Decomposition theorems for vector valued Hardy Martingales

Paul F.X. Müller

Johannes Kepler Universität Linz

Topics

1. Basic Examples

2. Maximal Functions
3. Davis Decomposition
4. Martingale Transforms and Consequences
5. Davis Garsia Inequalities

The main sources

A. Pelczynski, Banach Spaces of analytic functions and absolutely summing operators, (1977)
J. Bourgain. Embedding L^{1} to L^{1} / H^{1}, TAMS 278 (1983).

PFXM. A decomposition for Hardy Martingales, Indiana Univ. Math. J. 61 (2013) 1801-1816

PFXM. A decomposition for Hardy Martingales II, Math. Proc. Cambr. Philos. Soc. 157 (2014) 189-207

PFXM. A decomposition for Hardy Martingales III, Preprint.

Complex analytic Hardy Spaces
$f \in L^{p}(\mathbb{T}, X), \mathbb{T}=\left\{e^{i \theta}:|\theta| \leq \pi\right\}, \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
The harmonic extension of f to the unit disk

$$
f(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-|z|^{2}}{\left|z-e^{i \alpha}\right|^{2}} f\left(e^{i \alpha}\right) d \alpha, \quad z \in \mathbb{D} .
$$

Define $f \in H^{p}(\mathbb{T}, X)$ if $f \in L^{p}(\mathbb{T}, X)$ and the harmonic extension of f is analytic in \mathbb{D}.

Hardy Martingales $H^{1}\left(\mathbb{T}^{\mathbb{N}}, X\right)$
$\mathbb{T}^{\mathbb{N}}$ the infinite torus-product with Haar measure $d \mathbb{P}$.
$F_{k}: \mathbb{T}^{\mathbb{N}} \rightarrow \mathbb{C}$ is \mathcal{F}_{k} measurable iff

$$
F_{k}(x)=F_{k}\left(x_{1}, \ldots, x_{k}\right), \quad x=\left(x_{i}\right)_{i=1}^{\infty}
$$

Conditional expectation $\mathbb{E}_{k} F=\mathbb{E}\left(F \mid \mathcal{F}_{k}\right)$ is integration,

$$
\mathbb{E}_{k} F(x)=\int_{\mathbb{T}^{\mathbb{N}}} F\left(x_{1}, \ldots, x_{k}, w\right) d \mathbb{P}(w)
$$

An $\left(\mathcal{F}_{k}\right)$ martingale $F=\left(F_{k}\right)$ is a Hardy martingale if

$$
y \rightarrow F_{k}\left(x_{1}, \ldots, x_{k-1}, y\right) \quad \in H^{1}(\mathbb{T}, X)
$$

Martingale differences $\Delta F_{k}=F_{k}-F_{k-1}$.

Example: Maurey's embedding.

Fix $\epsilon>0, w=\left(w_{k}\right) \in \mathbb{T}^{\mathbb{N}}$. Put $\varphi_{1}(w)=\epsilon w_{1}$, and

$$
\varphi_{n}(w)=\varphi_{n-1}(w)+\epsilon\left(1-\left|\varphi_{n-1}(w)\right|\right)^{2} w_{n}
$$

Then $\lim \left|\varphi_{n}\right|=1$ and $\varphi=\lim \varphi_{n}$ is uniformly distributed over \mathbb{T}.

For any $f \in H^{1}(\mathbb{T}, X)$

$$
F_{n}(w)=f\left(\varphi_{n}(w)\right), \quad w \in \mathbb{T}^{\mathbb{N}}
$$

is an integrable Hardy martingale with uniformly small increments
$\sup _{n \in \mathbb{N}} \mathbb{E}\left(\left\|F_{n}\right\|_{X}\right)=\int_{\mathbb{T}}\|f\|_{X} d m \quad$ and $\quad\left\|\Delta F_{n}\right\|_{X} \leq 2 \epsilon \int_{\mathbb{T}}\|f\|_{X} d m$.

