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Notation and convention

In this talk, we use the letter C to denote universal, nonnegative
constant which may differ at each occurrence. So using this
convention we may write

2C < Cor P(|X| > Ct) < e€ %

We write C(a) if the constant may depend on some parameter a.
We write a ~ b (a ~“ b) if there exists C (C(«)) such that
a/C < b<aC (a/C(a) < b< aC(a)). For example
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Classical Hanson-Wright inequality

Definition

We say that a random variable X is a-subgaussian if for every
t >0, P(|X| > t) < 2exp (—t?/(2a?)).

Let us consider a sequence Xi, X», ... of independent, mean zero
and a-subgaussian random variables. The classical Hanson-Wright
inequality states that for any real valued matrix A = (aj)jji<n
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Problems with Classical Hanson-Wright inequality

In many problems one need to analyze not a single quadratic form
but a supremum of a collection of them i.e. expression of the form

P (sup > af(XiX; —EXiX;)| > t) (1)
k<n

i

1 (alY). A2 — (32). i
where A* = (a;)j, A° = (a3)jj, - - - is a sequence of real-valued

matrices. Equivalently one may need to estimate from the above
the expression

P ( ZBU(Xin -EXiX)| > t) ) (2)

where A = (ajj)jj<n is a matrix with values in a Banach space
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Moment estimates imply tail estimates

We want to find an upper bound for

{

where A = (ajj)ij<n is @ matrix with values in a Banach space
(F,||-])- A naive idea (which luckily is enough) is to use
Chebyshev's inequality:

> a(XiX; — EXiX))
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zt) =P(S>1),

B(S > t) < (IS, /¢)° for any p > 1.

So we need to estimate from the above [|S||,. Standard arguments
(decoupling, symmetrization and the contraction principle) yield
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Moments of Gaussian quadratic forms

Our goal is to find upper bounds (and preferably two-sided
bounds) for moments of HZU ajj(gigj — 6jj)

‘ (recall that (aj);; are
from Banach space). Some results exist in the literature.

Theorem (C. Borell; M. A. Arcones and E. Giné ; M. Ledoux and

M. Talagrand)

Let (F,||:||) be a Banach space and A be a symmetric, F-valued
matrix. Then, for any p > 1 we have
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P
+ +/pE sup Zaug,xJ + p sup Za,]x,yj
x€By |1 x,y€BY




Problems in L, spaces

The previous Theorems yields (for t > CE|[>",; a;(gigj — d;)l|)

||Zau gig — dy)ll > Ca? t)
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Consider (F., [|-[) = (/g [I-ll ;)- Then a; = (afj)kzl and
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It is nontrivial to estimate the last expression (even in the case
qg=2).



Theorem (C. Borell; M. A. Arcones and E. Giné ; M. Ledoux and

M. Talagrand)

Let (F,||:||) be a Banach space and A be a symmetric, F-valued
matrix. Then, for any p > 1 we have
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Moments of Gaussian quadratic forms

Theorem (R. Adamczak, R. Latata, R. Meller)

Under the assumption of the previous theorem we have
g — 05)|| SE|D_ aileig — 0p)|| +E||>_ ayg
p ij iZj
+y/psupE Z ajgiXi|| +/p sup Z ajjXij
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This inequality cannot be reversed. To see this, consider p =1 and
the Banach space (Mpxn(R), ||-|l,), where

1Al = supy 7y, =1, TeMux, 2= 2itiy:



Hanson-Wright inequality in Banach spaces

Theorem

Let X1, Xo, ... be independent, mean-zero, a-subgaussian random
variables. Then for any matrix A = (ajj);j with values in (F,||-||)

and any t > Co?(BI|S; a(gigj — 0y)|| + Bl X asgyl) we have
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U= sup E Za,-jg,-xj + sup Za,-jx,-j
XEBg ij XEB2"2 ij

V = sup Z aix;y;l| -
x,yGBé’ ij




Gaussian quadratic forms in L, spaces.

Theorem

In the Lq spaces the following holds

(gigj — ij) Do VP sup | aix;
P i Lq XEBH i Lq
2
+ /p sup Z Za,-jxj +p sup Za,]x,yj
XEBQ i j ,yEB"

q

q

The reason why in L, space we have such an simplification is the
following
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Hanson-Wright inequality in L, spaces

Theorem

Let X1, Xz, ... be independent, mean-zero, a-subgaussian random
variables. Then for any matrix A = (aj;);j with values in

(Lo(T), |ll,) and any ¢ > Ca?q |

a2ll  we have
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