Self-similar solutions of kinetic-type equations

Kamil Bogus

Wrocław University of Science and Technology (POLAND)

Będlewo, 23rd May 2019

The talk is based on joint work with Dariusz Buraczewski and Alexander Marynych:

 K. Bogus, D. Buraczewski, A. Marynych, Self-similar solutions of kinetic-type equations: The boundary case, Stochastic Processes and their Applications, p. 18 (2019) https://doi.org/10.1016/j.spa.2019.03.005. $(\rho_t)_{t\geq 0}$ - time dependent family of probability measures, $\phi(t,\xi)$ - Fourier-Stieltjes transform (the characteristic function) of ρ_t ,

$$\phi(t,\xi) = \int_{\mathbb{R}} e^{i\xi \mathbf{v}} \rho_t(\mathrm{d}\mathbf{v}), \quad t \ge 0, \quad \xi \in \mathbb{R},$$

 \widehat{Q} – smoothing transform

$$\widehat{Q}(\phi_1,\ldots,\phi_N)(\xi) := \mathsf{E}(\phi_1(A_1\xi)\cdot\ldots\cdot\phi_N(A_N\xi)), \quad \xi\in\mathbb{R},$$

where

$$\phi_1, \ldots, \phi_N$$
 – characteristic functions,
 N – fixed positive integer,
 $\mathcal{A} = (A_1, \ldots, A_N)$ – vector of real-valued random variables.

 \widehat{Q} – smoothing transform

$$\widehat{Q}(\phi_1,\ldots,\phi_N)(\xi) := \mathsf{E}(\phi_1(A_1\xi)\cdot\ldots\cdot\phi_N(A_N\xi)), \quad \xi\in\mathbb{R},$$

where

$$\phi_1, \ldots, \phi_N$$
 – characteristic functions,
 N – fixed positive integer,
 $\mathcal{A} = (A_1, \ldots, A_N)$ – vector of real-valued random variables.

Example:

N = 2 and $A = (\sin \theta, \cos \theta)$, where θ is a random angle uniformly distributed on $[0, 2\pi)$

We consider the following Cauchy problem

$$\begin{cases} \frac{\partial}{\partial t}\phi(t,\xi)+\phi(t,\xi) &=& \widehat{Q}(\phi(t,\cdot),\ldots,\phi(t,\cdot))(\xi), \quad t>0, \\ \phi(0,\xi) &=& \phi_0(\xi), \quad \xi\in\mathbb{R}, \end{cases}$$

The initial condition ϕ_0 is the characteristic function of some random variable X_0 defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

We consider the following Cauchy problem

$$\begin{cases} \frac{\partial}{\partial t}\phi(t,\xi)+\phi(t,\xi) &=& \widehat{Q}(\phi(t,\cdot),\ldots,\phi(t,\cdot))(\xi), \quad t>0, \\ \phi(0,\xi) &=& \phi_0(\xi), \quad \xi\in\mathbb{R}, \end{cases}$$

The initial condition ϕ_0 is the characteristic function of some random variable X_0 defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

Main Goal: Study asymptotic behavior of the solution ϕ .

 (H_{γ}) The law of X_0 is centered and belongs to the domain of normal attraction of a γ -stable law with the characteristic function \hat{g}_{γ}

- (H_{γ}) The law of X_0 is centered and belongs to the domain of normal attraction of a γ -stable law with the characteristic function \hat{g}_{γ}
 - (A) Weights $(A_i)_{i=1,...,N}$ are a.s. positive

- (H_{γ}) The law of X_0 is centered and belongs to the domain of normal attraction of a γ -stable law with the characteristic function \hat{g}_{γ}
 - (A) Weights $(A_i)_{i=1,...,N}$ are a.s. positive
 - $(\Phi) \mbox{ For the function } \Phi : [0,\infty) \mapsto \mathbb{R} \cup \{+\infty\}$ defined via

$$\Phi(s) = \mathsf{E}igg[\sum_{i=1}^N A_i^sigg] - 1, \quad s \geqslant 0,$$

we assume that $s_{\infty} > 0$ where $s_{\infty} := \sup\{s \geqslant 0 : \Phi(s) < \infty\}$

Spectral function

The function

$$\mu(s)=rac{\Phi(s)}{s},\quad s>0,$$

is called spectral function. We denote by γ^{\ast} point minimizing this function.

