほう うらつ

Answer:

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

There is an operator T on a Banach space X with an unconditional basis such that T has large diagonal, but the identity operator on X does not factor through T.

Main ingredients for the proof:

• X is the space X_G (Gowers) with an unconditional basis.

• Fredholm theory.

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

The identity on mixed-norm Hardy spaces $H^{p}(H^{q})$, $1 \leq p, q < \infty$ factors through any operator T with large diagonal relative to the **bi-parameter** Haar basis.

Answer:

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

There is an operator T on a Banach space X with an unconditional basis such that T has large diagonal, but the identity operator on X does not factor through T.

Main ingredients for the proof:

- X is the space X_G (Gowers) with an unconditional basis.
- Fredholm theory.

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

The identity on mixed-norm Hardy spaces $H^{p}(H^{q})$, $1 \leq p, q < \infty$ factors through any operator T with large diagonal relative to the **bi-parameter** Haar basis.

Answer:

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

There is an operator T on a Banach space X with an unconditional basis such that T has large diagonal, but the identity operator on X does not factor through T.

Main ingredients for the proof:

- X is the space X_G (Gowers) with an unconditional basis.
- Fredholm theory.

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

The identity on mixed-norm Hardy spaces $H^{p}(H^{q})$, $1 \leq p, q < \infty$ factors through any operator T with large diagonal relative to the bi-parameter Haar basis.

Answer:

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

There is an operator T on a Banach space X with an unconditional basis such that T has large diagonal, but the identity operator on X does not factor through T.

Main ingredients for the proof:

- X is the space X_G (Gowers) with an unconditional basis.
- Fredholm theory.

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

The identity on mixed-norm Hardy spaces $H^{p}(H^{q})$, $1 \leq p, q < \infty$ factors through any operator T with large diagonal relative to the bi-parameter Haar basis.

Answer:

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

There is an operator T on a Banach space X with an unconditional basis such that T has large diagonal, but the identity operator on X does not factor through T.

Main ingredients for the proof:

- X is the space X_G (Gowers) with an unconditional basis.
- Fredholm theory.

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)

The identity on mixed-norm Hardy spaces $H^p(H^q)$, $1 \le p, q < \infty$ factors through any operator T with large diagonal relative to the bi-parameter Haar basis.

Overview

- $\mathscr{D}=\{[\frac{k-1}{2^n},\frac{k}{2^n}[:\,k\geq 0,n\geq 0\}$ denotes the dyadic intervals on the unit interval,
- h_I the L^{∞} -normalized Haar function, $I \in \mathscr{D}$.
- Let $f = \sum_{I \in \mathscr{D}} a_I h_I$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \left(\sum_{I \in \mathscr{D}} a_I^2 h_I^2\right)^{1/2}.$$

• The norm of the one-parameter Hardy space $H^p,\, 1\leq p<\infty$ is defined by

$$||f||_{H^p} = ||\mathbb{S}(f)||_{L^p} = \left(\int_0^1 \left(\sum_{I\in\mathscr{D}} a_I^2 h_I^2(x)\right)^{p/2} \mathrm{d}x\right)^{1/p}.$$

- $\mathscr{D} = \{ [\frac{k-1}{2^n}, \frac{k}{2^n} [: k \ge 0, n \ge 0 \}$ denotes the dyadic intervals on the unit interval,
- h_I the L^{∞} -normalized Haar function, $I \in \mathscr{D}$.
- Let $f = \sum_{I \in \mathscr{D}} a_I h_I$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \left(\sum_{I \in \mathscr{D}} a_I^2 h_I^2\right)^{1/2}.$$

• The norm of the one-parameter Hardy space $H^p,\, 1\leq p<\infty$ is defined by

$$||f||_{H^p} = ||\mathbb{S}(f)||_{L^p} = \left(\int_0^1 \left(\sum_{I\in\mathscr{D}} a_I^2 h_I^2(x)\right)^{p/2} \mathrm{d}x\right)^{1/p}$$

- $\mathscr{D} = \{ [\frac{k-1}{2^n}, \frac{k}{2^n} [: k \ge 0, n \ge 0 \}$ denotes the dyadic intervals on the unit interval,
- h_I the L^{∞} -normalized Haar function, $I \in \mathscr{D}$.
- Let $f = \sum_{I \in \mathscr{D}} a_I h_I$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \left(\sum_{I \in \mathscr{D}} a_I^2 h_I^2\right)^{1/2}.$$

• The norm of the one-parameter Hardy space $H^p,\, 1\leq p<\infty$ is defined by

$$||f||_{H^p} = ||\mathbb{S}(f)||_{L^p} = \left(\int_0^1 \left(\sum_{I\in\mathscr{D}} a_I^2 h_I^2(x)\right)^{p/2} \mathrm{d}x\right)^{1/p}$$

- $\mathscr{D} = \{ [\frac{k-1}{2^n}, \frac{k}{2^n} [: k \ge 0, n \ge 0 \}$ denotes the dyadic intervals on the unit interval,
- h_I the L^{∞} -normalized Haar function, $I \in \mathscr{D}$.
- Let $f = \sum_{I \in \mathscr{D}} a_I h_I$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \left(\sum_{I \in \mathscr{D}} a_I^2 h_I^2\right)^{1/2}.$$

• The norm of the one-parameter Hardy space $H^p,\, 1\leq p<\infty$ is defined by

$$||f||_{H^p} = ||\mathbb{S}(f)||_{L^p} = \left(\int_0^1 \left(\sum_{I\in\mathscr{D}} a_I^2 h_I^2(x)\right)^{p/2} \mathrm{d}x\right)^{1/p}$$

- $\mathscr{D} = \{ [\frac{k-1}{2^n}, \frac{k}{2^n} [: k \ge 0, n \ge 0 \}$ denotes the dyadic intervals on the unit interval,
- h_I the L^{∞} -normalized Haar function, $I \in \mathscr{D}$.
- Let $f = \sum_{I \in \mathscr{D}} a_I h_I$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \left(\sum_{I \in \mathscr{D}} a_I^2 h_I^2\right)^{1/2}.$$

• The norm of the one-parameter Hardy space $H^p,\, 1\leq p<\infty$ is defined by

$$||f||_{H^p} = ||\mathbb{S}(f)||_{L^p} = \left(\int_0^1 \left(\sum_{I\in\mathscr{D}} a_I^2 h_I^2(x)\right)^{p/2} \mathrm{d}x\right)^{1/p}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Theorem

Let $1 , <math>\delta > 0$ and $T : H^p \to H^p$ be a linear operator with large diagonal, i.e. $\langle Th_I, h_I \rangle \geq \delta |I|$. Then we have

where the constant C > 0 is universal.

