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Motivation

For a locally integrable function f on Rn, Hardy-Littlewood Maximal
function is defined as

M f (x) = sup
Q3x

1
|Q|

∫
Q
| f (y)|dy.

It maps L1(Rn) to L1,∞(Rn). Classical proof depends on Covering
lemmas(Vittali). By interpolation, it maps Lp(Rn) to itself for
1 < p < ∞.

Abhishek Ghosh (Joint work with Prof. Saurabh Shrivastava and Kalachand Shuin) (Indian Institute of Technology Kanpur, India)Probability and Analysis-2019 May 20-24, 2019 2 / 20



Motivation

For a locally integrable function f on Rn, Hardy-Littlewood Maximal
function is defined as

M f (x) = sup
Q3x

1
|Q|

∫
Q
| f (y)|dy.

It maps L1(Rn) to L1,∞(Rn). Classical proof depends on Covering
lemmas(Vittali). By interpolation, it maps Lp(Rn) to itself for
1 < p < ∞.

Abhishek Ghosh (Joint work with Prof. Saurabh Shrivastava and Kalachand Shuin) (Indian Institute of Technology Kanpur, India)Probability and Analysis-2019 May 20-24, 2019 2 / 20



Introduction

{K j} j be family of locally integrable functions and define the following
maximal operator

K∗ f (x) = sup
j

∣∣∣K j ∗ f (x)
∣∣∣.

Miguel de Guzmán(1981): If K′js are integrable, then K∗ is weak type
(1, 1) if and only if K∗ is weak type (1, 1) over Dirac deltas.

K∗ is weak type (1, 1) if and only if ∃ C > 0 such that, for any set of distinct
points a1, . . . , aN and for each λ > 0

∣∣∣{x : sup
j

∣∣∣ N∑
i=1

K j(x − ai)
∣∣∣ > λ}∣∣∣ ≤ C

N
λ
. (Guzmán)
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Contd.

H. Carlsson(1984): M is weak type (1, 1) over Dirac deltas using the
principle of induction.

Let φ =
N∑

i=1
biδai and for any λ > 0, define Eλ := {x : Mφ(x) > λ}.

Then

|Eλ| ≤
2n

λ

N∑
i=1

|bi|.

This provides another proof for weak (1, 1) boundedness.
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Contd.

M. Trinidad Menárguez and F. Soria(1992):

If K j ≥ 0, then the constant in the weak (1, 1) inequality is same
as the constant in the following inequality

∣∣∣{x : sup
j

∣∣∣ N∑
i=1

K j(x − ai)
∣∣∣ > λ}∣∣∣ ≤ C

N
λ
.

This method played a crucial role in obtaining the best constant in the
weak type (1, 1) inequality for the centred Hardy-Littlewood maximal
operator on R in the works of Menárguez and Soria(1992), Manfredi
and Soria, J.M. Aldaz(1998) and finally it is settled by
A. D. Melas(2003).
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Weighted Ineq.

Theorem (B. Muckenhoupt,1972)

M is of weighted weak-type (1, 1) if and only if w ∈ A1 and when
1 < p < ∞, M is weighted strong type (p, p) if and only if w ∈ Ap.

w ∈ A1 iff ∃ C > 0 such that for all cubes Q

1
|Q|

∫
Q w ≤ C ess inf

Q
w.

w ∈ Ap iff ∃ C > 0

sup
Q

(
1
|Q|

∫
Q w

) (
1
|Q|

∫
Q w−

1
p−1

)p−1
≤ C.

Classical proofs depend on Calderón-Zygmund decomposition.
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Contd.

D. Termini and C. Vitanza: Extended Guzmán’s method for A1
weights.

Given w ∈ C(Rn), M is weak type (1, 1) with respect to w if and

only if for any φ =
N∑

i=1
biδai and λ > 0, we have

w({x : Mφ(x) > λ}) .
Cw,n

λ

N∑
i=1

|bi|w(ai). (*)

Given w ∈ C(Rn), M satisfies (*) on linear combination of Dirac
deltas if and only if w ∈ A1.
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Contd.

Theorem (Termini and Vitanza, 1989)

Hardy-Littlewood maximal function is weak type (1, 1) with respect to w if
and only if w ∈ A1.

M. Trinidad Menárguez extended this for more general class of maxi-
mal convolution operators.

Abhishek Ghosh (Joint work with Prof. Saurabh Shrivastava and Kalachand Shuin) (Indian Institute of Technology Kanpur, India)Probability and Analysis-2019 May 20-24, 2019 8 / 20



Contd.

Theorem (Termini and Vitanza, 1989)

Hardy-Littlewood maximal function is weak type (1, 1) with respect to w if
and only if w ∈ A1.
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Main Result

Let {K1
i } and {K2

i } be families of locally integrable kernels defined on
Rn,

Ti( f1, f2)(x) =
(
K1

i ∗ f1
)

(x)
(
K2

i ∗ f2
)

(x).

