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WE START ON SOME RESULTS ON GRAPHS . . .

DEFINITION

A graph G = (V ,E) is a pair which consists of the set V of
vertices and the set E of pairs of vertices called edges.

Typically, we draw the vertices of G as points and
the edges of G are represented by line segments.
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AND MORE SPECIFICALLY, ON RANDOM GRAPHS

DEFINITION OF G(n,p)

G(n,p) is a random graph with vertex set {1,2, . . . ,n} in which
each edge is generated with probability p, independently for
each of

(n
2

)
pairs.

More specifically, G(n,p) is probability space, where

P(G(n,p) = G) =

( (n
2

)
|E(G)|

)
p|E(G)|(1− p)(n

2)−|E(G)| .

RANDOM PROCESS {G(n,p) : 0 ≤ p ≤ 1}
Equivalently, for each pair of vertices ij we can generate a
random variable Uij with uniform distribution in [0,1] and define
the set of edges of G(n,p) as

E = {ij : Uij ≤ p} .
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A USEFUL OBSERVATION

OBSERVATION

From the process {G(n,p) : 0 ≤ p ≤ 1} we get a natural
coupling which shows that

G(n,p1) ⊆ G(n,p2),

whenever p1 ≤ p2.



n IS ALWAYS FINITE BUT VERY LARGE

In random graph theory we are interested
mainly in typical properties of G(n,p).

For a given function p = p(n) (e.g. p = 3/n) we
say that G(n,p) has some property A
asymptotically almost surely (or, briefly, aas)
if the probability that G(n,p) has A tends to 1
as n→∞.



ERDŐS, RÉNYI SEMINAL PAPER (1960)

THEOREM ERDŐS, RÉNYI’60
If np → c > 0, then P(G(n,p) 6⊃ K3) = exp(−c3/6).

THEOREM ERDŐS, RÉNYI’60
Let L1(n,p) be the size of the largest component of G(n,p).
(I) If np → c < 1, then aas L1(n,p) = Θ(log n).

(II) If np → c > 1, then aas L1(n,p) = Θ(n).
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THEOREM BOLLOBÁS’84; ŁUCZAK’90
Let ω(n)→∞ and ω(n) = o(n1/3).

(I) If np = 1− ωn−1/3, then aas L1(n,p) = Θ
(

n2/3

ω2 logω
)

.

(II) If np = 1 + Θ(n−1/3), then aas L1(n,p) = Θ(n2/3).
(III) If np = 1 + ωn−1/3, then aas L1(n,p) = (2 + o(1))ωn2/3.
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THEOREM BOLLOBÁS’84; ŁUCZAK’90
Let ω(n)→∞ and ω(n) = o(n1/3).

(I) If np = 1− ωn−1/3, then aas L1(n,p) = Θ
(

n2/3

ω2 logω
)

.

(II) If np = 1 + Θ(n−1/3), then aas L1(n,p) = Θ(n2/3).
(III) If np = 1 + ωn−1/3, then aas L1(n,p) = (2 + o(1))ωn2/3.



THE PHASE TRANSITION

THEOREM BOLLOBÁS’84; ŁUCZAK’90
The width of the phase transition in G(n,p) is n−1/3.

JANSON, KNUTH, ŁUCZAK, PITTEL’93
ŁUCZAK, PITTEL, WIERMAN’94
Local limit theorems for the sizes of largest components
in the critical window.

ERDŐS, ŁUCZAK’94
The random graph process as the ‘race of components’.
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WHY SOME ‘THRESHOLDS’ ARE ‘COARSE’
WHILE OTHERS ARE ‘SHARP’?
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TWO TYPES OF THRESHOLDS

coarse sharp

Pp(T)

p

Pp(T)

p

Thus, for instance, the threshold for the property that a graph
contains a triangle is coarse in G(n,p).
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GENERAL THEORY OF (SHARP) THRESHOLDS

KAHN, KALAI, LINIAL’88
⇓

BOURGAIN, KAHN, KALAI, KATZNELSON, LINIAL’92
⇓

FRIEDGUT+BOURGAIN’99



GENERAL THEORY OF (SHARP) THRESHOLDS

Suppose a random subset Rp of a set Ω is obtained choosing
elements of Ω independently at random with probability p.
Let A be an increasing property of subsets of Ω.

THEOREM FRIEDGUT+BOURGAIN’99
A property A has a coarse threshold if and only if it is ‘local’.
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LOCAL AND NON-LOCAL PROPERTIES

LOCAL PROPERTIES

If np → c > 0, then P(G(n,p) 6⊃ K3) = exp(−(c3/6)).
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Let L1(n,p) be the size of the largest component of G(n,p).
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RANDOM GROUPS



QUOTE

I feel, random groups altogether may grow up
as healthy as random graphs, for example.

Misha Gromov Spaces and questions 1999



GROUP PRESENTATIONS

G = 〈S|R〉

is a group which consists of words with letters a,b, . . . (as
well as its formal inverses a−1,b−1, . . . ) from an alphabet
S in which we can cancel all words from set R.



