Probability and Analysis 2019 Będlewo, May 20th, 2019

Critical phenomena in random discrete structures

Tomasz Łuczak

Adam Mickiewicz University Poznań, Poland

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

WE START ON SOME RESULTS ON GRAPHS

DEFINITION

A graph G = (V, E) is a pair which consists of the set V of vertices and the set E of pairs of vertices called edges.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

WE START ON SOME RESULTS ON GRAPHS

DEFINITION

A graph G = (V, E) is a pair which consists of the set V of vertices and the set E of pairs of vertices called edges.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Typically, we draw the vertices of G as points and the edges of G are represented by line segments.

DEFINITION OF G(n, p)

G(n, p) is a random graph with vertex set $\{1, 2, ..., n\}$ in which each edge is generated with probability p, independently for each of $\binom{n}{2}$ pairs.

More specifically, G(n, p) is probability space, where

$$\mathbb{P}(G(n,p)=G)=\binom{\binom{n}{2}}{|E(G)|}p^{|E(G)|}(1-p)^{\binom{n}{2}-|E(G)|}$$

RANDOM PROCESS $\{G(n, p) : 0 \le p \le 1\}$

Equivalently, for each pair of vertices *ij* we can generate a random variable U_{ij} with uniform distribution in [0, 1] and define the set of edges of G(n, p) as

$$E=\{ij: U_{ij}\leq p\}.$$

DEFINITION OF G(n, p)

G(n, p) is a random graph with vertex set $\{1, 2, ..., n\}$ in which each edge is generated with probability p, independently for each of $\binom{n}{2}$ pairs.

More specifically, G(n, p) is probability space, where

$$\mathbb{P}(G(n,p)=G)=\binom{\binom{n}{2}}{|E(G)|}p^{|E(G)|}(1-p)^{\binom{n}{2}-|E(G)|}$$

RANDOM PROCESS $\{G(n, p) : 0 \le p \le 1\}$

Equivalently, for each pair of vertices *ij* we can generate a random variable U_{ij} with uniform distribution in [0, 1] and define the set of edges of G(n, p) as

$$E=\{ij: U_{ij}\leq p\}.$$

▲ロト ▲園 ト ▲目 ト ▲目 ト ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A USEFUL OBSERVATION

OBSERVATION

From the process $\{G(n, p) : 0 \le p \le 1\}$ we get a natural coupling which shows that

$$G(n, p_1) \subseteq G(n, p_2),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

whenever $p_1 \leq p_2$.

- In random graph theory we are interested mainly in typical properties of G(n, p).
- For a given function p = p(n) (e.g. p = 3/n) we say that G(n, p) has some property \mathcal{A} asymptotically almost surely (or, briefly, aas) if the probability that G(n, p) has \mathcal{A} tends to 1 as $n \to \infty$.

(日) (日) (日) (日) (日) (日) (日)

ERDŐS, RÉNYI SEMINAL PAPER (1960)

THEOREM ERDŐS, RÉNYI'60

If $np \rightarrow c > 0$, then $\mathbb{P}(G(n, p) \not\supseteq K_3) = \exp(-c^3/6)$.

Theorem Erdős, Rényi'60

Let $L_1(n, p)$ be the size of the largest component of G(n, p). (I) If $np \rightarrow c < 1$, then aas $L_1(n, p) = \Theta(\log n)$. (II) If $np \rightarrow c > 1$, then aas $L_1(n, p) = \Theta(n)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

ERDŐS, RÉNYI SEMINAL PAPER (1960)

THEOREM ERDŐS, RÉNYI'60

If $np \rightarrow c > 0$, then $\mathbb{P}(G(n, p) \not\supseteq K_3) = \exp(-c^3/6)$.

