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Abstract

We present two different generalizations of R. Schaaf’s [18] time map formula to quasilinear
equations, including the case of p-Laplacian. We give conditions for monotonicity and for
convexity of the time map, which imply uniqueness or multiplicity results for the corresponding
Dirichlet boundary value problem. Our time map formulas can be also used for effective
computations of the global solution curves.
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1 Introduction

The p-Laplace operator plays the fundamental role in nonlinear analysis. It serves as a model
quasilinear equation both in pure mathematics and in various areas of the applied sciences (see

e.g. [1, 4, 5, 9, 11, 13]). One of the mainstreams of the p-harmonic theory, with plethora of
papers published in recent years, is the so-called nonlinear eigenvalue problem (see e.g. [2, 10, 16]

and references therein). In the simplest form it reads

div(|∇u|p−2∇u) = λ|u|p−2u, λ ∈ R.

For p = 2 we retrieve familiar harmonic eigenvalue problem. In the more general case one

considers on the right hand side functions f = f(u) and investigates the solvability of arising
boundary problems, as well as the multiplicity of solutions, existence of positive solutions, etc.

In this note we deal with one-dimensional quasilinear equations of p-harmonic type. The need
for study of such equations arises for instance in relation to radial solutions of PDEs (see e.g.

[8, 12]).
Let u = u(t) be the unique solution of the initial value problem,

ϕ(u′)′ + f(u) = 0, u(0) = 0, u′(0) = r > 0 . (1.1)

Our main example will be the p-Laplacian case when ϕ(s) = s|s|p−2, with a constant p > 1.
Using ballistic analogy, we can interpret the initial value problem (1.1) as “shooting” from the

ground level, at an angle r > 0. Let T/2 denote the time it takes for the projectile to reach its
maximum amplitude α, α = α(r). By symmetry of positive solutions, T = T (r) is then the time
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when the projectile falls back to the ground, the time map. Then u(t) is a positive solution of

the Dirichlet problem (here u = u(t))

ϕ(u′)′ + f(u) = 0 for 0 < t < T , u(0) = u(T ) = 0 . (1.2)

The time map can be used to study uniqueness and multiplicity of solutions for the boundary
value problem (1.2). Indeed, if the time map is monotone, then the problem (1.2) has at most

one solution. If the time map is convex, or concave, then the problem (1.2) has at most two
solutions. While the time map is uniquely defined, there are several different ways to express it,

see e.g. P. Korman [14] for a discussion in case p = 2. Some derivations of the time map T (r)
begin with concept of energy, as in I. Addou and S.-H. Wang [3], J. Cheng [6], or H. Pan [17].

Another one, due to R. Schaaf [18], uses a change of variables to globally linearize the equation
(see e.g. [19] for more discussion of Schaaf’s ideas). For the case of p-Laplacian, it is known

that the role of a linear equation is played by a certain quasilinear problem, which we refer to
as p-linear problem. Similarly to R. Schaaf [18], we develop a formula for time map by globally

p-linearizing the equation. We show that in addition to A−B conditions (see [18, Chapter 1.4]),
an extra condition is needed in case p 6= 2 to prove convexity of the time map. The extension is
not straightforward, as we needed to find the right auxiliary function, satisfying the appropriate

differential inequality.
By a completely different technique, involving parametric integration of the equation, we

derive another formula for the time map, which is valid for general quasilinear equations, including
in particular the case of p-Laplacian. In addition to proving multiplicity results, both formulas

are suitable for computation of bifurcation diagrams.
Despite considering the one-dimensional case only, the analysis of problem (1.2) leads to

tedious computations and conditions involving complicated differential expressions. However,
we would like to emphasize that these conditions are not of technical nature, but arise as a

consequence of nonlinearity of functions φ and f (see also Remark 4).

2 The p-linear problem

The purpose of this section is to solve the basic p-linear problem in order to illustrate the differ-

ences between the linear and nonlinear problems and shed some light on the difficulties arising in
the nonlinear case. The discussion of the more general case will be provided in further sections.