By Gamlen-Gaudet construction (\mathscr{B}_I) and a random choice of signs ε_I there exists a block basis $b_I^{(\varepsilon)} = \sum_{K \in \mathscr{B}_I} \varepsilon_K h_K$ of the Haar system such that

$$Tb_{I}^{(\varepsilon)} = \alpha_{I}b_{I}^{(\varepsilon)} + \text{small error}, \qquad \alpha_{I} \geq \delta.$$

Theorem

Let $1 , <math>\delta > 0$ and $T : H^p \to H^p$ be a linear operator with large diagonal, i.e. $\langle Th_I, h_I \rangle \geq \delta |I|$. Then we have

$$\begin{array}{c|c} H^p & \xrightarrow{\operatorname{Id}} & H^p \\ E & & \uparrow^P \\ H^p & \xrightarrow{} & H^p \end{array} & \|E\| \|P\| \leq C/\delta, \end{array}$$

where the constant C > 0 is universal.

By Gamlen-Gaudet construction (\mathscr{B}_I) and a random choice of signs ε_I there exists a block basis $b_I^{(\varepsilon)} = \sum_{K \in \mathscr{B}_I} \varepsilon_K h_K$ of the Haar system such that

$$Tb_I^{(\varepsilon)} = \alpha_I b_I^{(\varepsilon)} + \text{small error}, \qquad \alpha_I \ge \delta.$$

Theorem

Let $1 , <math>\delta > 0$ and $T : H^p \to H^p$ be a linear operator with large diagonal, i.e. $\langle Th_I, h_I \rangle \geq \delta |I|$. Then we have

$$\begin{array}{ccc} H^p & \stackrel{\mathrm{Id}}{\longrightarrow} & H^p \\ E & & \uparrow \\ F & & \uparrow \\ H^p & \stackrel{}{\longrightarrow} & H^p \end{array} & \|E\| \|P\| \leq C/\delta, \end{array}$$

where the constant C > 0 is universal.

By Gamlen-Gaudet construction (\mathscr{B}_I) and a random choice of signs ε_I there exists a block basis $b_I^{(\varepsilon)} = \sum_{K \in \mathscr{B}_I} \varepsilon_K h_K$ of the Haar system such that

$$Tb_I^{(\varepsilon)} = \alpha_I b_I^{(\varepsilon)} + \text{small error}, \qquad \alpha_I \ge \delta.$$

Theorem

Let $1 , <math>\delta > 0$ and $T : H^p \to H^p$ be a linear operator with large diagonal, i.e. $\langle Th_I, h_I \rangle \geq \delta |I|$. Then we have

$$\begin{array}{ccc} H^p & \stackrel{\mathrm{Id}}{\longrightarrow} & H^p \\ E & & \uparrow \\ F & & \uparrow \\ H^p & \stackrel{}{\longrightarrow} & H^p \end{array} & \|E\| \|P\| \leq C/\delta, \end{array}$$

where the constant C > 0 is universal.

By Gamlen-Gaudet construction (\mathscr{B}_I) and a random choice of signs ε_I there exists a block basis $b_I^{(\varepsilon)} = \sum_{K \in \mathscr{B}_I} \varepsilon_K h_K$ of the Haar system such that

$$Tb_I^{(\varepsilon)} = \alpha_I b_I^{(\varepsilon)} + \text{small error}, \qquad \alpha_I \ge \delta.$$

Theorem

Let $1 , <math>\delta > 0$ and $T : H^p \to H^p$ be a linear operator with large diagonal, i.e. $\langle Th_I, h_I \rangle \geq \delta |I|$. Then we have

$$\begin{array}{ccc} H^p & \stackrel{\mathrm{Id}}{\longrightarrow} & H^p \\ E & & \uparrow \\ F & & \uparrow \\ H^p & \stackrel{}{\longrightarrow} & H^p \end{array} & \|E\| \|P\| \leq C/\delta, \end{array}$$

where the constant C > 0 is universal.

By Gamlen-Gaudet construction (\mathscr{B}_I) and a random choice of signs ε_I there exists a block basis $b_I^{(\varepsilon)} = \sum_{K \in \mathscr{B}_I} \varepsilon_K h_K$ of the Haar system such that

$$Tb_I^{(\varepsilon)} = \alpha_I b_I^{(\varepsilon)} + \text{small error}, \qquad \alpha_I \ge \delta.$$

The Gamlen-Gaudet construction (1973)

Figure: On the left side: construction of b_I . On the right side: the corresponding index intervals I.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Figure: On the left side: construction of b_I . On the right side: the corresponding index intervals I.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∃ 900

Figure: On the left side: construction of b_I . On the right side: the corresponding index intervals I.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Figure: On the left side: construction of b_I . On the right side: the corresponding index intervals I.

イロト 不得 とうき イヨト

ж

Figure: On the left side: construction of b_I . On the right side: the corresponding index intervals I.

・ロト ・得ト ・ヨト ・ヨト

ж

Figure: On the left side: construction of b_I . On the right side: the corresponding index intervals I.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Figure: On the left side: construction of b_I . On the right side: the corresponding index intervals I.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

• The Rademacher system converges weakly to 0 in H^p .

- First, the operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\langle Tb_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)} \rangle \approx 0$, if $I \neq J$.
- The second part consists of choosing signs ε_I such that $\langle Tb_I^{(\varepsilon)}, b_I^{(\varepsilon)} \rangle \geq \delta \|b_I^{(\varepsilon)}\|_2^2$.
- The block basis $\{b_I^{(arepsilon)}:\,I\in\mathscr{D}\}$ is equivalent to the Haar system.
- The orthogonal projection $Qf = \sum_{I \in \mathscr{D}} \frac{\langle f, b_I^{(\varepsilon)} \rangle}{\|b_I^{(\varepsilon)}\|_2^2} b_I^{(\varepsilon)}$ is bounded on H^p (Gamlen-Gaudet).

うして ふゆう ふほう ふほう うらつ

- The Rademacher system converges weakly to 0 in H^p .
- First, the operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\langle Tb_I^{(\varepsilon)}, b_J^{(\varepsilon)} \rangle \approx 0$, if $I \neq J$.
- The second part consists of choosing signs ε_I such that $\langle Tb_I^{(\varepsilon)}, b_I^{(\varepsilon)} \rangle \geq \delta \|b_I^{(\varepsilon)}\|_2^2$.
- The block basis $\{b_I^{(arepsilon)}:\,I\in\mathscr{D}\}$ is equivalent to the Haar system.
- The orthogonal projection $Qf = \sum_{I \in \mathscr{D}} \frac{\langle f, b_I^{(\varepsilon)} \rangle}{\|b_I^{(\varepsilon)}\|_2^2} b_I^{(\varepsilon)}$ is bounded on H^p (Gamlen-Gaudet).