THEOREM ERDŐS, RÉNYI'60

Let $L_1(n, p)$ be the size of the largest component of G(n, p). (I) If $np \rightarrow c < 1$, then aas $L_1(n, p) = \Theta(\log n)$. (II) If $np \rightarrow c > 1$, then aas $L_1(n, p) = \Theta(n)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

<ロ>

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

THEOREM ERDŐS, RÉNYI'60

Let $L_1(n, p)$ be the size of the largest component of G(n, p).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- (I) If $np \rightarrow c < 1$, then aas $L_1(n, p) = \Theta(\log n)$.
- (II) If $np \rightarrow c > 1$, then aas $L_1(n, p) = \Theta(n)$.

THEOREM ERDŐS, RÉNYI'60

Let $L_1(n, p)$ be the size of the largest component of G(n, p).

(日) (日) (日) (日) (日) (日) (日)

(I) If $np \rightarrow c < 1$, then aas $L_1(n, p) = \Theta(\log n)$.

(II) If $np \rightarrow c > 1$, then aas $L_1(n, p) = \Theta(n)$.

(III) If $np \rightarrow c \rightarrow 1$, then aas $L_1(n,p) = \Theta(n^{2/3})$.

THEOREM ERDŐS, RÉNYI'60

Let $L_1(n, p)$ be the size of the largest component of G(n, p).

- (I) If $np \rightarrow c < 1$, then aas $L_1(n, p) = \Theta(\log n)$.
- (II) If $np \rightarrow c > 1$, then aas $L_1(n, p) = \Theta(n)$.

(III) If $np \rightarrow c \rightarrow 1$, then aas $L_1(n,p) = \Theta(n^{2/3})$.

THEOREM BOLLOBÁS'84; ŁUCZAK'90

Let
$$\omega(n) \to \infty$$
 and $\omega(n) = o(n^{1/3})$.
(I) If $np = 1 - \omega n^{-1/3}$, then aas $L_1(n, p) = \Theta\left(\frac{n^{2/3}}{\omega^2}\log\omega\right)$.
(II) If $np = 1 + \Theta(n^{-1/3})$, then aas $L_1(n, p) = \Theta(n^{2/3})$.
(III) If $np = 1 + \omega n^{-1/3}$, then aas $L_1(n, p) = (2 + o(1))\omega n^{2/3}$.

THEOREM BOLLOBÁS'84; ŁUCZAK'90

The width of the phase transition in G(n, p) is $n^{-1/3}$.

Janson, Knuth, Łuczak, Pittel'93.

Luczak, Pittel, Wierman'94 –

Local limit theorems for the sizes of largest components in the critical window.

Erdős, Łuczak'94

The random graph process as the 'race of components'.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

THEOREM BOLLOBÁS'84; ŁUCZAK'90

The width of the phase transition in G(n, p) is $n^{-1/3}$.

Janson, Knuth, Łuczak, Pittel'93 Łuczak, Pittel, Wierman'94

Local limit theorems for the sizes of largest components in the critical window.

Erdos, Łuczak'94

The random graph process as the 'race of components'.

(日) (日) (日) (日) (日) (日) (日)

THEOREM BOLLOBÁS'84; ŁUCZAK'90

The width of the phase transition in G(n, p) is $n^{-1/3}$.

Janson, Knuth, Łuczak, Pittel'93 Łuczak, Pittel, Wierman'94

Local limit theorems for the sizes of largest components in the critical window.

ERDŐS, ŁUCZAK'94

The random graph process as the 'race of components'.

(日) (日) (日) (日) (日) (日) (日)

WHY SOME 'THRESHOLDS' ARE 'COARSE' WHILE OTHERS ARE 'SHARP'?

THEOREM ERDŐS, RÉNYI'60

If $np \rightarrow c > 0$, then $\mathbb{P}(G(n, p) \not\supseteq K_3) = \exp(-c^3/6)$.

THEOREM ERDŐS, RÉNYI'60

Let $L_1(n, p)$ be the size of the largest component of G(n, p).

・ロト・日本・日本・日本・日本

(I) If $np \rightarrow c < 1$, then aas $L_1(n, p) = \Theta(\log n)$.

(II) If $np \rightarrow c > 1$, then aas $L_1(n, p) = \Theta(n)$.