Pointwise estimates for ΔF_{n}.
$\operatorname{Fix} w \in \mathbb{T}^{\mathbb{N}}, \quad n \in \mathbb{N}, \quad z=\varphi_{n}(w), \quad u=\varphi_{n-1}(w)$

$$
\Delta F_{n}(w)=f\left(\varphi_{n}(w)\right)-f\left(\varphi_{n-1}(w)\right)
$$

Cauchy integral formula

$$
f(z)-f(u)=\int_{\mathbb{T}}\left\{\frac{\zeta}{\zeta-z}-\frac{\zeta}{\zeta-u}\right\} f(\zeta) d m(\zeta)
$$

Triangle inequality

$$
\|f(z)-f(u)\|_{X} \leq \frac{|z-u|}{(1-|u|)(1-|z|} \int_{\mathbb{T}}\|f\|_{X} d m
$$

Example: Rudin Shapiro Martingales

Fix a complex sequence (c_{n}) with $\sum_{k=1}^{\infty}\left|c_{k}\right|^{2} \leq 1$.
Define recursively: $F_{1}=G_{1}=1$ and for $w=\left(w_{n}\right) \in \mathbb{T}^{\mathbb{N}}$

$$
\begin{aligned}
& F_{m+1}(w)=F_{m}(w)+\overline{G_{m}}(w) c_{m+1} w_{m+1}, \\
& G_{m+1}(w)=G_{m}(w)-\overline{F_{m}}(w) c_{m+1} w_{m+1} .
\end{aligned}
$$

Pythagoras for (F_{m}, G_{m}) and ($\bar{G}_{m},-\bar{F}_{m}$) gives
$\left|F_{m+1}(w)\right|^{2}+\left|G_{m+1}(w)\right|^{2}=\left(1+\left|c_{m+1}\right|^{2}\right)\left(\left|F_{m}(w)\right|^{2}+\left|G_{m}(w)\right|^{2}\right)$.
and repeat

$$
\left|F_{m+1}(w)\right|^{2}+\left|G_{m+1}(w)\right|^{2}=\prod_{k=1}^{m+1}\left(1+\left|c_{k}\right|^{2}\right) 2 .
$$

Rudin Shapiro Martingales II

$F=\left(F_{n}\right)$ a uniformly bounded Hardy martingale

$$
F_{n}(w)=\sum_{m=1}^{n} \overline{G_{m}}(w) c_{m+1} w_{m+1}
$$

for which the martingale differences reproduce the $\left(c_{m}\right)$.

$$
\mathbb{E}_{w}\left(\overline{w_{m}}\left(F_{n}(w)-F_{n-1}(w)\right)=c_{m+1} \mathbb{E}_{w} \overline{G_{m}}(w)=c_{m+1}\right.
$$

Rudin Shapiro martingales gives the cotype 2 estimate for L^{1} / H^{1}

$$
\mathbb{E}_{w}\left\|\sum_{m=1}^{n} w_{m} x_{m}\right\|_{L^{1} / H^{1}} \geq c\left(\sum\left\|x_{m}\right\|_{L^{1} / H^{1}}^{2}\right)^{1 / 2}
$$

when the x_{m} have well separated Fourier spectrum.

The Origins I

A. Pelczynski posed famous problems in "Banach Spaces of analytic functions and absolutely summing operators, (1977)."

Does H^{1} have an unconditional basis?

Does there exist a subspace of L^{1} / H^{1} isomorphic to L^{1} ?

Does L^{1} / H^{1} have cotype 2?

Are the spaces $A\left(D^{n}\right)$ and $A\left(D^{m}\right)$ not isomorphic when $n \neq m$?

The Origins II

Hardy martingales gave rise to the operators by which Maurey proved that H^{1} has an unconditional basis;
and to the isomorphic invariants by which Bourgain proved the dimension conjecture, that L^{1} / H^{1} has cotype 2 and that L^{1} embeds into L^{1} / H^{1}.

Pisier's L^{1} / H^{1} valued Riesz products form a Hardy martingale that is strongly intertwined with Bourgain's solutions and played an important role for the work of Garling, Tomczak-Jaegermann, W. Davis on Hardy martingale cotype and complex uniformly convex renormings of Banach spaces.

Garling's Maximal Functions estimate I .

For any X valued Hardy martingale $F=\left(F_{k}\right)$

$$
\mathbb{E}\left(\sup _{k \in \mathbb{N}}\left\|F_{k}\right\|\right) \leq e \sup _{k \in \mathbb{N}} \mathbb{E}\left(\left\|F_{k}\right\|\right) .
$$

For any $0<\alpha \leq 1,\left(\left\|F_{k-1}\right\|_{X}^{\alpha}\right)$ is a non- negative submartingale

$$
\left\|F_{k-1}\right\|_{X}^{\alpha} \leq \mathbb{E}_{k-1}\left(\left\|F_{k}\right\|_{X}^{\alpha}\right)
$$

