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dimensional (qualitative) aspects.

e Classical examples include: /7 (Pelczynski), £ (Lindenstrauss), L!
(Enflo-Starbird), LP (Johnson-Maurey-Schechtman-Tzafriri), 5,
(Bourgain-Tzaffriri).

e Generically, we expect that T has a large diagonal with respect to an
unconditional basis in X.
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Can the identity operator on X be factored through each
operator on X with large diagonal for all Banach spaces X
with an unconditional basis?

Answer:

Theorem (N.J. Laustsen, P.F.X. Miiller, R. L.)

There is an operator T' on a Banach space X with an unconditional basis
such that T' has large diagonal, but the identity operator on X does not
factor through T.

Main ingredients for the proof:
e X is the space X (Gowers) with an unconditional basis.

e Fredholm theory.

Theorem (N.J. Laustsen, P.F.X. Miiller, R. L.)

The identity on mixed-norm Hardy spaces HP(HY), 1 < p,q < oo factors
through any operator T' with large diagonal relative to the bi-parameter Haar
basis.
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The norm of the one-parameter Hardy space H?, 1 < p < oo is defined

by
1 p
Il = 18 = ([ (X ani@)az) "
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By Gamlen-Gaudet construction (%;) and a random choice of signs ¢ there
exists a block basis bgg) = > ke, ki of the Haar system such that
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Comments on Andrew (1979)

e The Rademacher system converges weakly to 0 in HP.

e First, the operator T is preconditioned by multiplying the Haar system
with highly oscillating Rademacher functions.

e This gives that (Tbga), bf,a)) ~0,if I #J.
e The second part consists of choosing signs ¢ such that
(o b)) > by |3
e The block basis {bgs) : I € 9} is equivalent to the Haar system.

O
e The orthogonal projection Qf =3 ;. (£b; )bg”) is bounded on HP

1957713
(Gamlen-Gaudet).
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we define the norm of the mixed-norm Hardy spaces HP(HY),
1 <p,q<ooby

1 1 / /
ar = ([ ([ dhestste.n)” an)" az) "
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theorem of Capon.

Theorem
Let 1 < p,q < oo orp=q=1. For any operator T' the identity on HP(HY)
factors through H =T or H =1d —T, i.e.
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Theorem (N.J. Laustsen, P.F.X. Miiller, R. L.)

Let 1 <p,q<o0,d>0andT:HP(HY) — HP(H?) be a linear operator
with large diagonal, i.e. (Thrxj,hrxy) > 0|1 x J|. Then we have

HP(HY?) I—d>HP(H )
El TP IENP] < ¢/s,
HP(H?) —> HP(H")

where the constant C' > 0 is universal.

By Capon's bi-parameter construction (%rx.s) and a random choice of signs

€rx.J, there exists a block basis ngX)J = ZKG%M erxLhixr, of the Haar

system such that
Tbﬁfx)] = QIXbeX)J + small error, arxJg = 0.

The orthogonal projection Qf =3 ;. Hf bIXJ>b[><J is bounded on HP(HY).
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If I € 2, then I € 7 is such
that I D I and |I| = 2|I].
Oq(I x J) is the order
number of I x J.

Oo (T x J) < O04(I x J)

Oq(IxJ)<0q4(IxJ)
Eg. let I =J=[0,3] then
e O, (I xJ)=5,
e O, (IxJ)=3,
e and O (I x J)=1.
We identify I x J with
i=04(IxJ),ie.
o Bixy = B,
¢ bgs)J :bgs)-
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Proof — case J = [0, 1]
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Proof — case J = [0, 1]
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Proof — case J # [0,1], I = [0, 1]
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Proof — case J # [0,1], I # [0, 1]
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Figure: Darkgray=past,
lightgray=present.



Proof — case J # [0, 1], I # [0, 1]
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Zm is determined by the inductive construction.

We define f,sif) =D kxreF, EKxLNKxL.
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Proof — the block basis bg!]

Z.m is determined by the inductive construction.

We define f) = Y KxLe7, EKxLhKxL-

For all z € HP(HY) or x € HP(H?)* we have ( T(,f),x> — 0 asm — 0.
Thus, 3573 [(TOF A3 )+ (o T < a7 14313

What we need is (T'f, £5) > (5 — )| £ )12

(e) _
Tfm’ = kxres, EKXLOKXLNKXL + D ez, EKXLTKXL



Proof — the block basis bg!]

Zm is determined by the inductive construction.

We define f,gf) = ZKxLefm exxLhExL.

For all x € HP(H?) or x € HP(HY)* we have <fr(,f),a:> — 0 as m — oo.
Thus, 2523 (B, )]+ () T07) < =1 1.

What we need is (T£), £ > (5 — )| £12.

(e)
Tfm' =2 kwres, EKxLOKxLNKxL + E ERXLTKXL
KXLEFm
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o We define f,gf) = ZKxLefm exxLhExL.
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o X(2) = (f, R, e = (exxr) K x L € Ty



Proof — the block basis bg!]

o %, is determined by the inductive construction.

o We define f,gf) = ZKxLefm exxLhExL.

e Forall x € HP(H?) or x € HP(H?)* we have <fr(,f),a:> — 0 as m — oo.
o Thus, S350 (07 £+ [ T | < a1 £ 13

o What we need is (T'£, £ > (5 — n)| £ 2.

(e)
o Tfm’ = kxres, EKxLOKxLhrxL + E EKXILTKXL
KXLET,

R
° (E) '_<m?Rm>1€_(EK><L)| X ee/m
e We will show that E. X =0 and E. X% — 0, as m — 0.



Proof — the block basis be;)J

o %, is determined by the inductive construction.

o We define f,gf) = ZKxLeﬂ‘m exxLhExL.

e Forall x € HP(H?) or x € HP(H?)* we have <fr(,f),a:> — 0 as m — oo.
o Thus, S350 (07 £+ [ T | < a1 £ 13

o What we need is (T'£, £ > (5 — n)| £ 2.

(e)
o Tfm’ = kxres, EKxLOKxLhrxL + E EKXILTKXL
KXLET,

R
° (E) '_<m?Rm>1€_(EK><L)| X ee/m
e We will show that E. X =0 and E. X% — 0, as m — 0.

e Choose signs e« 1, accordingly, and define ngX)J = j}gf).
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Putting it together

Define Bhrxy = b\, then ||B||| B~ < 1.

Tbg; = OlIbegin + small error, ayyxj > 6.
()

T is almost diagonal relative to (bli) with large diagonal entries

The projection Qf = Z Hb<5>|| EE) is bounded on HP(H?Y).

HP(HY) _ T HP(HY)

N o

span{bz(g)} — span{bgg)}



Putting it together

Define Bhrxy = b\, then ||B||| B~ < 1.

Tbﬁ)J = OlIbegin + small error, ayyxj > 6.
()

T is almost diagonal relative to (bli) with large diagonal entries

The projection Qf = Z Hb<5>|| EE) is bounded on HP(H?Y).

HP(H?) L. HP(HY) span{bz(e)} I span{bl(-a)}
Bi TB*l Jyyl TV
span{b{} — span{b”} HP(HY) HP(HY)

V] < C/§, and C > 0 is a
universal constant.
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