In the Laplacian case, p = 2, the easily solvable linear problem is, of course, when the function
f(u) is linear. For the p-Laplacian case the corresponding easy problem arises when f(u) is a

multiple of ϕ(u). Indeed, let us solve the equation (for u = u(t))

ϕ(u′(t))′ + (p − 1)ϕ(u(t)) = 0 . (2.1)

Let us denote Φ(u) =
∫ u
0 ϕ(s) ds = 1

p |u|p. (The function Φ(u) is even, because ϕ(s) is odd, so

compute it first for u > 0). We have ϕ′(s) = (p− 1)|s|p−2 and so

sϕ′(s) = (p − 1)ϕ(s) . (2.2)

Multiplying the equation (2.1) by u′, we have by (2.2)

u′(t)ϕ′(u′(t))u′′(t) + (p− 1)u′(t)ϕ(u(t)) = 0 ,

(p− 1)ϕ(u′(t))u′′(t) + (p − 1)u′(t)ϕ(u(t)) = 0 ,

2



d

dt

[

Φ(u′(t)) + Φ(u(t))
]

= 0 ,

Φ(u′(t)) + Φ(u(t)) = constant . (2.3)

Let now sinp t denote the solution of the initial value problem

ϕ(u′(t))′ + (p− 1)ϕ(u(t)) = 0 u(0) = 0, u′(0) = 1 . (2.4)

Observe that sinp t is a generalization of sin t = sin2 t, as was noticed by P. Lindqvist [15], see
also Y. Cheng [7]. For u = sinp t the “energy integral” (2.3) becomes

Φ(u′(t)) + Φ(u(t)) =
1

p
. (2.5)

We see that at its critical points sinp t = ±1. Let
πp

2 denote the first point of maximum of sinp t
(i.e. sinp

πp

2 = 1). It is easy to see from the equation (2.1) that sinp t is symmetric with respect

to
πp

2 , and hence sinp πp = 0, with πp being the first root of sinp t. Also from (2.5)

u′(t) = p
√

1 − up(t) , for t ∈ (0,
πp

2 ) ,

which allows us to express sinp t as an elliptic integral. In particular,

πp

2
=

∫ 1

0

du
p
√

1 − up
=

π

p sin π
p

.

(To compute the last integral using Mathematica, enter the command: Integrate[ 1
p√1−up , {u, 0, 1},

Assumptions → p > 1].) Observe that π2 = π, as expected.

3 Time map through global p-linearization

We are interested in positive solutions of the two point problem for u = u(t)

ϕ(u′(t))′ + f(u(t)) = 0, 0 < t < T, u(0) = u(T ) = 0 , (3.1)

where ϕ(s) = s|s|p−2, with a constant p > 1. We do not consider the end point T to be fixed,
but rather depending on r = u′(0). I.e., we wish to solve the initial value problem

ϕ(u′(t))′ + f(u(t)) = 0 u(0) = 0, u′(0) = r , (3.2)

and calculate the first root T . We transform (3.2) into the system form

u′ = y (3.3)

ϕ(y)′ = −f(u)

u(0) = 0, y(0) = r .

With F (u) =
∫ u
0 f(t) dt, define the function g(x), by the relation

F (g(x)) =
p − 1

p
|x|p, sgn g(x) = sgn x . (3.4)

Observe that g(0) = 0. Differentiate (3.4)

f(g(x))g′(x) = (p− 1)ϕ(x) . (3.5)
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In (3.3) we let u = g(x), then multiply the second equation by g′(x), and use (3.5)

g′(x)x′ = y, (3.6)

g′(x)ϕ(y)′ = −f(g(x))g′(x) = −(p − 1)ϕ(x),

x(0) = 0, y(0) = r .

We now change the independent variable in (3.6), t → θ, by solving

d t

d θ
= g′(x(t)), t(0) = 0. (3.7)

Then the chain rule allows us to transform system (3.6) into

d x
d θ = y

d
d θϕ(y) = −(p − 1)ϕ(x)

x(0) = 0, y(0) = r ,

or equivalently
d

d θ
ϕ

(

dx

d θ

)

+ (p − 1)ϕ(x) = 0, x(0) = 0, x′(0) = r . (3.8)

The problem has been p-linearized! Solution of (3.8) is

x = r sinp θ .

The first positive root of x occurs at θ = πp. Using this relation in (3.7), and integrating, we
have the formula for the time map

T =

∫ πp

0

g′(r sinp θ) dθ . (3.9)

In case p = 2 this formula was derived by R. Schaaf [18] (recall that π2 = π and sin2 θ = sin θ).