TWO TYPES OF THRESHOLDS

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

TWO TYPES OF THRESHOLDS

Thus, for instance, the threshold for the property that a graph contains a triangle is coarse in G(n, p).

GENERAL THEORY OF (SHARP) THRESHOLDS

Kahn, Kalai, Linial'88 ↓ Bourgain, Kahn, Kalai, Katznelson, Linial'92 ↓ Friedgut+Bourgain'99

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

GENERAL THEORY OF (SHARP) THRESHOLDS

Suppose a random subset \mathcal{R}_p of a set Ω is obtained choosing elements of Ω independently at random with probability *p*. Let *A* be an increasing property of subsets of Ω .

Theorem F

A property A has a coarse threshold if and only if it is 'local'.

(日) (日) (日) (日) (日) (日) (日)

GENERAL THEORY OF (SHARP) THRESHOLDS

Suppose a random subset \mathcal{R}_p of a set Ω is obtained choosing elements of Ω independently at random with probability *p*. Let *A* be an increasing property of subsets of Ω .

THEOREM FRIEDGUT+BOURGAIN'99

A property A has a coarse threshold if and only if it is 'local'.

(日) (日) (日) (日) (日) (日) (日)

LOCAL AND NON-LOCAL PROPERTIES

LOCAL PROPERTIES

If
$$np \rightarrow c > 0$$
, then $\mathbb{P}(G(n, p) \not\supseteq K_3) = \exp(-(c^3/6))$.

NON-LOCAL PROPERTIES

Let $L_1(n, p)$ be the size of the largest component of G(n, p). (I) If $np \rightarrow c < 1$, then aas $L_1(n, p) = \Theta(\log n)$. (II) If $np \rightarrow c > 1$, then aas $L_1(n, p) = \Theta(n)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

RANDOM GROUPS

I feel, random groups altogether may grow up as healthy as random graphs, for example.

Misha Gromov Spaces and questions 1999

(日) (日) (日) (日) (日) (日) (日)

GROUP PRESENTATIONS

${m G}=\langle {m S}|{m R} angle$

is a group which consists of words with letters a, b, \ldots (as well as its formal inverses a^{-1}, b^{-1}, \ldots) from an alphabet *S* in which we can cancel all words from set *R*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

GROUP PRESENTATION

Example

In the group $G = \langle \{a, b\} | aba^{-1}b^{-1} \rangle$ we have $aba^{-1}b^{-1} = e$, i.e. $ab = aba^{-1}b^{-1}ba = aba^{-1}b^{-1}ba = ba$, so $G = \{a^nb^m : a, b \in \mathbb{Z}\} = \mathbb{Z}^2$.

(日) (日) (日) (日) (日) (日) (日)

FINITELY PRESENTED GROUPS ARE OFTEN HARD TO STUDY

Presentations are sometimes hard to deal with, both in theory

THEOREM

Given presentation $\langle S|R \rangle$ of a group Γ it is undecidable if a given word is equivalent to 0 in Γ .

Many properties of groups with natural short finite presentations are unkown (e.g. it is not known if Thompson group F is amenable).

FINITELY PRESENTED GROUPS ARE OFTEN HARD TO STUDY

Presentations are sometimes hard to deal with, both in theory

Theorem

Given presentation $\langle S|R \rangle$ of a group Γ it is undecidable if a given word is equivalent to 0 in Γ .

and in practice

Many properties of groups with natural short finite presentations are unkown (e.g. it is not known if Thompson group F is amenable).

RANDOM GROUP $\Gamma(n, p)$

DEFINITION GROMOV'88; ŻUK'03

$$\Gamma(n, p) = \langle \{g_1, g_2, \dots, g_n\} | \mathcal{R}_p \rangle$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where each relation of length three belongs to \mathcal{R}_p independently with probability *p*.

The evolution of $\Gamma(n, p)$

THEOREM ŻUK'03

For every constant $\epsilon > 0$ the following holds.

