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Motivation:

A talk by Yulij Ilyashenko. Two interval maps, applied randomly.
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The interval (c, 1] is inessential (all points except 1 leave it and never come

back). Therefore really those two maps look like that:
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An important thing is that one of the maps is not a surjection. This causes

contraction on average and the existence of an attractor.

We want to get a similar effect for two homeomorphisms, f0, f1 of [0, 1]

onto itself; f0 should move all points of (0, 1) to the left, and f1 to the

right. To avoid 0 or 1 to be attracting, we require existence of derivatives at

0 and 1, with f ′0(0)f ′1(0) > 1 and f ′0(1)f ′1(1) > 1.



If f0 and f1 are to be smooth, it looks like a good idea to choose maps with

negative Schwarzian derivative, for example quadratic functions:
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The picture suggests that f ′0(0)f ′1(0) < 1 and f ′0(1)f ′1(1) < 1.



We apply a useful rule:

Before starting to investigate something, check whether it exists.



Let f : [0, 1]→ [0, 1] be an increasing smooth function with negative

Schwarzian derivative, with f(0) = 0 and f(1) = 1. Then f expands

cross-ratios. In particular, if 0 < x < y < 1 then

(1− 0)(f(y)− f(x))

(f(x)− 0)(1− f(y))
>

(1− 0)(y − x)

(x− 0)(1− y)
,

that is,
f(x)− 0

x− 0
· 1− f(y)

1− y
<
f(y)− f(x)

y − x
.

As x→ 0 and y → 1, we get in the limit

f ′(0)f ′(1) ≤ 1.

Thus, if both f0 and f1 have negative Schwarzian derivative, then we

cannot have f ′0(0)f ′1(0) > 1 and f ′0(1)f ′1(1) > 1.



In fact, we discovered later that the right choice of this type would be

positive Schwarzian derivative. Such situation has been considered by

Bonifant and Milnor [BM]. They investigated similar skew products, with

expanding circle maps in the base.



Next best choice – piecewise linear maps. To simplify the situation, make

the following choices:

• there are only two linear pieces for each map,

• the “critical value” for both maps is the same,

• the graph of f1 is symmetric to the graph of f0 with respect to the

center of the square.
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Denote the slopes by a < 1 and b > 1. We have a =
1/2

1− c
and b =

1/2

c
, so

1

a
+

1

b
= 2. Thus, the harmonic mean of a and b is 1, so the geometric

mean is larger than 1. Therefore, ab > 1.



Setup:

A skew product over the Bernoulli shift (1/2, 1/2), one sided (Σ+, σ+, µ+),

or two-sided (Σ, σ, µ). In the one-sided case we have

F+(ω, x) = (σ(ω), fω0(x)), where ω = (ω0, ω1, ω2, . . . ) ∈ Σ+. In the

two-sided case, F (ω, x) = (σ(ω), fω0x)), where

ω = (. . . , ω−2, ω−1, ω0, ω1, ω2, . . . ) ∈ Σ. In other words, we flip a coin and

apply f0 or f1 depending on the results of the flip.

For a given ω from Σ+ or Σ, we will denote the projection to the second

coordinate of Fn+(ω, x0) or Fn(ω, x0) by xn. The projection map will be

denoted by π2.



Main technical results:

Theorem 1. For almost every ω ∈ Σ+ and every x0, y0 ∈ (0, 1) we have

lim
n→∞

|xn − yn| = 0.

Clearly, the same holds in the two-sided case.

I will indicate how to prove Theorem 1 later, if time allows. The basic idea

is to introduce a new metric in (0, 1), in which the map is nonexpanding,

and contracting (mildly) from time to time.



In the two-sided case, we get a measurable function with an invariant

graph:

Theorem 2. There exists a measurable function ϕ : Σ→ (0, 1), whose

graph is invariant under F , such that for almost every ω ∈ Σ, if x0 < ϕ(ω)

then

lim
n→∞

x−n = 0

and if x0 > ϕ(ω) then

lim
n→∞

x−n = 1.



Proof. Let G : Σ× [0,∞)→ Σ× [0,∞) be defined by the same (linear in x)

formulas as F−1 close to 0. Set

Γ =
{
ω ∈ Σ : lim

n→∞
1
n#{k < n : ωk = 0} = 1

2

}
.

By the Birkhoff Ergodic Theorem, µ(Γ) = 1.

Let ξn(ω) = π2(Gn(ω, 1)). Since ab > 1, if ω ∈ Γ, then ξn(ω)→ 0 as

n→∞. In particular, ξ(ω) = max{ξn(ω) : n = 0, 1, 2, . . . } is finite and

positive. All functions ξn are measurable, so ξ is also measurable. Set

ζ(ω) = c/ξ(ω). The function ζ is positive and measurable. Moreover, for

every x0 ∈ [0, ζ(ω)] we have x−n = ξn(ω) · x0, so x−n → 0 as n→∞.