Brownian Motion

Let Ω denote the Wiener space $\left\{z_{t}: t>0\right\}$ denotes complex Brownian Motion started at $0 \in \mathbb{D}$, and define

$$
\tau=\inf \left\{t>0:\left|z_{t}\right|>1\right\}
$$

For $f \in H^{1}(\mathbb{T}, X), 0<\alpha<1$ and $0<t<\tau$,

$$
\left\|f\left(z_{t}\right)\right\|_{X}^{\alpha} \leq \mathbb{E}\left(\left\|f\left(z_{\tau}\right)\right\|_{X}^{\alpha} \mid \mathcal{F}_{t}\right)
$$

and

$$
\mathbb{E}\left(\sup _{t<\tau}\left\|f\left(z_{t}\right)\right\|_{X}\right) \leq e \sup _{t<\tau} \mathbb{E}\left(\left\|f\left(z_{t}\right)\right\|_{X}\right)
$$

where the integration is over the Wiener space Ω.

Garling's Maximal Functions estimate II .

$$
\Sigma=\mathbb{T}^{k-1} \times \Omega, \quad x \in \mathbb{T}^{k-1}, \quad \omega \in \Omega .
$$

For any X valued Hardy martingale $F=\left(F_{k}\right)$, the maximal function

$$
F_{k}^{*}(x, \omega)=\max \left\{\max _{m \leq k-1}\left\|F_{m}(x)\right\|_{X}, \sup _{t<\tau}\left\|F_{k}\left(x, z_{t}(\omega)\right)\right\|_{X}\right\}
$$

satisfies

$$
\mathbb{E}_{\Sigma}\left(F_{k}^{*}\right) \leq e^{2} \mathbb{E}\left(\left\|F_{k}\right\|_{X}\right)
$$

Davies Decomposition I.

Let $F=\left(F_{k}\right)_{k=1}^{n}$ be an X valued Hardy martingale.

With the maximal function estimates, the standard
B. Davies decomposition and Doob's projection we obtain a splitting of F into Hardy martingales

$$
F=G+B
$$

satisfying

$$
\left\|\Delta G_{k}\right\|_{X} \leq \max _{m \leq k-1}\left\|F_{m}\right\|_{X}
$$

and

$$
\mathbb{E}\left(\sum_{k=1}^{n}\left\|\Delta B_{k}\right\|_{X}\right) \leq C \mathbb{E}\left(\|F\|_{X}\right)
$$

Sketch of Proof. Fix $x \in \mathbb{T}^{k-1}, v \in \mathbb{T}$. Define

$$
f(v)=\Delta F_{k}(x, v), \quad \lambda=\max _{m \leq k-1}\left\|F_{m}(x)\right\|_{X}
$$

and
$\rho=\inf \left\{t<\tau:\left\|f\left(z_{t}\right)\right\|_{X}>2 \lambda\right\}, \quad R_{k}=f\left(z_{\rho}\right), \quad S_{k}=f\left(z_{\rho}\right)-f\left(z_{\tau}\right)$.

- $F_{k}^{*}(x, \omega) \leq 4\left(F_{k}^{*}(x, \omega)-F_{k-1}^{*}(x, \omega)\right), \quad \omega \in A=\{\rho<\tau\}$.
$\bullet\left\|S_{k}\right\|_{X} \leq 2 F_{k}^{*} \leq 8\left(F_{k}^{*}-F_{k-1}^{*}\right), \quad \sum_{k=1}^{n}\left\|S_{k}\right\|_{X} \leq 8 F_{n}^{*}$.
- By choice of the stopping time $\rho,\left\|R_{k}\right\| \leq 2 \lambda$.

Doob's projection generates the analytic functions

$$
\Delta B_{k}=\mathbb{E}\left(S_{k} \mid z_{\tau}=z\right), \quad \Delta G_{k}=\mathbb{E}\left(R_{k} \mid z_{\tau}=z\right), \quad z \in \mathbb{T}
$$

Improved Davies Decomposition (PFXM) A Hardy martingale $F=\left(F_{k}\right)$ can be decomposed into Hardy martingales as $F=G+B$ such that

$$
\left\|\Delta G_{k}\right\|_{X} \leq C\left\|F_{k-1}\right\|_{X}
$$

and

$$
\mathbb{E}\left(\sum_{k=1}^{\infty}\left\|\Delta B_{k}\right\|_{X}\right) \leq C \mathbb{E}\left(\|F\|_{X}\right)
$$