GROUP PRESENTATION

Example

In the group
G = 〈{a,b}|aba−1b−1〉

we have aba−1b−1 = e, i.e.

ab = aba−1b−1ba = aba−1b−1ba = ba ,

so
G = {anbm : a,b ∈ Z} = Z2 .



FINITELY PRESENTED GROUPS ARE OFTEN HARD TO

STUDY

Presentations are sometimes hard to deal with,
both in theory

THEOREM

Given presentation 〈S|R〉 of a group Γ it is undecidable
if a given word is equivalent to 0 in Γ.

and in practice

Many properties of groups with natural short finite
presentations are unkown (e.g. it is not known if
Thompson group F is amenable).
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RANDOM GROUP Γ(n,p)

DEFINITION GROMOV’88; ŻUK’03

Γ(n,p) = 〈{g1,g2, . . . ,gn}|Rp〉
where each relation of length three belongs to Rp
independently with probability p.



THE EVOLUTION OF Γ(n,p)

THEOREM ŻUK’03
For every constant ε > 0 the following holds.

I If p ≤ n−2−ε then aas Γ(n,p) is free.
I If n−2+ε ≤ p ≤ n−3/2−ε, then aas Γ(n,p) is infinite,

hyperbolic, and has Kazdhan’s property (T).
I If p ≥ n−3/2+ε, then aas Γ(n,p) is trivial.



COLLAPSING Γ(n,p)

THEOREM ŻUK’03
Let ε > 0. Then

I If p ≤ n−3/2−ε, then aas Γ(n,p) is infinite.
I If p ≥ n−3/2+ε, then aas Γ(n,p) is trivial.

THEOREM ANTONIUK, ŁUCZAK, ŚWIA̧TKOWSKI’14

There exists a constant c > 0 such that if p ≥ cn−3/2,
then aas Γ(n,p) is trivial.

CONJECTURE ANTONIUK, ŁUCZAK, ŚWIA̧TKOWSKI’14

There exists a constant c′ > 0 such that if p ≤ c′n−3/2,
then aas Γ(n,p) is infinite (and hyperbolic).
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BACK TO THE TWO TYPES OF THRESHOLDS

coarse sharp

Pp(T)

p

Pp(T)

p

We claim that the threshold for collapsing is sharp.



FRIEDGUT-BOURGAIN THEOREM

Suppose a random subset Rp of a set Ω is obtained choosing
elements of Ω independently at random with probability p.
Let A be an increasing property of subsets of Ω.

THEOREM FRIEDGUT+BOURGAIN’99
A property A has a coarse threshold if and only if it is ‘local’.

Example
Consider the following properties of Γ(n,p) = 〈S|R(n,p)〉
A1: five generators of Γ(n,p) are equivalent to the identity,
A2: all generators of Γ(n,p) are equivalent to the identity.

Then, A1 has a coarse threshold, while, as we see shortly,
the threshold for A2 is sharp.
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SHARP THRESHOLD FOR THE COLLAPSE

THEOREM FRIEDGUT+BOURGAIN’99
A property A has a coarse threshold if and only if it is ‘local’.

THEOREM ANTONIUK, FRIEDGUT, ŁUCZAK’17
The threshold for collapsing Γ(n,p) which occurs
for p ∼ n−3/2+o(1) is sharp.

Proof We have to show that collapsing is not ‘local’, i.e. adding
a few relations to Γ(n,p) does not change the probability of
collapsing more than changing probability p to (1 + ε)p, for
some ε > 0.
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THE BLUE ‘LOCAL’ GRAPH

ρ1 = Θ(p) = n−3/2+o(1)
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THE RED ‘GLOBAL’ GRAPH
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ρ2 = Θ(n2(εp)2) = n−1+o(1)

� ρ1 = Θ(p) = n−3/2+o(1)

QED
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THE EVOLUTION OF THE RANDOM GROUP

THEOREM ŻUK’03
For every constant ε > 0 the following holds.
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THE EVOLUTION OF THE RANDOM GROUP

THEOREM ŻUK’03
Let ε > 0.

I If p ≤ n−2−ε then aas Γ(n,p) is free.
I If n−2+ε ≤ p ≤ n−3/2−ε, then aas Γ(n,p) is not a free group.

THEOREM ANTONIUK, ŁUCZAK, ŚWIA̧TKOWSKI’14;
ANTONIUK, ŁUCZAK, PRYTUŁA, PRZYTYCKI 19+
There exists an (explicit) constant c > 0 such that every ε > 0:

I if p ≤ (c − ε)n−2 then aas Γ(n,p) is free.
I If p ≥ (c + ε)n−2, then aas Γ(n,p) is not free.
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From G(n,p) to ‘geometric random graphs’

i.e. from the ‘mean-field approximation’ to finite
dimensions

Limit graphs and flag-algebras

From random to pseudo-random structures
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FINITELY PRESENTED GROUPS ARE ‘2-DIMENSIONAL’

Thus,
Z2 = 〈{a,b}|aba−1b−1〉 = π1(S1 × S1),

and, in general, each finitely presented groups can be viewed
as the fundamental group of its (2-dimensional) presentation
complex.

What about random groups of higher dimensions?
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THANK YOU!
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