Vector-valued general Dirichlet series
Daniel Carando, Andreas Defant, Felipe Marceca, Ingo Schoolmann
Studia Mathematica 258 (2021), 269-316
MSC: Primary 30B50, 43A70, 43A17, 46E40.
DOI: 10.4064/sm200127-24-4
Opublikowany online: 4 December 2020
Streszczenie
With early contributions due to, among others, Besicovitch, Bohr, Bohnenblust, Hardy, Hille, Riesz, Neder and Landau, the last 20 years show a substantial revival of systematic research on ordinary Dirichlet series $\sum a_n n^{-s}$, and more recently even on general Dirichlet series $\sum a_n e^{-\lambda _n s}$. This involves the intertwining of classical work with modern functional analysis, harmonic analysis, infinite-dimensional holomorphy and probability theory as well as analytic number theory. The main goal of this article is to start a systematic study of a variety of fundamental aspects of vector-valued general Dirichlet series $\sum a_n e^{-\lambda _{n} s}$, where the coefficients are in an arbitrary Banach space $X$.
Autorzy
- Daniel CarandoDepartamento de Matemática
Pab I, Facultad de Cs. Exactas y Naturales
Universidad de Buenos Aires
1428 Buenos Aires, Argentina
and
IMAS-CONICET
Instituto de Investigaciones Matemáticas “Luis A. Santaló”, Argentina
e-mail
- Andreas DefantInstitut für Mathematik
Carl von Ossietzky Universität
26111 Oldenburg, Germany
e-mail
- Felipe MarcecaDepartamento de Matemática
Pab I, Facultad de Cs. Exactas y Naturales
Universidad de Buenos Aires
1428 Buenos Aires, Argentina
and
IMAS-CONICET
Instituto de Investigaciones Matemáticas ‘‘Luis A. Santaló”, Argentina
e-mail
- Ingo SchoolmannInstitut für Mathematik
Carl von Ossietzky Universität
26111 Oldenburg, Germany
e-mail