What are the conditions on f(u)? Depends on whether one wants to study positive or sign-
changing solutions of (3.1). For positive solutions, that we study in this paper, we shall assume

that f(u) ∈ C2([0, a]), for some a > 0, and it satisfies

f(u) > 0 for u ∈ [0, a] ; (3.10)

either f(0) > 0, or f(0) = 0 and f ′(0) > 0. (3.11)

Under condition (3.10), the inverse function F−1 is defined, and

g(x) = F−1

(

p − 1

p
|x|p

)

= F−1

(

p − 1

p
xp

)

,

since x ≥ 0 for positive solutions.

Remark 1. When solving for θ = θ(t) in (3.7), we have θ(t) =
∫ t
0

d s
g′(x(s)) , which for f(0) > 0

becomes an improper integral at s = 0. Nevertheless, this integral converges. Indeed, with u(t)
denoting a solution of (3.1), we have for small t, u(t) ∼ u′(0)t, F (u(t)) ∼ f(0)u(t) ∼ f(0)u′(0)t.

Then denoting by ci various positive constants, we have

x(s) =

[

p

p − 1
F (g(x(s)))

]1/p

= c1 F (u(s))1/p ∼ c2 s1/p ,
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for s small enough. Therefore

g′(x(s)) ∼ p − 1

f(0)
ϕ(x(s)) = c3s

p−1

p for s small ,

and the integral converges.

Similarly to R. Schaaf [18], one could also study sign-changing solutions under the assumption
that f(u) ∈ C2(R) satisfies f(0) = 0, and

uf(u) > 0 for all u ∈ R, and f ′(0) > 0 .

4 Multiplicity of positive solutions of the p-Laplace equation

Derivatives of the time map are easy to compute:

T ′(r) =

∫ πp

0
g′′(r sinp θ) sinp θ dθ ; (4.1)

T ′′(r) =

∫ πp

0
g′′′(r sinp θ) sin2

p θ dθ . (4.2)

Since we study positive solutions, we shall assume that f(u) satisfies the conditions (3.10) and
(3.11). We need to compute the derivatives of function g(x), defined in (3.4). The first oder

derivative was already computed in (3.5)

g′(x) = (p − 1)
ϕ(x)

f(g(x))
. (4.3)

Observe that
g′(x) > 0, for x > 0 . (4.4)

Using (4.3), we compute

g′′(x) = (p − 1)
ϕ′(x)f2(g(x))− (p− 1)ϕ2(x)f ′(g(x))

f3(g(x))
. (4.5)

In order to make the next derivative g′′′(x) manageable, we use the idea of R. Schaaf [18]:

rewrite g′′(x) as a function of u = g(x). Starting with p−1
p xp = F (g(x)) = F (u), we express

x =
[

p
p−1F (u)

]1/p
, and then

ϕ′(x) = aF (u)
p−2

p , with a ≡ (p− 1)
(

p
p−1

)
p−2

p
,

ϕ2(x) = bF (u)
2p−2

p , with b ≡
(

p
p−1

)
2p−2

p
.

We rewrite

g′′(x) = (p − 1)
aF (u)

p−2

p f2(u) − (p− 1)bF (u)
2p−2

p f ′(u)

f3(u)
with u = g(x) , (4.6)

and then compute

g′′′(x) =

(

p

p − 1

)− 2

p v(u)

f4(u)F (u)2/p
g′(x) , (4.7)
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where

v(u) =
(

2 − 3p + p2
)

f4(u) − 3(p− 1)pf2(u)F (u)f ′(u) + 3p2F 2(u)f ′2(u) − p2f(u)F 2(u)f ′′(u) .

(4.8)
The sign of g′′′(x) is the same as that of v(u), in view of (4.4). So, if v(u) is of one sign, the same

is true T ′′(r). We shall study the function v(u) in the next two sections.

We have the following simple uniqueness result.

Proposition 1. Assume that the function (p − 1)f2(u) − pF (u)f ′(u) is of one sign for all u ∈
(0,∞). Then the problem (3.1) has at most one positive solution, for any T > 0.

Proof: We see from (4.6) that g′′(x) is of one sign, and then it follows from (4.1) that the time

map T (r) is monotone. ♦

5 The sign of the function v(u) for small u > 0

We see from (4.2) and (4.7) that T ′′(r) is of one sign, provided the same is true for v(u). In case

of A−B functions (which we shall recall below) the strategy in R. Schaaf in [18] involved showing
that v(u) > 0 for small u > 0, and that v(u) cannot vanish. This implies that v(u) > 0 for u > 0.