If we set y0 = xk, then y−n = xk−n, so also y−n → 0 as n→∞. Thus, if we

set

ϕ(ω) = sup{π2
(
Fn
(
σ−n(ω), ζ(σ−n(ω))

))
: n ∈ Z},

then ϕ is measurable and positive, its graph is invariant for F , and for any

x0 < ϕ(ω) we have x−n → 0 as n→∞.



In a similar way we construct a measurable function ϕ̂ : Σ→ [0, 1), with an

invariant graph, such that for any x0 > ϕ̂(ω) we have x−n → 1 as n→∞.

Clearly, ϕ(ω) ≤ ϕ̂(ω), so 0 < ϕ(ω) ≤ ϕ̂(ω) < 1. Now, using Theorem 1 and

a simple lemma from [AM] we get ϕ̂ = ϕ a.e.

Observe that ϕ(ω) depends only on terms with negative indices of ω (its

“past”).



Pullback attractor:

The graph of ϕ is a pullback attractor in the following sense:

Theorem 3. For almost every ω ∈ Σ and for every compact set A ⊂ (0, 1)

and ε > 0 there exists N such that for every n ≥ N

Fn({σ−n(ω)} ×A) ⊂ (ϕ(ω)− ε, ϕ(ω) + ε).

Proof. Take x0 < ϕ(ω) < y0 such that (x0, y0) ⊂ (ϕ(ω)− ε, ϕ(ω) + ε) (if

ϕ(ω) = 0 then we take x0 = 0; if ϕ(ω) = 1 then we take y0 = 1). Then by

Theorem 2 (and monotonicity of our maps) limn→∞ x−n = 0 and

limn→∞ y−n = 1. Therefore for n sufficiently large we have

A ⊂ (x−n, y−n).



The graph of ϕ is a forward attractor in the following sense:

Theorem 4. For almost every ω ∈ Σ and for every x0 ∈ (0, 1) we have

lim
n→∞

|xn − ϕ(σn(ω))| = 0.

Proof. This follows from Theorem 1, the fact that the values of ϕ are in

(0, 1) and the F -invariance of the graph of ϕ.



Invariant measures:

The relevant invariant measures for F and F+ are those that project to µ

and µ+. There are two trivial ergodic ones: µ× δ0 and µ× δ1 (in the

one-sided case, µ+ × δ0 and µ+ × δ1).

The proof of the following theorem is basically taken from [BMS]:

Theorem 5. There is at most one nontrivial ergodic measure invariant for

F (resp. F+) that projects to µ (resp. µ+).

Proof. If there are two such measures, say ν1 and ν2, there is an ω for

which Theorem 1 applies and two points x0, y0, such that (ω, x0) is generic

for ν1 and (ω, y0) is generic for ν2. Then in the weak-* topology, the

averages of the images of the Dirac delta measure at (ω, x0) converge to ν1

and the averages of the images of the Dirac delta measure at (ω, y0)

converge to ν2. However, |xn − yn| goes to 0, so we get ν1 = ν2.



We can easily identify those measures for F and F+. For F , since µ is

σ-invariant and the graph of ϕ is F -invariant, the measure µ lifted to this

graph is F -invariant. Since µ is ergodic, this measure is also ergodic. It is

nontrivial because ϕ is nontrivial.

Let λ be the Lebesgue measure on [0, 1].

Theorem 6. The measure µ+ × λ is invariant for F+.

Proof. It is enough to check that the measure of the preimage of a set is

equal to the measure of the set itself for sets of the form C × J , where C is

a cylinder in Σ+ and J is an interval not containing 1/2 in the interior. The

preimage of such a set is the disjoint union of two sets of the form

C0 × f−10 (J) and C1 × f−11 (J), where C0 and C1 are cylinders of measure

µ+(C)/2 each. The Lebesgue measures of the intervals f−10 (J) and f−11 (J)

are λ(J)/a and λ(J)/b (not necessarily in that order). Since(
1
a + 1

b

)
/2 = 1, we get (µ+ × λ)(F−1+ (C × J)) = (µ+ × λ)(C × J).



One-sided vs. two-sided case:

As we saw in Theorem 4, the graph of ϕ is an attractor for the invertible

system. However, a similar theorem does not hold for the noninvertible

system.

Theorem 7. There is no measurable function ϕ+ : Σ+ → (0, 1) whose

graph is F+-invariant.

Proof. If such a function exists, the measure µ+ lifted to its graph would be

a nontrivial F+-invariant ergodic measure, so by Theorems 5 and 6 it would

be equal to µ+ × λ, a contradiction.



In fact, we can even drop the assumption that an attractor is invariant.

Theorem 8. There is no measurable function ϕ+ : Σ+ → (0, 1) whose

graph is an attractor in the sense that for almost every ω ∈ Σ+ and every

x0 ∈ (0, 1) we have

lim
n→∞

|xn − ϕ+(σn+(ω))| = 0.