(日) (伊) (日) (日) (日) (0) (0)

- The Rademacher system converges weakly to 0 in H^p .
- First, the operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\langle Tb_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)} \rangle \approx 0$, if $I \neq J$.
- The second part consists of choosing signs ε_I such that $\langle Tb_I^{(\varepsilon)}, b_I^{(\varepsilon)} \rangle \geq \delta \|b_I^{(\varepsilon)}\|_2^2$.
- The block basis $\{b_I^{(arepsilon)}:\,I\in\mathscr{D}\}$ is equivalent to the Haar system.
- The orthogonal projection $Qf = \sum_{I \in \mathscr{D}} \frac{\langle f, b_I^{(\varepsilon)} \rangle}{\|b_I^{(\varepsilon)}\|_2^2} b_I^{(\varepsilon)}$ is bounded on H^p (Gamlen-Gaudet).

(日) (伊) (日) (日) (日) (0) (0)

- The Rademacher system converges weakly to 0 in H^p .
- First, the operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\langle Tb_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\rangle\approx 0,$ if $I\neq J.$
- The second part consists of choosing signs ε_I such that $\langle Tb_I^{(\varepsilon)}, b_I^{(\varepsilon)} \rangle \geq \delta \|b_I^{(\varepsilon)}\|_2^2.$
- The block basis $\{b_I^{(arepsilon)}: I \in \mathscr{D}\}$ is equivalent to the Haar system.
- The orthogonal projection $Qf = \sum_{I \in \mathscr{D}} \frac{\langle f, b_I^{(\varepsilon)} \rangle}{\|b_I^{(\varepsilon)}\|_2^2} b_I^{(\varepsilon)}$ is bounded on H^p (Gamlen-Gaudet).

- The Rademacher system converges weakly to 0 in H^p .
- First, the operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\langle Tb_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\rangle\approx 0,$ if $I\neq J.$
- The second part consists of choosing signs ε_I such that $\langle Tb_I^{(\varepsilon)}, b_I^{(\varepsilon)} \rangle \geq \delta \|b_I^{(\varepsilon)}\|_2^2.$
- The block basis $\{b_I^{(\varepsilon)}: I \in \mathscr{D}\}$ is equivalent to the Haar system.
- The orthogonal projection $Qf = \sum_{I \in \mathscr{D}} \frac{\langle f, b_I^{(\varepsilon)} \rangle}{\|b_I^{(\varepsilon)}\|_2^2} b_I^{(\varepsilon)}$ is bounded on H^p (Gamlen-Gaudet).

- The Rademacher system converges weakly to 0 in H^p .
- First, the operator T is preconditioned by multiplying the Haar system with highly oscillating Rademacher functions.
- This gives that $\langle Tb_{I}^{(\varepsilon)}, b_{J}^{(\varepsilon)}\rangle\approx 0,$ if $I\neq J.$
- The second part consists of choosing signs ε_I such that $\langle Tb_I^{(\varepsilon)}, b_I^{(\varepsilon)} \rangle \geq \delta \|b_I^{(\varepsilon)}\|_2^2.$
- The block basis $\{b_I^{(\varepsilon)}: I \in \mathscr{D}\}$ is equivalent to the Haar system.
- The orthogonal projection $Qf = \sum_{I \in \mathscr{D}} \frac{\langle f, b_I^{(\varepsilon)} \rangle}{\|b_I^{(\varepsilon)}\|_2^2} b_I^{(\varepsilon)}$ is bounded on H^p (Gamlen-Gaudet).

Overview

1 Operators with large diagonal

2 One parameter

- $\mathscr{R}=\{I\times J\,:\,I,J\in\mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y) = h_I(x)h_J(y)$ the L^{∞} -normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f = \sum_{I \times J \in \mathscr{R}} a_{I \times J} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \Big(\sum_{I \times J \in \mathscr{R}} a_{I \times J}^2 h_{I \times J}^2\Big)^{1/2}.$$

- we define the norm of the mixed-norm Hardy spaces $H^p(H^q),$ $1\leq p,q<\infty$ by

$$\|f\|_{H^{p}(H^{q})} = \left(\int_{0}^{1} \left(\int_{0}^{1} \left(\sum_{I\in\mathscr{D}} a_{I\times J}^{2} h_{I\times J}^{2}(x,y)\right)^{q/2} \mathrm{d}y\right)^{p/q} \mathrm{d}x\right)^{1/p}.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 - のへの

- $\mathscr{R}=\{I\times J\,:\,I,J\in\mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y) = h_I(x)h_J(y)$ the L^{∞} -normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f = \sum_{I \times J \in \mathscr{R}} a_{I \times J} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \Big(\sum_{I \times J \in \mathscr{R}} a_{I \times J}^2 h_{I \times J}^2\Big)^{1/2}.$$

- we define the norm of the mixed-norm Hardy spaces $H^p(H^q),$ $1\leq p,q<\infty$ by

$$\|f\|_{H^{p}(H^{q})} = \left(\int_{0}^{1} \left(\int_{0}^{1} \left(\sum_{I\in\mathscr{D}} a_{I\times J}^{2} h_{I\times J}^{2}(x,y)\right)^{q/2} \mathrm{d}y\right)^{p/q} \mathrm{d}x\right)^{1/p}.$$

<□> <@> < => < => < => < => < = < <</p>

- $\mathscr{R} = \{I \times J : I, J \in \mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y) = h_I(x)h_J(y)$ the L^{∞} -normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f = \sum_{I \times J \in \mathscr{R}} a_{I \times J} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \Big(\sum_{I \times J \in \mathscr{R}} a_{I \times J}^2 h_{I \times J}^2\Big)^{1/2}.$$

- we define the norm of the mixed-norm Hardy spaces $H^p(H^q),$ $1\leq p,q<\infty$ by

$$\|f\|_{H^{p}(H^{q})} = \left(\int_{0}^{1} \left(\int_{0}^{1} \left(\sum_{I\in\mathscr{D}} a_{I\times J}^{2} h_{I\times J}^{2}(x,y)\right)^{q/2} \mathrm{d}y\right)^{p/q} \mathrm{d}x\right)^{1/p}.$$

<□> <@> < => < => < => < => < = < <</p>

- $\mathscr{R} = \{I \times J : I, J \in \mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y) = h_I(x)h_J(y)$ the L^{∞} -normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f = \sum_{I \times J \in \mathscr{R}} a_{I \times J} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \Big(\sum_{I \times J \in \mathscr{R}} a_{I \times J}^2 h_{I \times J}^2\Big)^{1/2}.$$

