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A description of the problem class

• Let X be a Banach space and T : X → X a linear operator.

Find conditions on X and T such that the identity on X factors through T ,
i.e.

X
Id //

E
��

X

X
T
// X

P

OO

‖E‖‖P‖ ≤ C.

• The problem has finite dimensional (quantitative) and infinite
dimensional (qualitative) aspects.

• Classical examples include: `p (Pelczynski), `∞ (Lindenstrauss), L1

(Enflo-Starbird), Lp (Johnson-Maurey-Schechtman-Tzafriri), `pn
(Bourgain-Tzafriri).

• Generically, we expect that T has a large diagonal with respect to an
unconditional basis in X.
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Operators with large diagonal
• Let X be a Banach space and T : X → X a linear operator.
• Suppose that X has an unconditional basis (bn)n∈N, and let b∗n ∈ X∗ be
the nth coordinate functional.

• We say that T has large diagonal (relative to (bn)) if
infn∈N |〈Tbn, b∗n〉| > 0.

• For many Banach spaces X we know that the identity factors through
operators T with large diagonal, i.e.

X
Id //

E
��

X

X
T
// X

P

OO

‖E‖‖P‖ ≤ C.

• Classical examples include:
• `p with the unit vector basis (Pelczynski)
• Lp with the Haar basis (Andrew)

• Can the identity operator on X be factored through each operator on X
with large diagonal for all Banach spaces X with an unconditional basis?
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Can the identity operator on X be factored through each
operator on X with large diagonal for all Banach spaces X
with an unconditional basis?
Answer:

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)
There is an operator T on a Banach space X with an unconditional basis
such that T has large diagonal, but the identity operator on X does not
factor through T .
Main ingredients for the proof:
• X is the space XG (Gowers) with an unconditional basis.
• Fredholm theory.

Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)
The identity on mixed-norm Hardy spaces Hp(Hq), 1 ≤ p, q <∞ factors
through any operator T with large diagonal relative to the bi-parameter Haar
basis.
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Dyadic Hp

• D = {[k−12n ,
k
2n [ : k ≥ 0, n ≥ 0} denotes the dyadic intervals on the unit

interval,
• hI the L∞-normalized Haar function, I ∈ D .
• Let f =

∑
I∈D aIhI be a finite linear combination,

• then the square function S(f) of f is given by

S(f) =
(∑
I∈D

a2Ih
2
I

)1/2
.

• The norm of the one-parameter Hardy space Hp, 1 ≤ p <∞ is defined
by

‖f‖Hp = ‖ S(f)‖Lp =
(∫ 1

0

(∑
I∈D

a2Ih
2
I(x)

)p/2
dx
)1/p

.
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Andrew (1979)
Theorem
Let 1 < p <∞, δ > 0 and T : Hp → Hp be a linear operator with large
diagonal, i.e. 〈ThI , hI〉 ≥ δ|I|. Then we have

Hp Id //

E
��

Hp

Hp
T
// Hp

P

OO

‖E‖‖P‖ ≤ C/δ,

where the constant C > 0 is universal.
By Gamlen-Gaudet construction (BI) and a random choice of signs εI there
exists a block basis b(ε)I =

∑
K∈BI

εKhK of the Haar system such that

Tb
(ε)
I = αIb

(ε)
I + small error, αI ≥ δ.

The orthogonal projection Qf =
∑

I∈D
〈f,b(ε)I 〉
‖b(ε)I ‖

2
2

b
(ε)
I is bounded on Hp

(Gamlen-Gaudet).
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The Gamlen-Gaudet construction (1973)

Figure: On the left side: construction of bI . On the right side: the corresponding
index intervals I.



The Gamlen-Gaudet construction (1973)

Figure: On the left side: construction of bI . On the right side: the corresponding
index intervals I.



The Gamlen-Gaudet construction (1973)

Figure: On the left side: construction of bI . On the right side: the corresponding
index intervals I.



The Gamlen-Gaudet construction (1973)

Figure: On the left side: construction of bI . On the right side: the corresponding
index intervals I.



The Gamlen-Gaudet construction (1973)

Figure: On the left side: construction of bI . On the right side: the corresponding
index intervals I.



The Gamlen-Gaudet construction (1973)

Figure: On the left side: construction of bI . On the right side: the corresponding
index intervals I.



The Gamlen-Gaudet construction (1973)

Figure: On the left side: construction of bI . On the right side: the corresponding
index intervals I.



Comments on Andrew (1979)

• The Rademacher system converges weakly to 0 in Hp.
• First, the operator T is preconditioned by multiplying the Haar system
with highly oscillating Rademacher functions.

• This gives that 〈Tb(ε)I , b
(ε)
J 〉 ≈ 0, if I 6= J .

• The second part consists of choosing signs εI such that
〈Tb(ε)I , b

(ε)
I 〉 ≥ δ‖b

(ε)
I ‖22.

• The block basis {b(ε)I : I ∈ D} is equivalent to the Haar system.

• The orthogonal projection Qf =
∑

I∈D
〈f,b(ε)I 〉
‖b(ε)I ‖

2
2

b
(ε)
I is bounded on Hp

(Gamlen-Gaudet).
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Mixed-norm Hardy spaces Hp(Hq)

• R = {I × J : I, J ∈ D} denotes the dyadic rectangles on the unit
square,

• hI×J(x, y) = hI(x)hJ(y) the L∞-normalized tensor product Haar
function, I × J ∈ R.