Proof. Assume that such ϕ+ exists. Let Π : Σ→ Σ+ be the natural

projection. Then the graph of ϕ+ ◦Π is an attractor for F , so by a lemma

from [AM] ϕ+ ◦Π = ϕ a. e. Invariance of the graph of ϕ can be written as

ϕ(σ(ω)) = π2(F (ω, ϕ(ω))) for a. e. ω ∈ Σ. For a. e. ω+ ∈ Σ+ there is such

ω ∈ Σ for which additionally Π(ω) = ω+, and then

ϕ+(σ+(ω+)) = ϕ+(Π(σ(ω))) = ϕ(σ(ω)) = π2(F (ω, ϕ(ω)))

= π2(F (ω, ϕ+(ω+))) = π2(F+(ω+, ϕ+(ω+))).

This shows that the graph of ϕ+ is F+-invariant, which is impossible by

Theorem 7.



Mystery of the vanishing attractor:

We get a paradox. For an invertible system an attractor exists, but it

vanishes when we pass to the noninvertible system. This happens in spite of

the fact that in the definition of an attractor we only look at forward orbits,

and that in the base the future is completely independent of the past.

On a philosophical level, we may conclude that even if the future is

independent of the past, knowledge of the history may essentially simplify

the description of the predictions for the future.

On a mathematical level, we see that the idea of a pullback attractor seems

to be useful only for invertible systems (we mean essentially invertible, so

we include also noninvertible ones with zero entropy).



Let us stress that we are talking about measurable functions. A

nonmeasurable function with an invariant graph can be easily constructed.

Using Axiom of Choice we can choose one point from every full orbit of σ+

and assign to our function the value 1/2 at such point. Since the maps f0

and f1 are bijections, this function can be extended uniquely to a function

on Σ+ with an invariant graph. By Theorem 1, this graph will be an

attractor.

Note that such a function will have no connections with the function ϕ

constructed earlier.



Ideas for the proof of Theorem 1:

The main idea is to introduce a better metric on (0, 1). Let h : (0, 1)→ R
be a homeomorphism given by the formula

h(x) =

log x− log 1
2 if x ≤ 1

2 ,

log 1
2 − log(1− x) if x > 1

2 .

Then we use the metric d(x, y) = |h(x)− h(y)|.



Lemma 9. If either x, y ∈ (0, 1/2] or x, y ∈ [1− c, 1) then

d (f0(x), f0(y)) = d(x, y). If x, y ∈ [1/2, 1− c] then

d (f0(x), f0(y)) ≤
(

1− 2c

3
d(x, y)

)
d(x, y). (1)

If x, y ∈ (0, c] or x, y ∈ [1/2, 1) then d (f1(x), f1(y)) = d(x, y). If

x, y ∈ [c, 1/2] then (1) holds with f1 instead of f0.

Set

Γ+ =
{
ω ∈ Σ+ : lim

n→∞
1
n#{k < n : ωk = 0} = 1

2

}
.

By the Birkhoff Ergodic Theorem, µ+(Γ+) = 1.

Lemma 10. Let ω ∈ Γ+ and x0 ∈ (0, 1). Then there are infinitely many

values of n such that xn ∈ (0, 1/2] and infinitely many values of n such that

xn ∈ [1/2, 1).



Lemma 11. For every x, y ∈ (0, 1) we have

d(f0(x), f0(y)) ≤ d(x, y) and d(f1(x), f1(y)) ≤ d(x, y).

Lemma 12. There exists η > 0 such that if x ≤ 1/2 ≤ y and d(x, y) < η

then f0(x) < f0(y) < 1/2 and 1/2 < f1(x) < f1(y).

Lemma 13. Let 1/2 ≤ x0 < y0 and xn < yn ≤ 1/2 for some n ≥ 1.

Assume also that d(x0, y0) < η, where η is the constant from the preceding

lemma. Then

d(xn, yn) ≤
2 + c

3d(x0, y0)

2 + 2c
3 d(x0, y0)

d(x0, y0).



Define a function χ : [0,∞)→ R by

χ(t) =



2 + c
3 t

2 + 2c
3 t
t if 0 ≤ t ≤ η

2 ,

2 + cη
6

2 + cη
3

t if t > η
2 ,

where η is the constant from Lemma 12. It is easy to see that χ is

continuous, χ(0) = 0 and χ(t) < t if t > 0. Moreover, for every t ≥ 0 we

have

lim
n→∞

χn(t) = 0 and lim
n→∞

χ−n(t) =∞. (2)

Lemma 14. Let 1/2 ≤ x0 < y0 and xn < yn ≤ 1/2 for some n ≥ 1. Then

d(xn, yn) ≤ χ(d(x0, y0)).

Now, Theorem 1 follows from Lemmas 14 and 11 and the first equality

of (2).