- we define the norm of the mixed-norm Hardy spaces $H^p(H^q),$ $1\leq p,q<\infty$ by

$$\|f\|_{H^{p}(H^{q})} = \left(\int_{0}^{1} \left(\int_{0}^{1} \left(\sum_{I\in\mathscr{D}} a_{I\times J}^{2} h_{I\times J}^{2}(x,y)\right)^{q/2} \mathrm{d}y\right)^{p/q} \mathrm{d}x\right)^{1/p}.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 → 의식⊙

- $\mathscr{R} = \{I \times J : I, J \in \mathscr{D}\}$ denotes the dyadic rectangles on the unit square,
- $h_{I \times J}(x, y) = h_I(x)h_J(y)$ the L^{∞} -normalized tensor product Haar function, $I \times J \in \mathscr{R}$.
- Let $f = \sum_{I \times J \in \mathscr{R}} a_{I \times J} h_{I \times J}$ be a finite linear combination,
- then the square function $\mathbb{S}(f)$ of f is given by

$$\mathbb{S}(f) = \Big(\sum_{I \times J \in \mathscr{R}} a_{I \times J}^2 h_{I \times J}^2\Big)^{1/2}.$$

- we define the norm of the mixed-norm Hardy spaces $H^p(H^q),$ $1\leq p,q<\infty$ by

$$||f||_{H^{p}(H^{q})} = \left(\int_{0}^{1} \left(\int_{0}^{1} \left(\sum_{I\in\mathscr{D}} a_{I\times J}^{2} h_{I\times J}^{2}(x,y)\right)^{q/2} \mathrm{d}y\right)^{p/q} \mathrm{d}x\right)^{1/p}.$$

Capon (1982): $H^p(H^q)$ is primary (augmented) The first result on factorization in mixed-norm spaces is the following theorem of Capon.

Theorem

Let $1 < p, q < \infty$ or p = q = 1. For any operator T the identity on $H^p(H^q)$ factors through H = T or H = Id - T, i.e.

$$\begin{array}{c|c} H^{p}(H^{q}) & \xrightarrow{\mathrm{Id}} & H^{p}(H^{q}) \\ E & & \uparrow \\ F & & \uparrow \\ H^{p}(H^{q}) & \xrightarrow{} & H^{p}(H^{q}) \end{array} \\ \end{array}$$

Mixed-norm spaces require specific bi-parameter techniques. Capon invents a specific bi-parameter Gamlen-Gaudet selection process. It gives a block basis $b_{I \times J} = \sum_{K \times L \in \mathscr{B}_{I \times J}} h_{K \times L}$ such that

 $Hb_{I\times J} = \alpha_{I\times J}b_{I\times J} + \text{small error}, \qquad \alpha_{I\times J} \ge 1/2.$

The first result on factorization in mixed-norm spaces is the following theorem of Capon.

Theorem

Let $1 < p, q < \infty$ or p = q = 1. For any operator T the identity on $H^p(H^q)$ factors through H = T or H = Id - T, i.e.

$$\begin{array}{c|c} H^{p}(H^{q}) & \stackrel{\mathrm{Id}}{\longrightarrow} H^{p}(H^{q}) \\ E & & \uparrow P \\ H^{p}(H^{q}) & \stackrel{}{\longrightarrow} H^{p}(H^{q}) \end{array} \\ \end{array} \\ \end{array}$$

Mixed-norm spaces require specific bi-parameter techniques. Capon invents a specific bi-parameter Gamlen-Gaudet selection process. It gives a block basis $b_{I\times J} = \sum_{K\times L\in\mathscr{B}_{I\times J}} h_{K\times L}$ such that

 $Hb_{I\times J} = \alpha_{I\times J}b_{I\times J} + \text{small error}, \qquad \alpha_{I\times J} \ge 1/2.$

The first result on factorization in mixed-norm spaces is the following theorem of Capon.

Theorem

Let $1 < p, q < \infty$ or p = q = 1. For any operator T the identity on $H^p(H^q)$ factors through H = T or H = Id - T, i.e.

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & \uparrow P & \|E\| \|P\| \leq C \\ H^{p}(H^{q}) & \xrightarrow{} & H^{p}(H^{q}) \end{array}$$

Mixed-norm spaces require specific bi-parameter techniques. Capon invents a specific bi-parameter Gamlen-Gaudet selection process. It gives a block basis $b_{I\times J} = \sum_{K\times L\in\mathscr{B}_{I\times J}} h_{K\times L}$ such that

 $Hb_{I \times J} = \alpha_{I \times J}b_{I \times J} + \text{small error}, \qquad \alpha_{I \times J} \ge 1/2.$

The first result on factorization in mixed-norm spaces is the following theorem of Capon.

Theorem

Let $1 < p, q < \infty$ or p = q = 1. For any operator T the identity on $H^p(H^q)$ factors through H = T or H = Id - T, i.e.

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & & \uparrow P \\ H^{p}(H^{q}) & \xrightarrow{} & H^{p}(H^{q}) \end{array} \\ \end{array}$$

Mixed-norm spaces require specific bi-parameter techniques.

Capon invents a specific bi-parameter Gamlen-Gaudet selection process. It gives a block basis $b_{I \times J} = \sum_{K \times L \in \mathscr{B}_{I \times J}} h_{K \times L}$ such that

 $Hb_{I \times J} = \alpha_{I \times J}b_{I \times J} + \text{small error}, \qquad \alpha_{I \times J} \ge 1/2.$

The first result on factorization in mixed-norm spaces is the following theorem of Capon.

Theorem

Let $1 < p, q < \infty$ or p = q = 1. For any operator T the identity on $H^p(H^q)$ factors through H = T or H = Id - T, i.e.

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & & \uparrow^{P} & \|E\| \|P\| \leq C. \\ H^{p}(H^{q}) & \xrightarrow{} & H^{p}(H^{q}) \end{array}$$

Mixed-norm spaces require specific bi-parameter techniques. Capon invents a specific bi-parameter Gamlen-Gaudet selection process. It gives a block basis $b_{I\times J} = \sum_{K\times L\in\mathscr{B}_{I\times J}} h_{K\times L}$ such that $Hb_{I\times J} = \alpha_{I\times J}b_{I\times J} + \text{small error}, \qquad \alpha_{I\times J} \ge 1/2.$ and the projection $Qf = \sum_{I\times J\in\mathscr{R}} \frac{\langle f, b_{I\times J} \rangle}{\|b_{I\times J}\|_{2}^{2}} b_{I\times J}$ is bounded on $H^{p}(H^{q})$

The first result on factorization in mixed-norm spaces is the following theorem of Capon.

Theorem

Let $1 < p, q < \infty$ or p = q = 1. For any operator T the identity on $H^p(H^q)$ factors through H = T or H = Id - T, i.e.