For C functions she showed that v(u) < 0 for small u > 0, and that v(u) cannot vanish, giving
that v(u) < 0 for u > 0. We shall proceed similarly. Compute

v(0) = (p− 1)(p− 2)f4(0) . (5.1)

The repeated differentiation of v(u) gives us the following lemma, crucial for the discussion in

Section 6.

Lemma 5.1. Assume that f(0) = 0. Then

v(0) = v′(0) = v′′(0) = v′′′(0) = 0, and v′′′′(0) = 6(p − 2)(p− 4)f ′4(0) . (5.2)

Lemma 5.2. Assume that any one of the following three conditions holds:

(i) f(0) > 0, and p > 2;

(ii) f(0) = 0, and f ′(0) > 0, and additionally p > 4;

(iii) f(0) = 0, and f ′(0) > 0, and additionally 1 < p < 2.

Then v(u) > 0 for small u > 0.

Proof: In case (i) we use (5.1). In the cases (ii) and (iii), v′′′′(0) > 0, and by (5.2) the

positivity of v(u) follows. ♦

6 Branches of positive solutions with at most one turn

Below we discuss the convexity of the time map. Such property allows us to give the upper

estimate for the multiplicity of the solutions to (3.1).
Let us recall the notions of A−, B− and A − B functions introduced by R. Schaaf in [18].

Definition 6.1. Let I be some interval and let f : I → R be of class C2(I). Then
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(1) f is called an A-function on I if and only if

f ′f ′′′ − 5

3
(f ′′)2 < 0 on I.

(2) f is called an B-function on I if and only if

ff ′′ − 3(f ′)2 ≤ 0 on I.

(3) f is called an A − B-function on I if and only if
a) f ′ has only simple zeros on I,

b) f is an A-function on any subinterval of I on which f ′ > 0,
c) f is an B-function on any subinterval of I on which f ′ < 0.

Theorem 6.1. Let f ∈ C2[0, a] satisfy any one of the three conditions of Lemma 5.2. Assume
also that

f ′(u) > 0 for u ∈ [0, a] ,

and f is an A-function on [0, a]. Assume finally that the following condition holds on (0, a)

(p− 2)

[

−2

p
f2f ′ + F

(

(f ′)2 − 5

3
ff ′′

)]

≥ 0, (6.1)

Then T ′′(r) > 0 on (0, a).

Remark 2. For p = 2 Theorem 6.1 reduces to [18, Theorem 1.4.2].

Proof: The time map formula (3.9) immediately gives us that

T ′′(r) =

∫ πp

0

(sinp θ)2 g′′′(r sinp θ) dθ. (6.2)

It is enough to prove that g′′′ is positive on the interval (b−, b+), for

b− = 0, b+ =

(

p

p − 1
F (a)

)
1

p

.

By (4.4) and (4.7), suffices to show that v(u) > 0 for v(u) as in (4.8). The trick is to consider
the function

h(u) = F
− 2

p

(

1

p
(p − 1)(p− 2)f4 + pF 2

(

3(f ′)2 − ff ′′)
)

− 3(p− 1)F
1− 2

p f2f ′ , (6.3)

which is positive on (0, a) if and only if v(u) > 0 (h(u) = 1
pF− 2

p v(u)). So,

g′′′ > 0 on (0, b+) ⇔ h > 0 on (0, a).

By Lemma 5.2, h(u) is positive for small u, and we shall show that h(u) cannot vanish. Observe

that h and h′ contain the same expression:

h(u) = F
− 2

p
1

p
(p − 1)(p − 2)f4 − pfF

2− 2

p f ′′

+
1

p
F

− 2

p 3f ′
[

p2F 2f ′ − (p− 1)pf2F

]

(6.4)

h′(u) = −2(p − 2)(p− 1)f5 + p(p − 1)(p− 2)f3Ff ′

+ Fp

(

5f ′′
[

p2F 2f ′ − (p − 1)pf2F

]

− p2fFf ′′′
)

. (6.5)
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From this we find

f ′h′ =
5

3
f ′′h + pF 2− 2

p f

(

5

3
(f ′′)2 − f ′f ′′′

)

+
1

p
(p − 2)(p− 1)f3F

−p+2

p

[

−2

p
f2f ′ + F

(

(f ′)2 − 5

3
ff ′′

)]

. (6.6)

Note that for p = 2 we recover R. Schaaf’s [18, Formula (1-4-8)]:

f ′h′ =
5

3
f ′′h + 2Ff

(

5

3
(f ′′)2 − f ′f ′′′

)

.