- If $p \le n^{-2-\epsilon}$ then aas $\Gamma(n, p)$ is free.
- If n^{-2+ε} ≤ p ≤ n^{-3/2-ε}, then aas Γ(n, p) is infinite, hyperbolic, and has Kazdhan's property (T).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• If $p \ge n^{-3/2+\epsilon}$, then aas $\Gamma(n, p)$ is trivial.

THEOREM ŻUK'03

Let $\epsilon > 0$. Then

- If $p \le n^{-3/2-\epsilon}$, then aas $\Gamma(n, p)$ is infinite.
- If $p \ge n^{-3/2+\epsilon}$, then aas $\Gamma(n, p)$ is trivial.

(日) (日) (日) (日) (日) (日) (日)

THEOREM ŻUK'03

Let $\epsilon > 0$. Then

- If $p \le n^{-3/2-\epsilon}$, then aas $\Gamma(n, p)$ is infinite.
- If $p \ge n^{-3/2+\epsilon}$, then aas $\Gamma(n, p)$ is trivial.

THEOREM ANTONIUK, ŁUCZAK, ŚWIĄTKOWSKI'14

There exists a constant c > 0 such that if $p \ge cn^{-3/2}$, then aas $\Gamma(n, p)$ is trivial.

(日) (日) (日) (日) (日) (日) (日)

THEOREM ŻUK'03

Let $\epsilon > 0$. Then

- If $p \le n^{-3/2-\epsilon}$, then aas $\Gamma(n, p)$ is infinite.
- If $p \ge n^{-3/2+\epsilon}$, then aas $\Gamma(n, p)$ is trivial.

THEOREM ANTONIUK, ŁUCZAK, ŚWIĄTKOWSKI'14

There exists a constant c > 0 such that if $p \ge cn^{-3/2}$, then aas $\Gamma(n, p)$ is trivial.

CONJECTURE ANTONIUK, ŁUCZAK, ŚWIĄTKOWSKI'14

There exists a constant c' > 0 such that if $p \le c' n^{-3/2}$, then aas $\Gamma(n, p)$ is infinite (and hyperbolic).

THEOREM ŻUK'03

Let $\epsilon > 0$. Then

- If $p \le n^{-3/2-\epsilon}$, then aas $\Gamma(n, p)$ is infinite.
- If $p \ge n^{-3/2+\epsilon}$, then aas $\Gamma(n, p)$ is trivial.

THEOREM ANTONIUK, FRIEDGUT, ŁUCZAK'17

There exists a function c(n) such that for every $\epsilon > 0$ the following holds.

- If $p \ge (1 + \epsilon)c(n)n^{-3/2}$, then aas $\Gamma(n, p)$ is trivial.
- If $p \leq (1 \epsilon)c(n)n^{-3/2}$, then aas $\Gamma(n, p)$ is not trivial.

Conjecture Antoniuk, Friedgut, Łuczak'17

 $c(n) \rightarrow c > 0$ as $n \rightarrow \infty$.

THEOREM ŻUK'03

Let $\epsilon > 0$. Then

- If $p \le n^{-3/2-\epsilon}$, then aas $\Gamma(n, p)$ is infinite.
- If $p \ge n^{-3/2+\epsilon}$, then aas $\Gamma(n, p)$ is trivial.

THEOREM ANTONIUK, FRIEDGUT, ŁUCZAK'17

There exists a function c(n) such that for every $\epsilon > 0$ the following holds.

- If $p \ge (1 + \epsilon)c(n)n^{-3/2}$, then aas $\Gamma(n, p)$ is trivial.
- If $p \leq (1 \epsilon)c(n)n^{-3/2}$, then aas $\Gamma(n, p)$ is not trivial.

CONJECTURE ANTONIUK, FRIEDGUT, ŁUCZAK'17

 $c(n) \rightarrow c > 0$ as $n \rightarrow \infty$.

BACK TO THE TWO TYPES OF THRESHOLDS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

We claim that the threshold for collapsing is sharp.

FRIEDGUT-BOURGAIN THEOREM

Suppose a random subset \mathcal{R}_p of a set Ω is obtained choosing elements of Ω independently at random with probability *p*. Let *A* be an increasing property of subsets of Ω .