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & \uparrow P & \|E\| \|P\| \leq C \\ H^{p}(H^{q}) & \xrightarrow{} & H^{p}(H^{q}) \end{array}$$

Mixed-norm spaces require specific bi-parameter techniques. Capon invents a specific bi-parameter Gamlen-Gaudet selection process. It gives a block basis $b_{I\times J} = \sum_{K\times L\in\mathscr{B}_{I\times J}} h_{K\times L}$ such that

 $Hb_{I \times J} = \alpha_{I \times J}b_{I \times J} + \text{small error}, \qquad \alpha_{I \times J} \ge 1/2.$

The first result on factorization in mixed-norm spaces is the following theorem of Capon.

Theorem

Let $1 < p, q < \infty$ or p = q = 1. For any operator T the identity on $H^p(H^q)$ factors through H = T or H = Id - T, i.e.

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & & \uparrow P \\ H^{p}(H^{q}) & \xrightarrow{} & H^{p}(H^{q}) \end{array} & \|E\| \|P\| \leq C. \end{array}$$

Mixed-norm spaces require specific bi-parameter techniques. Capon invents a specific bi-parameter Gamlen-Gaudet selection process. It gives a block basis $b_{I\times J} = \sum_{K\times L\in\mathscr{B}_{I\times J}} h_{K\times L}$ such that

 $Hb_{I \times J} = \alpha_{I \times J}b_{I \times J} + \text{small error}, \qquad \alpha_{I \times J} \ge 1/2.$

The first result on factorization in mixed-norm spaces is the following theorem of Capon.

Theorem

Let $1 < p, q < \infty$ or p = q = 1. For any operator T the identity on $H^p(H^q)$ factors through H = T or H = Id - T, i.e.

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & & \uparrow P \\ H^{p}(H^{q}) & \xrightarrow{} & H^{p}(H^{q}) \end{array} & \|E\| \|P\| \leq C. \end{array}$$

Mixed-norm spaces require specific bi-parameter techniques. Capon invents a specific bi-parameter Gamlen-Gaudet selection process. It gives a block basis $b_{I\times J} = \sum_{K\times L\in\mathscr{B}_{I\times J}} h_{K\times L}$ such that

$$Hb_{I \times J} = \alpha_{I \times J}b_{I \times J} + \text{small error}, \qquad \alpha_{I \times J} \ge 1/2.$$

$$\begin{array}{c|c} H^{p}(H^{q}) & \stackrel{\mathrm{Id}}{\longrightarrow} H^{p}(H^{q}) \\ E & & \uparrow P \\ H^{p}(H^{q}) & \stackrel{T}{\longrightarrow} H^{p}(H^{q}) \end{array} \\ \end{array}$$

where the constant C > 0 is universal.

By Capon's bi-parameter construction $(\mathscr{B}_{I\times J})$ and a random choice of signs $\varepsilon_{I\times J}$, there exists a block basis $b_{I\times J}^{(\varepsilon)} = \sum_{K\in\mathscr{B}_{I\times J}} \varepsilon_{K\times L} h_{K\times L}$ of the Haar system such that

$$Tb_{I\times J}^{(\varepsilon)} = \alpha_{I\times J}b_{I\times J}^{(\varepsilon)} + \text{small error}, \qquad \alpha_{I\times J} \ge \delta.$$

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & \uparrow P & \|E\| \|P\| \leq C/\delta, \\ H^{p}(H^{q}) & \xrightarrow{T} & H^{p}(H^{q}) \end{array}$$

where the constant C > 0 is universal.

By Capon's bi-parameter construction $(\mathscr{B}_{I \times J})$ and a random choice of signs $\varepsilon_{I \times J}$, there exists a block basis $b_{I \times J}^{(\varepsilon)} = \sum_{K \in \mathscr{B}_{I \times J}} \varepsilon_{K \times L} h_{K \times L}$ of the Haar system such that

$$Tb_{I\times J}^{(\varepsilon)} = \alpha_{I\times J}b_{I\times J}^{(\varepsilon)} + \text{small error}, \qquad \alpha_{I\times J} \ge \delta.$$

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & \uparrow P & \|E\| \|P\| \leq C/\delta, \\ H^{p}(H^{q}) & \xrightarrow{T} & H^{p}(H^{q}) \end{array}$$

where the constant C > 0 is universal.

By Capon's bi-parameter construction $(\mathscr{B}_{I\times J})$ and a random choice of signs $\varepsilon_{I\times J}$, there exists a block basis $b_{I\times J}^{(\varepsilon)} = \sum_{K\in\mathscr{B}_{I\times J}} \varepsilon_{K\times L} h_{K\times L}$ of the Haar system such that

$$Tb_{I\times J}^{(\varepsilon)} = \alpha_{I\times J}b_{I\times J}^{(\varepsilon)} + \text{small error}, \qquad \alpha_{I\times J} \ge \delta.$$

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & \uparrow P & \|E\| \|P\| \leq C/\delta, \\ H^{p}(H^{q}) & \xrightarrow{T} & H^{p}(H^{q}) \end{array}$$

where the constant C > 0 is universal.

By Capon's bi-parameter construction $(\mathscr{B}_{I\times J})$ and a random choice of signs $\varepsilon_{I\times J}$, there exists a block basis $b_{I\times J}^{(\varepsilon)} = \sum_{K\in\mathscr{B}_{I\times J}} \varepsilon_{K\times L} h_{K\times L}$ of the Haar system such that

$$Tb_{I\times J}^{(\varepsilon)} = \alpha_{I\times J}b_{I\times J}^{(\varepsilon)} + \text{small error}, \qquad \alpha_{I\times J} \ge \delta.$$

$$\begin{array}{ccc} H^{p}(H^{q}) & \xrightarrow{\operatorname{Id}} & H^{p}(H^{q}) \\ E & & \uparrow P & \|E\| \|P\| \leq C/\delta, \\ H^{p}(H^{q}) & \xrightarrow{T} & H^{p}(H^{q}) \end{array}$$

where the constant C > 0 is universal.

By Capon's bi-parameter construction $(\mathscr{B}_{I\times J})$ and a random choice of signs $\varepsilon_{I\times J}$, there exists a block basis $b_{I\times J}^{(\varepsilon)} = \sum_{K\in\mathscr{B}_{I\times J}} \varepsilon_{K\times L} h_{K\times L}$ of the Haar system such that

$$Tb_{I\times J}^{(\varepsilon)} = \alpha_{I\times J}b_{I\times J}^{(\varepsilon)} + \text{small error}, \qquad \alpha_{I\times J} \ge \delta.$$

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathbb{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$
- $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}(I \times J) = 5$,
 - $\mathfrak{O}_{\triangleleft}(\widetilde{I} \times J) = 3$,
 - and $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) = 1$

・ロト ・ 四ト ・ 日ト ・ 日 ・

• We identify $I \times J$ with $i = \mathcal{O}_{\triangleleft}(I \times J)$, i.e.