If we assume that h(u0) = 0 at some u0 ∈ (0, a), then the left hand side of (6.6) is less or equal

to zero, while on the right hand side the first term is zero, the second one is positive (since f is
A-function). This leads to contradiction, proving that h(u) > 0 for all u > 0. ♦

Example 1. Let f(u) = eu − 1, and p = 3
2 . Then f(u) is an increasing A- function, while a

computation shows that

−2

p
f2f ′ + F

(

(f ′)2 − 5

3
ff ′′

)

< 0, for all u > 0 ,

which implies that (6.1) holds. We conclude that the branch of positive solutions of (3.1) has at
most one turn.

Theorem 6.2. Let f ∈ C2[0, a]. Assume that either condition (i), or condition (ii) of Lemma
5.2 holds. Also, let f be an A−B-function on [0, a]. Assume finally that the following condition

holds on (0, a)

−2

p
f2f ′ + F

(

(f ′)2 − 5

3
ff ′′

)

≥ 0. (6.7)

Then T ′′(r) > 0 on (0, a).

Proof: Observe that both of our assumptions require that p > 2, and so the condition (6.7) is

the same as (6.1). By Lemma 5.2, h(u) is positive for small u. As in the preceding theorem, we
see that h(u) cannot vanish on any subinterval where it is an increasing A-function. Observe that

h(u) cannot vanish on any subinterval where it is a decreasing B function, since we see directly
from (6.3) that the positivity of h(u) follows from the assumptions that p > 2, f ′ < 0, and that

f is a B-function. ♦
R. Schaaf [18] has given a detailed study of A−B-functions. In particular, an A−B-function

can have at most one critical point on the interval (0, a), and it must be a strict maximum. The

class of A−B-functions includes all polynomials with simple roots. For example, f(u) = u(1−u2)
is an A − B-function for u ∈ (0, 1), and it is easy to see that the condition (6.7) holds (with a

strict inequality) for large p, say for p = 5, and the last theorem applies.

Remark 3. In her book, R. Schaaf [18] has developed the concept of C functions. For C functions

she was able to prove that T ′′(r) < 0 on (0, a). It appears that no extension of this concept to
p 6= 2 case is possible. Indeed, if 2 ≤ p < 4, then similarly to Lemma 5.2, we can prove that

h(u) < 0 for small u. But then to achieve a contradiction at a possible root of h(u), we need to
require that 1 < p ≤ 2, i.e. p = 2 is the only case that this approach works.

Remark 4. Our numerical computations show that the condition (6.7) is not technical, i.e. the
time map T (r) need not be convex if this condition fails. Indeed, we take f(u) = u + u2 and
p = 5. Our computations show that the condition (6.7) is then violated, and the function v(u)

changes sign. (In the case f(u) = u+u2 and p = 2, v(u) is positive, in accordance with R. Schaaf
[18].)
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7 Time map by parametric integration

We wish to solve the initial value problem (here u = u(x))

ϕ(u′(x))′ + f(u(x)) = 0 u(0) = 0, u′(0) = r > 0 , (7.1)

and calculate the first root T , i.e. u(T ) = 0. The map T = T (r) is commonly referred to as the
time map. We assume that the function ϕ(t) ∈ C1(R) is odd, and it satisfies

ϕ′(t) > 0 for all t ∈ R . (7.2)

One example is the case of p-Laplacian, ϕ(t) = t|t|p−2. Another example is ϕ(t) = t√
1+t2

of

prescribed mean curvature equation, see e.g. H. Pan [17]. We shall also assume that f(u) ∈ C(R)
satisfies

f(u) > 0 for all u ≥ 0 . (7.3)

It is easy to see that the solution u(x) is symmetric with respect to the point of maximum. So that

at x = T/2 the solution achieves its maximum α, α = u(T/2). We denote Ψ(u) =
∫ u
0 tϕ′(t) dt,

Ψ′(u) = uϕ′(u), and as usual F (u) =
∫ u
0 f(t) dt. We multiply the equation by u′, and transform

it as follows
u′(x)ϕ′(u′(x)) u′′(x) + f(u(x))u′(x) = 0 ;

d

dx

[

Ψ(u′) + F (u)
]

= 0 ;

Ψ(u′(x)) + F (u(x)) = Ψ(r) for all x .