7 / 11

Spectral function

The function

$$\mu(s) = rac{\Phi(s)}{s}, \quad s > 0,$$

is called spectral function. We denote by γ^{\ast} point minimizing this function.

Figure: Plot of the function $s \mapsto \Phi(s)$ (solid red) with $\tan \alpha = \mu(\gamma^*) = \Phi'(\gamma^*) = \Phi(\gamma^*)/\gamma^*$.

• The solution to the considered equation can be derived analytically in terms of the Wild series,

- The solution to the considered equation can be derived analytically in terms of the Wild series,
- Results on probabilistic interpretation of the solution can be found in works of Gabetta, Regazzini, Carlen and Carvalho,

- The solution to the considered equation can be derived analytically in terms of the Wild series,
- Results on probabilistic interpretation of the solution can be found in works of Gabetta, Regazzini, Carlen and Carvalho,
- Based on McKean's ideas, Bassetti, Ladelli and Matthes expressed the solution in a convenient probabilistic way,

- The solution to the considered equation can be derived analytically in terms of the Wild series,
- Results on probabilistic interpretation of the solution can be found in works of Gabetta, Regazzini, Carlen and Carvalho,
- Based on McKean's ideas, Bassetti, Ladelli and Matthes expressed the solution in a convenient probabilistic way,
- Assuming that (H_{γ}) holds for some $\gamma \in (0,2]$ and there exists $\delta > \gamma$ such that $\mu(\delta) < \mu(\gamma) < \infty$, they showed that $\phi(t, e^{-\mu(\gamma)t}\xi)$ converges to a nondegenerate limit being the characteristic function of the law of the limit of some positive martingale related to a family of random labelled trees.

Theorem (KB, DB, AM (SPA 2019))

Assume that (A), (Φ) hold, the hypothesis (H_{γ}) is satisfied for some $\gamma \in (0,2]$ and

$$\gamma = \operatorname*{arg\,min}_{s\in(0,s_\infty)} \mu(s) = \gamma^* \in (0,s_\infty).$$

Then there exists a probability measure ρ_{∞} such that the function ϕ , the unique solution to $\partial \phi_t / \partial t + \phi_t = \widehat{Q} \phi_t$ with the initial condition ϕ_0 , satisfies

$$\lim_{t\to\infty}\phi\big(t,t^{\frac{1}{2\gamma}}e^{-\mu(\gamma)t}\xi\big)=w_{\infty}(\xi),\quad\xi\in\mathbb{R},$$

where w_{∞} is the Fourier-Stieltjes transform of ρ_{∞} .

Theorem (KB, DB, AM (SPA 2019))

Characteristic function w_∞ has the following representation

$$w_{\infty}(\xi) = \mathsf{E}\widehat{g}_{\gamma}(\xi c_{\gamma} D_{\infty}^{1/\gamma}),$$

where $c_{\gamma} := \left(\frac{2}{\pi \gamma^2 \Phi''(\gamma)}\right)^{\frac{1}{2\gamma}}$ and D_{∞} is a.s. positive random variable which satisfies the following stochastic fixed-point equation

$$D_{\infty} \stackrel{d}{=} \mathcal{U}^{\Phi(\gamma)} \sum_{k=1}^{N} A_{k}^{\gamma} D_{\infty}^{(k)},$$

where $(D_{\infty}^{(k)})_{k=1}^{N}$ are independent copies of D_{∞} ; \mathcal{U} has a uniform distribution on (0,1) and $(D_{\infty}^{(k)})_{k=1}^{N}$, \mathcal{U} and (A_{1},\ldots,A_{N}) are independent.

Thank you very much for attention.

Kamil Bogus

Self-similar solutions of kinetic-type equations 11 / 11