• $\mathscr{B}_{I \times J} = \mathscr{B}_{i}$ • $b_{I \times J}^{(\varepsilon)} = b_{i}^{(\varepsilon)}$.

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathbb{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$
- $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}(I \times J) = 5$,
 - $\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) = 3$,
 - and $\mathbb{O}_{\triangleleft}(I imes \widetilde{J}) = 1.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• We identify $I \times J$ with $i = \mathbb{O}_{\triangleleft}(I \times J)$, i.e.

• $\mathscr{B}_{I \times J} = \mathscr{B}_i$, • $b_{I \times J}^{(\varepsilon)} = b_i^{(\varepsilon)}$.

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$ • $\mathbb{O}_{\triangleleft}(I \times \widetilde{J}) < \mathbb{O}_{\triangleleft}(I \times J)$
- $U_{\triangleleft}(I \times J) < U_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}(I \times J) = 5$,
 - $\mathcal{O}_{\triangleleft}(I \times J) = 3$,
 - and $\mathbb{O}_{\triangleleft}(I imes \widetilde{J}) = 1.$

うして ふゆう ふほう ふほう うらつ

• We identify $I \times J$ with $i = \mathcal{O}_{\triangleleft}(I \times J)$, i.e.

• $\mathscr{B}_{I \times J} = \mathscr{B}_i,$ • $b_{I \times J}^{(\varepsilon)} = b_i^{(\varepsilon)}.$

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$
- $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}\left(I \times J \right) = 5$,
 - $\mathcal{O}_{\triangleleft}(I \times J) = 3$,
 - and $\mathfrak{O}_{\triangleleft}(I imes \widetilde{J}) = 1.$

うして ふゆう ふほう ふほう うらつ

• We identify $I \times J$ with $i = \mathcal{O}_{\triangleleft}(I \times J)$, i.e.

• $\mathscr{B}_{I \times J} = \mathscr{B}_{i}$ • $b_{I \times J}^{(\varepsilon)} = b_{i}^{(\varepsilon)}$.

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) < \mathcal{O}_{\triangleleft}(I \times J)$
- $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathbb{O}_{\triangleleft}(I \times J) = 5$,
 - $\mathcal{O}_{\triangleleft}(I \times J) = 3$,
 - and $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) = 1$.

うして ふゆう ふほう ふほう うらつ

• We identify $I \times J$ with $i = \mathcal{O}_{\triangleleft}(I \times J)$, i.e.

• $\mathscr{B}_{I \times J} = \mathscr{B}_i$ • $b_{I \times J}^{(\varepsilon)} = b_i^{(\varepsilon)}$.
Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$
- $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}(I \times J) = 5$,

•
$$\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) = 3,$$

• and $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) = 1$.

ション ふゆ く 山 マ チャット しょうくしゃ

- We identify $I \times J$ with
 - $i = \mathcal{O}_{\triangleleft}(I \times J)$, i.e.

• $\mathscr{B}_{I \times J} = \mathscr{B}_i$, • $b_{I \times J}^{(\varepsilon)} = b_i^{(\varepsilon)}$.

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) < \mathcal{O}_{\triangleleft}(I \times J)$
- $\mathbb{O}_{\triangleleft}(I \times \widetilde{J}) < \mathbb{O}_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}(I \times J) = 5$,

•
$$\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) = 3,$$

• and $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) = 1$.

ション ふゆ く 山 マ チャット しょうくしゃ

- We identify $I \times J$ with
 - $i = \mathcal{O}_{\triangleleft}(I \times J)$, i.e.

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$

•
$$\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$$

• E.g., let $I = J = [0, \frac{1}{2}]$, then

•
$$\mathfrak{O}_{\triangleleft}(I \times J) = 5$$
,

•
$$\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) = 3,$$

• and $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) = 1.$

ション ふゆ く 山 マ チャット しょうくしゃ

• We identify $I \times J$ with i = 0 $(I \times J)$ is

$$i = \mathcal{O}_{\triangleleft}(I \times J)$$
, i.e.

•
$$\mathscr{B}_{I \times J} = \mathscr{B}_i$$
,
• $b_{I \times J}^{(\varepsilon)} = b_i^{(\varepsilon)}$.

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$

•
$$\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$$

- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}(\underset{\sim}{I} \times J) = 5$,

•
$$\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) = 3,$$

• and $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) = 1.$

ション ふゆ く 山 マ チャット しょうくしゃ

- We identify $I \times J$ with i = 0 $(I \times J)$ i.e.
 - $i = \mathbb{O}_{\triangleleft}(I \times J)$, i.e.
 - $\mathscr{B}_{I \times J} = \mathscr{B}_i$, • $b_{I \times J}^{(\varepsilon)} = b_i^{(\varepsilon)}$.

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$
- $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}(\underset{\sim}{I} \times J) = 5$,
 - $\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) = 3,$
 - and $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) = 1.$

ション ふゆ く 山 マ チャット しょうくしゃ

- We identify $I \times J$ with
 - $i = \mathcal{O}_{\triangleleft}(I \times J)$, i.e.

• $\mathscr{B}_{I \times J} = \mathscr{B}_i$, • $b_{I \times J}^{(\varepsilon)} = b_i^{(\varepsilon)}$.

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$
- $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}(I \times J) = 5$,

•
$$\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) = 3,$$

• and $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) = 1.$

(ロ) (型) (E) (E) (E) (O)

- We identify $I \times J$ with
 - $i = \mathcal{O}_{\triangleleft}(I \times J)$, i.e.
 - $\mathscr{B}_{I \times J} = \mathscr{B}_i$, • $b_{I \times J}^{(\varepsilon)} = b_i^{(\varepsilon)}$.

Figure: Order of the first 49 rectangles.

- If $I \in \mathscr{D}$, then $\widetilde{I} \in \mathscr{D}$ is such that $\widetilde{I} \supset I$ and $|\widetilde{I}| = 2|I|$.
- $\mathfrak{O}_{\triangleleft}(I \times J)$ is the order number of $I \times J$.
- $\mathbb{O}_{\triangleleft}(\widetilde{I} \times J) < \mathbb{O}_{\triangleleft}(I \times J)$
- $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) < \mathcal{O}_{\triangleleft}(I \times J)$
- E.g., let $I = J = [0, \frac{1}{2}]$, then
 - $\mathcal{O}_{\triangleleft}(I \times J) = 5$,

•
$$\mathcal{O}_{\triangleleft}(\widetilde{I} \times J) = 3,$$

• and $\mathcal{O}_{\triangleleft}(I \times \widetilde{J}) = 1.$

(ロ) (型) (E) (E) (E) (O)

- We identify $I \times J$ with
 - $i = \mathcal{O}_{\triangleleft}(I \times J)$, i.e.
 - $\mathscr{B}_{I \times J} = \mathscr{B}_i$, • $b_{I \times J}^{(\varepsilon)} = b_i^{(\varepsilon)}$.