We now use parametric integration technique. Writing

F (u) = Ψ(r) − Ψ(u′) , (7.4)

we introduce a parameter t, by letting u′ = rt. By (7.2) and (7.3), u′′(x) < 0, and hence u′(x) is

monotone decreasing. When x varies over the interval [0, T/2], t varies over 1 ≥ t ≥ 0. Defining
G(u) = F−1(u) (by (7.3) the inverse function is well defined for u ≥ 0), we get from (7.4)

u = G (Ψ(r) − Ψ(rt)) . (7.5)

Then

dx =
du

u′(x)
=

G′ (Ψ(r) − Ψ(rt)) (−rtϕ′(rt)r)

rt
dt = −G′ (Ψ(r) − Ψ(rt)) ϕ′(rt)r dt . (7.6)

Integrating

T/2 =

∫ 1

0

G′ (Ψ(r) − Ψ(rt)) ϕ′(rt)r dt . (7.7)

We have a formula for the time map. Moreover, one can easily get the solution of (7.1) in
parametric form, from (7.5) and (7.6).

In the case of p-Laplacian, ϕ(t) = t|t|p−2 and the formula becomes

T/2 = (p− 1)rp−1

∫ 1

0
G′

(

p − 1

p
rp − p − 1

p
rptp

)

tp−2 dt . (7.8)
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When p = 2, it is easy to transform this formula into the well-known R. Schaaf’s formula [18].

Indeed, in case p = 2, we have

T = 2

∫ 1

0

G′
(

1

2
r2 − 1

2
r2t2

)

r dt = 2

∫ π/2

0

G′
(

1

2
r2 sin2 θ

)

r sin θ dθ , (7.9)

after a change of variables, t = cos θ. R. Schaaf [18] defines a function g(x) by the relation

g(x) = F−1

(

1

2
x2

)

= G

(

1

2
x2

)

.

Clearly,

g′(x) = G′
(

1

2
x2

)

x ,

and so (7.9) gives us

T = 2

∫ π/2

0
g′(r sin θ) dθ =

∫ π

0
g′(r sin θ) dθ ,

which is R. Schaaf’s time map formula, [18] (see discussion of (3.9) above).

Let us now study positive solutions of a parameter dependent problem for p-Laplacian, with
ϕ(t) = t|t|p−2:

ϕ(u′(x))′ + λf(u(x)) = 0, for x ∈ (−1, 1), u(−1) = u(1) = 0 . (7.10)

It is known that positive solutions of (7.10) are even functions, with xu′(x) < 0 for x ∈ (−1, 1) \
{0}, see e.g. P. Korman [14]. Hence, the global maximum occurs at x = 0. Let α = u(0) denote

the maximum value of solution. We wish to draw the bifurcation diagram for this problem in
(λ, α) plane. Consider an initial value problem

ϕ(v′(ξ))′ + f(v(ξ)) = 0, v(0) = α, v′(0) = 0 . (7.11)

The change of variables x = 1
λ1/p ξ changes the equation in (7.10) into the one in (7.11). If R is

the first root of v, then R = λ1/p, i.e.

λ = Rp = (T/2)p , (7.12)

since 2R is the time map. From the energy relation F (α) = Ψ(r) (see (7.4)), i.e.

r = Ψ−1(F (α)) . (7.13)

For the given α, we compute r by (7.13), then T by (7.8), and then λ from (7.12). Numerically,

for a mesh of αi’s, we compute corresponding λi’s, and then plot the points (λi, αi), to get the
bifurcation diagram.

Example 2. Consider the case of p-Laplacian, and f(u) = eu. Compute F (u) = eu − 1, G(u) =
ln(u + 1). The formula (7.13) becomes

r =

[

p

p − 1
(eα − 1)

]1/p

.

The formula (7.8) takes the form

T/2 = (p − 1)rp−1

∫ 1

0

tp−2

p−1
p rp − p−1

p rptp + 1
dt .
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Figure 1: Bifurcation diagram for 3
2 -Laplacian, and f(u) = eu

Mathematica is able to compute this integral through hypergeometric functions for any p > 1.

Combining these formulas with (7.12), we find the bifurcation diagram. In Figure 1 we present
the computed bifurcation diagram for the case p = 3

2 . It is similar to the one in case p = 2, see

e.g. P. Korman [14].
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