Consider the bilinear maximal operator defined by

T ∗( f1, f2)(x) = sup
i∈N
|Ti( f1, f2)(x)|.
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Contd.

Let w1,w2, and v be continuous weight functions and q > 0. Assume
that

1 K1
i ,K

2
i ∈ L∞(Rn) and K1

i (. − y),K2
i (. − y) ∈ L1(v) for all y ∈ Rn.

2 Given ε > 0, a ball B ⊆ Rn and i ∈ N, there are
γ1 = γ(ε, i, B) and γ2 = γ(ε, i, B) such that∫

B
|K j

i (x − y1) − K j
i (x − y2)|v(x)dx < ε

whenever |y1 − y2| < γ j for j = 1, 2.
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Main Result

Theorem (-, Shrivastava, Shuin)

Under the hypothesis the following are equivalent

T ∗ is bounded from L1(w1) × L1(w2) to Lq,∞(v).

For any set of distinct points {al}
N
l=1 and {bk}

L
k=1 and for any λ > 0,

∃ C > 0 such that

v
{
x ∈ Rn : T ∗(

N∑
l=1
δal ,

L∑
k=1

δbk )(x) > λ
}
≤

C~w,n
λq

(
N∑

l=1
w1(al)

)q( L∑
k=1

w2(bk)
)q

.
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Applications

Multilinear fractional maximal function(Kabe Moen, 2009):

For 0 ≤ α < 2n, the multilinear fractional maximal function is de-
fined as follows

Mα( f1, f2)(x) = sup
r>0

2∏
i=1

1

|B(x, r)|1−
α
2n

∫
B(x,r)

| fi(y)|dy.

For α = 0, the corresponding operator is the multilinear
Hardy-Littlewood maximal operator defined by Lerner et al(2009).
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Contd.

Mα( f1, f2)(x) = sup
ri∈Q+

|Kri ∗ f1(x)||Kri ∗ f2(x)|

= sup
i≥1
|Ki ∗ f1(x)||Ki ∗ f2(x)|

where Ki = Kri(x) =
χB(0,ri)(x)

|B(0,ri)|
1− α

2n
.

|Ki(x − y2) − Ki(x − y1)| =
1

|B(0, ri)|1−
α
2n
χB∗i

where B∗i = B(y1, ri) ∪ B(y2, ri) \ B(y1, ri) ∩ B(y2, ri).
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Contd.

Lemma (-, Shrivastava, Shuin)

Let (w1,w2, v) be continuous weight functions. Suppose that for any set of
distinct points {al}

N
l=1 and {bk}

L
k=1 and for any λ > 0, ∃ C > 0 such that

v
{
x ∈ Rn : Mα(

N∑
l=1
δal ,

L∑
k=1

δbk )(x) > λ
}
≤ C

λq

(
N∑

l=1
w1(al)

)q (
L∑

k=1
w2(bk)

)q

holds, then the bilinear fractional maximal function Mα is bounded from
L1(w1) × L1(w2) to Lq,∞(v).
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Contd.

Lemma (-, Shrivastava, Shuin)

Let (w1,w2, v) be continuous weight functions. Then Mα is bounded from
L1(w1) × L1(w2) to Lq,∞(v) on finite sum of Dirac deltas if and only if
(w1,w2, v) ∈ A~1,α.

We say (w1,w2, v) ∈ A~1,α if and only if

1
|B|

∫
B

v(x)dx ≤ C(ess inf
B

w1(x))q(ess inf
B

w2(x))q

for all balls B ⊆ Rn and q = n
2n−α .
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Contd.

For continuous weighs, Mα is bounded from L1(w1)× L1(w2) to Lq,∞(v)
if and only if (w1,w2, v) ∈ A~1,α.

From continuous to arbitrary weights:

(w1,w2) ∈ A~1,α if and only if v~w,α,w
q
1,w

q
2 ∈ A1, where v~w,α = wq

1wq
2 and

q = n
2n−α .

Take ~w = (w1,w2) ∈ A~1,α. For ε > 0, define ~wε = (w1,ε ,w2,ε) and v~w,ε by

wq
i,ε(x) :=

1
|B(x, ε)|

∫
B(x,ε)

wq
i (y)dy for i = 1, 2

and v~w,ε(x) = wq
1,ε(x)wq

2,ε(x).
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Contd.

Lemma (-, Shrivastava, Shuin)

Let ~w = (w1,w2) ∈ A ~1,α and ε > 0. Then ~wε = (w1,ε ,w2,ε) ∈ A ~1,α with a
constant independent of ε.

Theorem (-, Shrivastava, Shuin)

Let (w1,w2, v) be weights. The bilinear maximal function Mα is bounded
from L1(w1) × L1(w2) to Lq,∞(v) if and only if

1
|B|

∫
B

v(x)dx ≤ C(ess inf
B

w1(x))q(ess inf
B

w2(x))q

for all balls B ⊆ Rn.
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Thank You!!!
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