THEOREM FRIEDGUT+BOURGAIN'99

A property A has a coarse threshold if and only if it is 'local'.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FRIEDGUT-BOURGAIN THEOREM

Suppose a random subset \mathcal{R}_p of a set Ω is obtained choosing elements of Ω independently at random with probability *p*. Let *A* be an increasing property of subsets of Ω .

THEOREM FRIEDGUT+BOURGAIN'99

A property A has a coarse threshold if and only if it is 'local'.

Example

Consider the following properties of $\Gamma(n,p) = \langle S | \mathcal{R}(n,p) \rangle$ *A*₁: five generators of $\Gamma(n,p)$ are equivalent to the identity, *A*₂: all generators of $\Gamma(n,p)$ are equivalent to the identity.

Then, A_1 has a coarse threshold, while, as we see shortly, the threshold for A_2 is sharp.

SHARP THRESHOLD FOR THE COLLAPSE

THEOREM FRIEDGUT+BOURGAIN'99

A property A has a coarse threshold if and only if it is 'local'.

Theorem Antoniuk, Friedgut, Łuczak'11

The threshold for collapsing $\Gamma(n, p)$ which occurs for $p \sim n^{-3/2+o(1)}$ is sharp.

SHARP THRESHOLD FOR THE COLLAPSE

THEOREM FRIEDGUT+BOURGAIN'99

A property A has a coarse threshold if and only if it is 'local'.

THEOREM ANTONIUK, FRIEDGUT, ŁUCZAK'17

The threshold for collapsing $\Gamma(n, p)$ which occurs for $p \sim n^{-3/2+o(1)}$ is sharp.

・ロト・四ト・モー・ ヨー うへぐ

SHARP THRESHOLD FOR THE COLLAPSE

THEOREM FRIEDGUT+BOURGAIN'99

A property A has a coarse threshold if and only if it is 'local'.

THEOREM ANTONIUK, FRIEDGUT, ŁUCZAK'17

The threshold for collapsing $\Gamma(n, p)$ which occurs for $p \sim n^{-3/2+o(1)}$ is sharp.

Proof We have to show that collapsing is not 'local', i.e. adding a few relations to $\Gamma(n, p)$ does not change the probability of collapsing more than changing probability p to $(1 + \epsilon)p$, for some $\epsilon > 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $x_1x_2x_6 = e \& x_3x_5x_4 = e \& x_1x_3x_6 = e$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = e$$

$$x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = e$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = e$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $xab = e \Longrightarrow ab = e \implies a = b^{-1}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $a = b^{-1}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $a = b^{-1}$ $\rho_1 = \Theta(p) = n^{-3/2+o(1)}$

THE BLUE 'LOCAL' GRAPH

$$\rho_1 = \Theta(p) = n^{-3/2 + o(1)}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $acd = e \& b^{-1}cd = e$

 $acd = e \& b^{-1}cd = e \implies a = b^{-1}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $a = b^{-1}$

$$a = b^{-1}$$

 $\rho_2 = \Theta(n^2(\epsilon p)^2) = n^{-1+o(1)}$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

THE RED 'GLOBAL' GRAPH

$$a = b^{-1}$$

 $\rho_2 = \Theta(n^2(\epsilon p)^2) = n^{-1+o(1)}$

・ロト・日本・日本・日本・日本・日本

THE RED 'GLOBAL' GRAPH

 $a = b^{-1}$ $\rho_2 = \Theta(n^2(\epsilon p)^2) = n^{-1+o(1)} \gg \rho_1 = \Theta(p) = n^{-3/2+o(1)} \text{ QED}$

THE EVOLUTION OF THE RANDOM GROUP

THEOREM ŻUK'03

For every constant $\epsilon > 0$ the following holds.

- If $p \le n^{-2-\epsilon}$ then aas $\Gamma(n, p)$ is free.
- If n^{-2+ε} ≤ p ≤ n^{-3/2-ε}, then aas Γ(n, p) is infinite, hyperbolic, and has Kazdhan's property (T).

