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Overview

� Generalized Charlier and Meixner polynomials
� Link with discrete Painlevé equations
� The bi-lattice
� Asymptotic behaviour
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The classical Charlier and Meixner polynomials

� We will consider a generalization of the Charlier
and the Meixner orthogonal polynomials.
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The classical Charlier and Meixner polynomials

� We will consider a generalization of the Charlier
and the Meixner orthogonal polynomials.

� Both are orthogonal with respect to a weight
function on N:
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The classical Charlier and Meixner polynomials

� We will consider a generalization of the Charlier
and the Meixner orthogonal polynomials.

� Both are orthogonal with respect to a weight
function on N:

� Charlier:
∞

∑

k=0

Cn(k; a)Cm(k; a)wk = a−nean!δn,m

with

wk =
ak

k!
, a > 0.
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The classical Charlier and Meixner polynomials

� We will consider a generalization of the Charlier
and the Meixner orthogonal polynomials.

� Both are orthogonal with respect to a weight
function on N:

� Meixner:
∞

∑

k=0

Mn(k; γ, c)Mm(k; γ, c)wk =
c−nn!

(γ)n(1 − c)γ
δn,m

with

wk =
(γ)kc

k

k!
, γ > 0, 0 < c < 1.

� Notation: the Pochhammer symbol
(γ)k =

∏k−1

j=0
(γ + j) = γ(γ + 1) · · · (γ + k − 1).Discrete Painlevé equations, satisfied by the recurrence coefficients of orthogonal polynomials on a bi-lattice – p.3/24



Recurrence relation

� Orthogonal polynomials satisfy a three-term
recurrence relation, determined by two sequences
an and bn, with a0 = 0 and an > 0 for n > 0.
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Recurrence relation

� Orthogonal polynomials satisfy a three-term
recurrence relation, determined by two sequences
an and bn, with a0 = 0 and an > 0 for n > 0.

� For monic polynomials:

xPn(x) = Pn+1(x) + bnPn(x) + a2
nPn−1(x).
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Recurrence relation

� Orthogonal polynomials satisfy a three-term
recurrence relation, determined by two sequences
an and bn, with a0 = 0 and an > 0 for n > 0.

� For monic polynomials:

xPn(x) = Pn+1(x) + bnPn(x) + a2
nPn−1(x).

� For orthonormal polynomials:

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x).
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Recurrence relation

� Orthogonal polynomials satisfy a three-term
recurrence relation, determined by two sequences
an and bn, with a0 = 0 and an > 0 for n > 0.

� For monic polynomials:

xPn(x) = Pn+1(x) + bnPn(x) + a2
nPn−1(x).

� For orthonormal polynomials:

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x).

� We are interested in these sequences an and bn.
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Recurrence coefficients in the classical case

For Charlier and Meixner polynomials, the an and bn

are explicitly known:
� Charlier:

a2
n = na, bn = n + a.

� Meixner:

a2

n =
n(n + γ − 1)c

(1 − c)2
, bn =

n + (n + γ)c

1 − c
.
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Modification of the weights: Charlier

� Generalized Charlier:

wk =
ak

(β)kk!
, a, β > 0.
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Modification of the weights: Charlier

� Generalized Charlier:

wk =
ak

(β)kk!
, a, β > 0.

� Connection to classical Charlier: let a = βc in the
generalized Charlier weight. Letting β → ∞ gives
the classical Charlier weight.
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Modification of the weights: Meixner

� Generalized Meixner:

wk =
(γ)ka

k

(β)kk!
, a, β, γ > 0.
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Modification of the weights: Meixner

� Generalized Meixner:

wk =
(γ)ka

k

(β)kk!
, a, β, γ > 0.

� Connection to classical Meixner: let a = βc in the
generalized Meixner weight. Letting β → ∞ gives
the classical Meixner weight.
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Ladder operators (Meixner)

� With the potential

u(x) =
w(x − 1) − w(x)

w(x)

we define, following Ismail, Nikolova and Simeonov,
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Ladder operators (Meixner)

� With the potential

u(x) =
w(x − 1) − w(x)

w(x)

we define, following Ismail, Nikolova and Simeonov,
�

An(x) = an

∞
∑

ℓ=0

pn(ℓ)pn(ℓ − 1)
u(x + 1) − u(ℓ)

x + 1 − ℓ
w(ℓ),

Bn(x) = an

∞
∑

ℓ=0

pn(ℓ)pn−1(ℓ − 1)
u(x + 1) − u(ℓ)

x + 1 − ℓ
w(ℓ).
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Compatibility relations (Meixner)

The structure relation

∆pn(x) := pn(x+1)−pn(x) = An(x)pn−1(x)−Bn(x)pn(x)

gives rise to two compatibility relations:

Discrete Painlevé equations, satisfied by the recurrence coefficients of orthogonal polynomials on a bi-lattice – p.9/24



Compatibility relations (Meixner)

The structure relation

∆pn(x) := pn(x+1)−pn(x) = An(x)pn−1(x)−Bn(x)pn(x)

gives rise to two compatibility relations:

Bn(x) + Bn+1(x) =
x − bn

an
An(x) − u(x + 1) +

n
∑

j=0

Aj(x)

aj
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Compatibility relations (Meixner)

The structure relation

∆pn(x) := pn(x+1)−pn(x) = An(x)pn−1(x)−Bn(x)pn(x)

gives rise to two compatibility relations:

Bn(x) + Bn+1(x) =
x − bn

an
An(x) − u(x + 1) +

n
∑

j=0

Aj(x)

aj

and

an+1An+1(x) − a2

n

An−1(x)

an−1

= (x − bn)Bn+1(x) − (x + 1 − bn)Bn(x) + 1.
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Compatibility relations (Meixner)