Lemma

If $h \in H_{0}^{1}(\mathbb{T}, X), z \in X$ there exists $g \in H_{0}^{\infty}(\mathbb{T}, X)$ with

$$
\|g(\zeta)\|_{X} \leq C_{0}\|z\|_{X}, \quad \zeta \in \mathbb{T}
$$

and

$$
\|z\|_{X}+\frac{1}{8} \int_{\mathbb{T}}\|h-g\|_{X} d m \leq \int_{\mathbb{T}}\|z+h\|_{X} d m
$$

Sketch of Proof. Fix $x \in \mathbb{T}^{k-1}$. Put

$$
h(y)=\Delta F_{k}(x, y) \quad \text { and } \quad z=F_{k-1}(x)
$$

Lemma yields a bounded analytic g with
$\|z\|_{X}+1 / 8 \int_{\mathbb{T}}\|h-g\|_{X} d m \leq \int_{\mathbb{T}}\|z+h\|_{X} d m ; \quad\|g(\zeta)\|_{X} \leq C_{0}\|z\|_{X}$.
Define

$$
\Delta G_{k}(x, y)=g(y), \quad \Delta B_{k}(x, y)=h(y)-g(y)
$$

Then

$$
\left\|F_{k-1}\right\|_{X}+1 / 8 \mathbb{E}_{k-1}\left(\left\|\Delta B_{k}\right\|_{X}\right) \leq \mathbb{E}_{k-1}\left(\left\|F_{k}\right\|_{X}\right)
$$

Integrate and take the sum,

$$
\sum \mathbb{E}\left(\left\|\Delta B_{k}\right\|_{X}\right) \leq 4 \sup \mathbb{E}\left(\left\|F_{k}\right\|_{X}\right)
$$

The strong Davis decomposition yields vector valued Davis and Garsia Inequalities. At this point we need to make an assumption on the Banach space X :

Let $q \geq 2$. A Banach space X satisfies the hypothesis $\mathcal{H}(q)$, if for each $M \geq 1$ there exists $\delta=\delta(M)>0$ such that for any $x \in X$ with $\|x\|=1$ and $g \in H_{0}^{\infty}(\mathbb{T}, X)$ with $\|g\|_{\infty} \leq M$,

$$
\begin{equation*}
\int_{\mathbb{T}}\|z+g\|_{X} d m \geq\left(1+\delta \int_{\mathbb{T}}\|g\|_{X}^{q} d m\right)^{1 / q} \tag{1}
\end{equation*}
$$

Condition (1) is required for uniformly bounded analytic functions g, and $\delta=\delta(M)>0$ is allowed to depend on the uniform estimates $\|g\|_{\infty} \leq M$. When $X=\mathbb{c}$, the hypothesis " $\mathcal{H}(q)$ " hold true with $q=2$.

Satz 1 Let $q \geq 2$. Let X be a Banach satisfying $\mathcal{H}(q)$. Any X valued Hardy martingale $F=\left(F_{k}\right)$ can be decomposed into the sum of X valued Hardy martingales $F=G+B$ such that

$$
\mathbb{E}\left(\sum_{k=1}^{\infty} \mathbb{E}_{k-1}\left(\left\|\Delta G_{k}\right\|_{X}^{q}\right)\right)^{1 / q}+\mathbb{E}\left(\sum_{k=1}^{\infty}\left\|\Delta B_{k}\right\|_{X}\right) \leq A_{q} \mathbb{E}\left(\|F\|_{X}\right) .
$$

Satz 2 Let $q \geq 2$. Let X be a Banach satisfying $\mathcal{H}(q)$. There exists $M>0 \delta_{q}>0$ such that for any $h \in$ $H_{0}^{1}(\mathbb{T}, X)$ and $z \in X$ there exists $g \in H_{0}^{\infty}(\mathbb{T}, X)$ satisfying

$$
\begin{equation*}
\|g(\zeta)\|_{X} \leq M\|z\|_{X}, \quad \zeta \in \mathbb{T} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{T}}\|z+h\|_{X} d m \geq\left(\|z\|_{X}^{q}+\delta_{q} \int_{\mathbb{T}}\|g\|_{X}^{q} d m\right)^{1 / q}+\frac{1}{16} \int_{\mathbb{T}}\|h-g\|_{X} d m . \tag{3}
\end{equation*}
$$