(日) (日) (日) (日) (日) (日) (日)

• If $p \ge n^{-3/2+\epsilon}$, then aas $\Gamma(n, p)$ is trivial.

THE EVOLUTION OF THE RANDOM GROUP

THEOREM ŻUK'03

Let $\epsilon > 0$.

- If $p \le n^{-2-\epsilon}$ then aas $\Gamma(n, p)$ is free.
- ► If $n^{-2+\epsilon} \le p \le n^{-3/2-\epsilon}$, then aas $\Gamma(n, p)$ is not a free group.

Theorem Antoniuk, Łuczak, Świątkowski'14; Antoniuk, Łuczak, Prytuka, Przytycki 19+

There exists an (explicit) constant c > 0 such that every $\epsilon > 0$:

- if $p \leq (c \epsilon)n^{-2}$ then aas $\Gamma(n, p)$ is free.
- ► If $p \ge (c + \epsilon)n^{-2}$, then aas $\Gamma(n, p)$ is not free.

THE EVOLUTION OF THE RANDOM GROUP

THEOREM ŻUK'03

Let $\epsilon > 0$.

- If $p \le n^{-2-\epsilon}$ then aas $\Gamma(n, p)$ is free.
- ► If $n^{-2+\epsilon} \le p \le n^{-3/2-\epsilon}$, then aas $\Gamma(n, p)$ is not a free group.

THEOREM ANTONIUK, ŁUCZAK, ŚWIĄTKOWSKI'14; ANTONIUK, ŁUCZAK, PRYTUŁA, PRZYTYCKI 19+

There exists an (explicit) constant c > 0 such that every $\epsilon > 0$:

• if
$$p \leq (c - \epsilon)n^{-2}$$
 then aas $\Gamma(n, p)$ is free.

• If $p \ge (c + \epsilon)n^{-2}$, then aas $\Gamma(n, p)$ is not free.

From G(n, p) to 'geometric random graphs'

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From G(n, p) to 'geometric random graphs' i.e. from the 'mean-field approximation' to finite dimensions

(日) (日) (日) (日) (日) (日) (日)

From G(n, p) to 'geometric random graphs' i.e. from the 'mean-field approximation' to finite dimensions

(日) (日) (日) (日) (日) (日) (日)

Limit graphs and flag-algebras

From G(n, p) to 'geometric random graphs' i.e. from the 'mean-field approximation' to finite dimensions

Limit graphs and flag-algebras

From random to pseudo-random structures

(日)

$$\mathbb{Z}^2 = \langle \{a, b\} | aba^{-1}b^{-1} \rangle$$

$$\mathbb{Z}^2 = \langle \{a, b\} | aba^{-1}b^{-1} \rangle$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$\mathbb{Z}^2 = \langle \{a, b\} | aba^{-1}b^{-1} \rangle$$

$$\mathbb{Z}^2 = \langle \{a, b\} | aba^{-1}b^{-1} \rangle = \pi_1(\bigcirc)$$

$$\mathbb{Z}^2 = \langle \{a, b\} | aba^{-1}b^{-1} \rangle = \pi_1(\bigcirc)$$

FINITELY PRESENTED GROUPS ARE '2-DIMENSIONAL'

Thus,

$$\mathbb{Z}^2 = \langle \{a, b\} | aba^{-1}b^{-1} \rangle = \pi_1(S^1 \times S^1),$$

and, in general, each finitely presented groups can be viewed as the fundamental group of its (2-dimensional) presentation complex.

(日) (日) (日) (日) (日) (日) (日)

FINITELY PRESENTED GROUPS ARE '2-DIMENSIONAL'

Thus,

$$\mathbb{Z}^2 = \langle \{a, b\} | aba^{-1}b^{-1} \rangle = \pi_1(S^1 \times S^1),$$

and, in general, each finitely presented groups can be viewed as the fundamental group of its (2-dimensional) presentation complex.

(日) (日) (日) (日) (日) (日) (日)

What about random groups of higher dimensions?

THANK YOU!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○