$\mathsf{Proof} - \mathsf{case} \ J = [0, 1]$

Figure: Darkgray=past, lightgray=present, white=future. • $K_0 \times [0,1] \in \mathscr{B}_{\widetilde{I} \times [0,1]}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• $K \times [0,1] \in \mathscr{F}_m$

$\mathsf{Proof} - \mathsf{case} \ J = [0, 1]$

Figure: Darkgray=past, lightgray=present, white=future.

- $K_0 \times [0,1] \in \mathscr{B}_{\widetilde{I} \times [0,1]}$
- $K \times [0,1] \in \mathscr{F}_m$

イロト 不得 とうき イヨト

э

Proof – case $J \neq [0, 1]$, I = [0, 1]

Figure: Darkgray=past, lightgray=present, white=future. • $[0,1] \times L_0 \in \mathscr{B}_{[0,1] \times \widetilde{J}}$ • $[0,1] \times L \in \mathscr{F}_m$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Proof – case $J \neq [0,1]$, I = [0,1]

Figure: Darkgray=past, lightgray=present, white=future.

- $[0,1] \times L_0 \in \mathscr{B}_{[0,1] \times \widetilde{J}}$
- $[0,1] \times L \in \mathscr{F}_m$

イロト イポト イヨト イヨト

$\mathsf{Proof}-\mathsf{case}\ J\neq [0,1],\ I\neq [0,1]$

Figure: Darkgray=past, lightgray=present.

- $K_0 \times L_0 \in \mathscr{B}_{I \times \widetilde{J}}$
- $K_1 \times L_1 \in \mathscr{B}_{\widetilde{I} \times J}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• $K_0 \times L \in \mathscr{F}_m$

$\mathsf{Proof}-\mathsf{case}\ J\neq [0,1],\ I\neq [0,1]$

Figure: Darkgray=past, lightgray=present.

- $K_0 \times L_0 \in \mathscr{B}_{I \times \widetilde{J}}$
- $K_1 \times L_1 \in \mathscr{B}_{\widetilde{I} \times J}$
- $K_0 \times L \in \mathscr{F}_m$

• \mathscr{F}_m is determined by the inductive construction.

- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}$.
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.

うして 山田 エリ・エリ・ 山田 うらつ

- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} ||f_m^{(\varepsilon)}||_2^2$.
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.
- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle$, $\varepsilon = (\varepsilon_{K \times L})$, $K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- \mathscr{F}_m is determined by the inductive construction.
- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}$.
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.

うして 山田 エリ・エリ・ 山田 うらつ

- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} ||f_m^{(\varepsilon)}||_2^2$.
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.
- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle$, $\varepsilon = (\varepsilon_{K \times L})$, $K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- \mathscr{F}_m is determined by the inductive construction.
- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}$.
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.

うして 山田 エリ・エリ・ 山田 うらつ

- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} \|f_m^{(\varepsilon)}\|_2^2$.
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.
- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle$, $\varepsilon = (\varepsilon_{K \times L})$, $K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- \mathscr{F}_m is determined by the inductive construction.
- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}$.
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.

- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} \|f_m^{(\varepsilon)}\|_2^2.$
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.
- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle$, $\varepsilon = (\varepsilon_{K \times L})$, $K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- \mathscr{F}_m is determined by the inductive construction.
- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}$.
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.

- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} \|f_m^{(\varepsilon)}\|_2^2.$
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.
- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle$, $\varepsilon = (\varepsilon_{K \times L})$, $K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- \mathscr{F}_m is determined by the inductive construction.
- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}$.
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.

- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} \|f_m^{(\varepsilon)}\|_2^2$.
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.
- $Tf_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} \alpha_{K \times L} h_{K \times L} + \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} r_{K \times L}$
- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle, \ \varepsilon = (\varepsilon_{K \times L}), \ K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- \mathscr{F}_m is determined by the inductive construction.
- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}.$
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.
- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} \|f_m^{(\varepsilon)}\|_2^2$.
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.

•
$$Tf_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} \alpha_{K \times L} h_{K \times L} + \underbrace{\sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} r_{K \times L}}_{=:R_m^{(\varepsilon)}}$$

- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle, \ \varepsilon = (\varepsilon_{K \times L}), \ K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- \mathscr{F}_m is determined by the inductive construction.
- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}.$
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.
- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} \|f_m^{(\varepsilon)}\|_2^2.$
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.

•
$$Tf_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} \alpha_{K \times L} h_{K \times L} + \underbrace{\sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} r_{K \times L}}_{=:R_m^{(\varepsilon)}}$$

- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle$, $\varepsilon = (\varepsilon_{K \times L})$, $K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- \mathscr{F}_m is determined by the inductive construction.
- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}.$
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.

- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} \|f_m^{(\varepsilon)}\|_2^2.$
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.

•
$$Tf_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} \alpha_{K \times L} h_{K \times L} + \underbrace{\sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} r_{K \times L}}_{=:R_m^{(\varepsilon)}}$$

- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle$, $\varepsilon = (\varepsilon_{K \times L})$, $K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- \mathscr{F}_m is determined by the inductive construction.
- We define $f_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} h_{K \times L}.$
- For all $x \in H^p(H^q)$ or $x \in H^p(H^q)^*$ we have $\langle f_m^{(\varepsilon)}, x \rangle \to 0$ as $m \to \infty$.
- Thus, $\sum_{j=1}^{i-1} |\langle Tb_j^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle| + |\langle f_m^{(\varepsilon)}, T^*b_j^{(\varepsilon)} \rangle| \le \eta 4^{-i} \|f_m^{(\varepsilon)}\|_2^2$.
- What we need is $\langle Tf_m^{(\varepsilon)}, f_m^{(\varepsilon)} \rangle \ge (\delta \eta) \|f_m^{(\varepsilon)}\|_2^2$.

•
$$Tf_m^{(\varepsilon)} = \sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} \alpha_{K \times L} h_{K \times L} + \underbrace{\sum_{K \times L \in \mathscr{F}_m} \varepsilon_{K \times L} r_{K \times L}}_{=:R_m^{(\varepsilon)}}$$

- $X(\varepsilon) := \langle f_m^{(\varepsilon)}, R_m^{(\varepsilon)} \rangle$, $\varepsilon = (\varepsilon_{K \times L})$, $K \times L \in \mathscr{F}_m$
- We will show that $\mathbb{E}_{\varepsilon} X = 0$ and $\mathbb{E}_{\varepsilon} X^2 \to 0$, as $m \to \infty$.
- Choose signs $\varepsilon_{K \times L}$ accordingly, and define $b_{I \times J}^{(\varepsilon)} = f_m^{(\varepsilon)}$.