The strong Davis decomposition and hypothesis "H(q)" gives a decomposition into Hardy martingales as $F=$ $G+B$ such that $\mathbb{E}\left(\sum_{k=1}^{\infty}\left(\mathbb{E}_{k-1}\left\|\Delta G_{k}\right\|_{X}^{q}\right)\right)^{1 / q}+\mathbb{E}\left(\sum_{k=1}^{\infty}\left\|\Delta B_{k}\right\|_{X}\right) \leq A_{q} \mathbb{E}\left(\|F\|_{X}\right)$.
If we replace hypothesis " $\mathcal{H}(q)$ " by the weaker hypothesis

$$
\begin{equation*}
\int_{\mathbb{T}}\|z+g\|_{X} d m \geq\left(1+\delta\left(\int_{\mathbb{T}}\|g\|_{X} d m\right)^{q}\right)^{1 / q} \tag{4}
\end{equation*}
$$

then we are able to prove that the strong Davis decomposition yields
$\mathbb{E}\left(\sum_{k=1}^{\infty}\left(\mathbb{E}_{k-1}\left\|\Delta G_{k}\right\|_{X}\right)^{q}\right)^{1 / q}+\mathbb{E}\left(\sum_{k=1}^{\infty}\left\|\Delta B_{k}\right\|_{X}\right) \leq A_{q} \mathbb{E}\left(\|F\|_{X}\right)$.
We note that for scalar valued analytic functions, when $X=\mathbb{c}$, the hypothesis " $\mathcal{H}(q)$ " hold true with $q=2$.

Recall the Iteration Lemma: If

$$
\begin{equation*}
\mathbb{E}\left(M_{k-1}^{2}+v_{k}^{2}\right)^{1 / 2}+\mathbb{E} w_{k} \leq \mathbb{E} M_{k} \quad \text { for } 1 \leq k \leq n \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbb{E}\left(\sum_{k=1}^{n} v_{k}^{2}\right)^{1 / 2}+\mathbb{E} \sum_{k=1}^{n} w_{k} \leq 2 \sqrt{\mathbb{E} M_{n} \mathbb{E} \max _{k \leq n} M_{k}} \tag{6}
\end{equation*}
$$

(All random variables are non-negative, integrable)

For $0 \leq s \leq 1$, and $A, B \geq 0$,

$$
\begin{equation*}
B s \leq s^{2} A+\left(A^{2}+B^{2}\right)^{1 / 2}-A . \tag{7}
\end{equation*}
$$

Let $0 \leq \epsilon \leq 1$. Choose bounded functions $0 \leq s_{k} \leq \epsilon$ with $\sum_{k=1}^{n} s_{k}^{2} \leq \epsilon^{2}$ to linearize the square function.

$$
\begin{equation*}
v_{k} s_{k} \leq s_{k}^{2} M_{k-1}+\left(M_{k-1}^{2}+v_{k}^{2}\right)^{1 / 2}-M_{k-1} \tag{8}
\end{equation*}
$$

Integrate

$$
\mathbb{E}\left(v_{k} s_{k}\right) \leq \mathbb{E}\left(s_{k}^{2} M_{k-1}\right)+\mathbb{E}\left(M_{k-1}^{2}+v_{k}^{2}\right)^{1 / 2}-\mathbb{E} M_{k-1} .
$$

Use hypothesis for $\mathbb{E}\left(M_{k-1}^{2}+v_{k}^{2}\right)^{1 / 2}$.

$$
\mathbb{E}\left(v_{k} s_{k}\right) \leq \mathbb{E}\left(s_{k}^{2} M_{k-1}\right)+\mathbb{E} M_{k}-\mathbb{E} M_{k-1}-\mathbb{E} w_{k}
$$

Sum over $k \leq n$

$$
\begin{aligned}
& \mathbb{E}\left(\sum_{k=1}^{n} v_{k} s_{k}\right)+\sum_{k=1}^{n} \mathbb{E} w_{k} \leq \mathbb{E} M_{n}+\mathbb{E}\left(\sum_{k=1}^{n} s_{k}^{2} M_{k-1}\right) \\
& \leq \mathbb{E} M_{n}+\epsilon^{2} \mathbb{E} \max _{k \leq n} M_{k-1}
\end{aligned}
$$

Since $\sum_{k=1}^{n} s_{k}^{2} \leq \epsilon^{2}$,

$$
\epsilon \mathbb{E}\left(\sum_{k=1}^{n} v_{k}^{2}\right)^{1 / 2}+\sum_{k=1}^{n} \mathbb{E} w_{k} \leq \mathbb{E} M_{n}+\epsilon^{2} \mathbb{E} \max _{k \leq n} M_{k-1} .
$$

Divide by $0<\epsilon \leq 1$, with

$$
\epsilon^{2}=\left(\mathbb{E} M_{n}\right)\left(\mathbb{E} \max _{k \leq n} M_{k}\right)^{-1} .
$$