• Let f =
∑

I×J∈R aI×JhI×J be a finite linear combination,
• then the square function S(f) of f is given by

S(f) =
( ∑
I×J∈R

a2I×Jh
2
I×J
)1/2

.

• we define the norm of the mixed-norm Hardy spaces Hp(Hq),
1 ≤ p, q <∞ by

‖f‖Hp(Hq) =
(∫ 1

0

(∫ 1

0

(∑
I∈D

a2I×Jh
2
I×J(x, y)

)q/2
dy
)p/q

dx
)1/p

.
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Capon (1982): Hp(Hq) is primary (augmented)
The first result on factorization in mixed-norm spaces is the following
theorem of Capon.

Theorem
Let 1 < p, q <∞ or p = q = 1. For any operator T the identity on Hp(Hq)
factors through H = T or H = Id−T , i.e.

Hp(Hq)
Id //

E
��

Hp(Hq)

Hp(Hq)
H
// Hp(Hq)

P

OO

‖E‖‖P‖ ≤ C.

Mixed-norm spaces require specific bi-parameter techniques.
Capon invents a specific bi-parameter Gamlen-Gaudet selection process. It
gives a block basis bI×J =

∑
K×L∈BI×J

hK×L such that

HbI×J = αI×JbI×J + small error, αI×J ≥ 1/2.

and the projection Qf =
∑

I×J∈R
〈f,bI×J 〉
‖bI×J‖22

bI×J is bounded on Hp(Hq).
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Large diagonal relative to the bi-parameter Haar system
Theorem (N.J. Laustsen, P.F.X. Müller, R. L.)
Let 1 ≤ p, q <∞, δ > 0 and T : Hp(Hq)→ Hp(Hq) be a linear operator
with large diagonal, i.e. 〈ThI×J , hI×J〉 ≥ δ|I × J |. Then we have

Hp(Hq)
Id //

E
��

Hp(Hq)

Hp(Hq)
T
// Hp(Hq)

P

OO

‖E‖‖P‖ ≤ C/δ,

where the constant C > 0 is universal.
By Capon’s bi-parameter construction (BI×J) and a random choice of signs
εI×J , there exists a block basis b(ε)I×J =

∑
K∈BI×J

εK×LhK×L of the Haar
system such that

Tb
(ε)
I×J = αI×Jb

(ε)
I×J + small error, αI×J ≥ δ.

The orthogonal projection Qf =
∑

I∈D
〈f,b(ε)I×J 〉

‖b(ε)I×J‖
2
2

bI×J is bounded on Hp(Hq).
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Proof – ordering of R

Figure: Order of the first 49
rectangles.

• If I ∈ D , then Ĩ ∈ D is such
that Ĩ ⊃ I and |Ĩ| = 2|I|.

• O/ (I × J) is the order
number of I × J .

• O/ (Ĩ × J) < O/ (I × J)
• O/ (I × J̃) < O/ (I × J)
• E.g., let I = J = [0, 12 ], then

• O/ (I × J) = 5,
• O/ (Ĩ × J) = 3,
• and O/ (I × J̃) = 1.

• We identify I × J with
i = O/ (I × J), i.e.

• BI×J = Bi,
• b

(ε)
I×J = b

(ε)
i .
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• O/ (Ĩ × J) < O/ (I × J)
• O/ (I × J̃) < O/ (I × J)
• E.g., let I = J = [0, 12 ], then

• O/ (I × J) = 5,
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that Ĩ ⊃ I and |Ĩ| = 2|I|.

• O/ (I × J) is the order
number of I × J .
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Proof – the block basis b(ε)I×J

• Fm is determined by the inductive construction.

• We define f (ε)m =
∑

K×L∈Fm
εK×LhK×L.

• For all x ∈ Hp(Hq) or x ∈ Hp(Hq)∗ we have 〈f (ε)m , x〉 → 0 as m→∞.

• Thus,
∑i−1

j=1 |〈Tb
(ε)
j , f

(ε)
m 〉|+ |〈f (ε)m , T ∗b

(ε)
j 〉| ≤ η4−i‖f

(ε)
m ‖22.

• What we need is 〈Tf (ε)m , f
(ε)
m 〉 ≥ (δ − η)‖f (ε)m ‖22.

•
• X(ε) := 〈f (ε)m , R

(ε)
m 〉, ε = (εK×L), K × L ∈ Fm

• We will show that EεX = 0 and EεX
2 → 0, as m→∞.

• Choose signs εK×L accordingly, and define b(ε)I×J = f
(ε)
m .
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Putting it together

• Define BhI×J = b
(ε)
I×J , then ‖B‖‖B−1‖ ≤ 1.

• Tb(ε)I×J = αI×Jb
(ε)
I×J + small error, αI×J ≥ δ.

• T is almost diagonal relative to (b
(ε)
I×J) with large diagonal entries

• The projection Qf =
∑

i
〈f,b(ε)i 〉
‖b(ε)i ‖22

b
(ε)
i is bounded on Hp(Hq).

Hp(Hq)
I //

B
��

Hp(Hq)

span{b(ε)i } I
// span{b(ε)i }

B−1

OO span{b(ε)i }
I //

Jy=y

��

span{b(ε)i }

Hp(Hq)
T

// Hp(Hq)

V

OO

‖J‖‖V ‖ ≤ C/δ, and C > 0 is a
universal constant.
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