- Define $Bh_{I\times J} = b_{I\times J}^{(\varepsilon)}$, then $||B|| ||B^{-1}|| \le 1$.
- $Tb_{I \times J}^{(\varepsilon)} = \alpha_{I \times J} b_{I \times J}^{(\varepsilon)} +$ small error, $\alpha_{I \times J} \ge \delta$.
- T is almost diagonal relative to $(b_{I \times J}^{(\varepsilon)})$ with large diagonal entries
- The projection $Qf = \sum_i \frac{\langle f, b_i^{(\varepsilon)} \rangle}{\|b_i^{(\varepsilon)}\|_2^2} b_i^{(\varepsilon)}$ is bounded on $H^p(H^q)$.

$$\operatorname{span} \{ b_i^{(\varepsilon)} \} \xrightarrow{I} \operatorname{span} \{ b_i^{(\varepsilon)} \} \\
Jy = y \bigvee \qquad \qquad \uparrow V \\
H^p(H^q) \xrightarrow{T} H^p(H^q)$$

 $||J|| ||V|| \le C/\delta$, and C > 0 is a universal constant.

- Define $Bh_{I\times J} = b_{I\times J}^{(\varepsilon)}$, then $||B|| ||B^{-1}|| \le 1$.
- $Tb_{I \times J}^{(\varepsilon)} = \alpha_{I \times J} b_{I \times J}^{(\varepsilon)} + \text{small error, } \alpha_{I \times J} \ge \delta.$
- T is almost diagonal relative to $(b_{I \times J}^{(\varepsilon)})$ with large diagonal entries
- The projection $Qf = \sum_i \frac{\langle f, b_i^{(\varepsilon)} \rangle}{\|b_i^{(\varepsilon)}\|_2^2} b_i^{(\varepsilon)}$ is bounded on $H^p(H^q)$.

$$\operatorname{span} \{ b_i^{(\varepsilon)} \} \xrightarrow{I} \operatorname{span} \{ b_i^{(\varepsilon)} \} \\
Jy = y \bigvee \qquad \qquad \uparrow V \\
H^p(H^q) \xrightarrow{T} H^p(H^q)$$

 $||J|| ||V|| \leq C/\delta$, and C > 0 is a universal constant.

- Define $Bh_{I\times J} = b_{I\times J}^{(\varepsilon)}$, then $||B|| ||B^{-1}|| \le 1$.
- $Tb_{I \times J}^{(\varepsilon)} = \alpha_{I \times J} b_{I \times J}^{(\varepsilon)} +$ small error, $\alpha_{I \times J} \ge \delta$.
- T is almost diagonal relative to $(b_{I\times J}^{(\varepsilon)})$ with large diagonal entries
- The projection $Qf = \sum_i \frac{\langle f, b_i^{(\varepsilon)} \rangle}{\|b_i^{(\varepsilon)}\|_2^2} b_i^{(\varepsilon)}$ is bounded on $H^p(H^q)$.

$$\begin{array}{c} \operatorname{span}\{b_i^{(\varepsilon)}\} \xrightarrow{I} \operatorname{span}\{b_i^{(\varepsilon)}\} \\ Jy = y \middle| & & \uparrow V \\ H^p(H^q) \xrightarrow{T} H^p(H^q) \end{array}$$

 $||J|| ||V|| \le C/\delta$, and C > 0 is a universal constant.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

- Define $Bh_{I\times J} = b_{I\times J}^{(\varepsilon)}$, then $||B|| ||B^{-1}|| \le 1$.
- $Tb_{I \times J}^{(\varepsilon)} = \alpha_{I \times J} b_{I \times J}^{(\varepsilon)} + \text{small error, } \alpha_{I \times J} \ge \delta.$
- T is almost diagonal relative to $(b_{I \times J}^{(\varepsilon)})$ with large diagonal entries
- The projection $Qf = \sum_i \frac{\langle f, b_i^{(\varepsilon)} \rangle}{\|b_i^{(\varepsilon)}\|_2^2} b_i^{(\varepsilon)}$ is bounded on $H^p(H^q)$.

 $||J|| ||V|| \leq C/\delta$, and C > 0 is a universal constant.

うして ふゆう ふほう ふほう うらう

- Define $Bh_{I\times J} = b_{I\times J}^{(\varepsilon)}$, then $||B|| ||B^{-1}|| \le 1$.
- $Tb_{I \times J}^{(\varepsilon)} = \alpha_{I \times J} b_{I \times J}^{(\varepsilon)} + \text{small error, } \alpha_{I \times J} \ge \delta.$
- T is almost diagonal relative to $(b_{I \times J}^{(\varepsilon)})$ with large diagonal entries
- The projection $Qf = \sum_i \frac{\langle f, b_i^{(\varepsilon)} \rangle}{\|b_i^{(\varepsilon)}\|_2^2} b_i^{(\varepsilon)}$ is bounded on $H^p(H^q)$.

$$\begin{array}{c} \operatorname{span}\{b_i^{(\varepsilon)}\} & \xrightarrow{I} \operatorname{span}\{b_i^{(\varepsilon)}\} \\ Jy = y & & \uparrow V \\ H^p(H^q) & \xrightarrow{T} H^p(H^q) \end{array}$$

 $||J|| ||V|| \le C/\delta$, and C > 0 is a universal constant.

- Define $Bh_{I\times J} = b_{I\times J}^{(\varepsilon)}$, then $||B|| ||B^{-1}|| \le 1$.
- $Tb_{I \times J}^{(\varepsilon)} = \alpha_{I \times J} b_{I \times J}^{(\varepsilon)} + \text{small error, } \alpha_{I \times J} \ge \delta.$
- T is almost diagonal relative to $(b_{I \times J}^{(\varepsilon)})$ with large diagonal entries

• The projection
$$Qf = \sum_i \frac{\langle f, b_i^{(\varepsilon)} \rangle}{\|b_i^{(\varepsilon)}\|_2^2} b_i^{(\varepsilon)}$$
 is bounded on $H^p(H^q)$.

 $||J|| ||V|| \le C/\delta$, and C > 0 is a universal constant.

N. J. Laustsen, R. Lechner, and P. F. X. Müller.
 Factorization of the identity through operators with large diagonal.
 ArXiv e-prints, September 2015.

(ロ) (型) (E) (E) (E) (O)

R. Lechner and P. F. X. Müller.
 Localization and projections on bi-parameter BMO.
 ArXiv e-prints, October 2014.