With

An(x) =
an

a
Rn +

an

a

x + β

x + γ
Tn

and

Bn(x) =
1

a
rn +

1

a

x + β

x + γ
tn

.
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Compatibility relations (Meixner)

With

An(x) =
an

a
Rn +

an

a

x + β

x + γ
Tn

and

Bn(x) =
1

a
rn +

1

a

x + β

x + γ
tn

we find 6 relations connecting rn, Rn, tn, Tn, an, bn.
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Compatibility relations (Meixner)

With

An(x) =
an

a
Rn +

an

a

x + β

x + γ
Tn

and

Bn(x) =
1

a
rn +

1

a

x + β

x + γ
tn

we find 6 relations connecting rn, Rn, tn, Tn, an, bn.
We immediately find that rn = tn and Rn = 1 − Tn, so 4
equations connect tn, Tn, an and bn.
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� After some substitutions. . .
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� After some substitutions. . .
� some telescoping sums. . .
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� After some substitutions. . .
� some telescoping sums. . .
� some eliminations. . .
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System of difference equations (Meixner)

With un = γ−β
γ−1

tn and vn = γ−β
γ−1

aTn
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System of difference equations (Meixner)

With un = γ−β
γ−1

tn and vn = γ−β
γ−1

aTn we obtain

(un + vn)(un+1 + vn) =
γ − 1

a2
vn(vn − a)

(

vn − a
γ − β

γ − 1

)

(un + vn)(un + vn−1) =
un

un − an
γ−1

(un + a)

(

un + a
γ − β

γ − 1

)
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System of difference equations (Meixner)

With un = γ−β
γ−1

tn and vn = γ−β
γ−1

aTn we obtain

(un + vn)(un+1 + vn) =
γ − 1

a2
vn(vn − a)

(

vn − a
γ − β

γ − 1

)

(un + vn)(un + vn−1) =
un

un − an
γ−1

(un + a)

(

un + a
γ − β

γ − 1

)

with
a2

n = na − (γ − 1)un

and
bn = n + γ − β + a − (γ − 1)vn/a.
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System of difference equations (Meixner)

Initial conditions: u0 = a0 = 0 and

b0 =
m1

m0

, hence v0 =
a

γ − 1

(

γ − β + a − m1

m0

)

.
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System of difference equations (Meixner)

Initial conditions: u0 = a0 = 0 and

b0 =
m1

m0

, hence v0 =
a

γ − 1

(

γ − β + a − m1

m0

)

.

m0 and m1 can be expressed using confluent
hypergeometric functions:

b0 =
γa

β

M(γ + 1, β + 1, a)

M(γ, β, a)

where

M(a, b, z) = 1 F1(a; b; z) =
∞

∑

k=0

(a)kz
k

(b)kk!
.
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Discrete Painlevé (Meixner)

This system is a limiting case of α-dPIV , the asymmetric discrete
Painlevé-IV equation (Eδ

6):
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Discrete Painlevé (Meixner)

This system is a limiting case of α-dPIV , the asymmetric discrete
Painlevé-IV equation (Eδ

6):

(Xn + Yn)(Xn+1 + Yn) =
(Yn − A)(Yn − B)(Yn − C)(Yn − D)

(Yn + Γ − Zn)(Yn − Γ − Zn)
,

(Xn + Yn)(Xn + Yn−1) =
(Xn + A)(Xn + B)(Xn + C)(Xn + D)

(Xn + ∆ − Zn+1/2)(Zn − ∆ − Zn+1/2)
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Discrete Painlevé (Meixner)

This system is a limiting case of α-dPIV , the asymmetric discrete
Painlevé-IV equation (Eδ

6):

(Xn + Yn)(Xn+1 + Yn) =
(Yn − A)(Yn − B)(Yn − C)(Yn − D)

(Yn + Γ − Zn)(Yn − Γ − Zn)
,

(Xn + Yn)(Xn + Yn−1) =
(Xn + A)(Xn + B)(Xn + C)(Xn + D)

(Xn + ∆ − Zn+1/2)(Zn − ∆ − Zn+1/2)

with

Xn = un − 1

ǫ
, Yn = vn +

1

ǫ
, Zn =

a

γ − 1

(

n − 1

2

)

+
1

ǫ
,

A =
1

ǫ
, B = −3

ǫ
−a−a

γ − β

γ − 1
, C = a+

1

ǫ
, D =

1

ǫ
+a

γ − β

γ − 1
,

Γ2 =
−4a2

(γ − 1)ǫ
, ∆ =

2

ǫ
, ǫ → 0.
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Bi-lattice (Meixner)

�

wk =
(γ)ka

k

(β)kk!
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Bi-lattice (Meixner)

�

wk =
(γ)ka

k

(β)kk!

� Using the gamma function:

w(x) =
Γ(β)Γ(γ + x)ax

Γ(γ)Γ(β + x)Γ(x + 1)
.
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Bi-lattice (Meixner)

�

wk =
(γ)ka

k

(β)kk!

� Using the gamma function:

w(x) =
Γ(β)Γ(γ + x)ax

Γ(γ)Γ(β + x)Γ(x + 1)
.

� w vanishes at poles of the denominator:
x = −1,−2, . . . and x = −β,−β − 1, . . ..
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Bi-lattice (Meixner)

� Hence we can also use the shifted lattice N + 1 − β:

∞
∑

k=0

qn(k + 1 − β)qm(k + 1 − β)w(k + 1 − β) = δm,n
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Bi-lattice (Meixner)

� Hence we can also use the shifted lattice N + 1 − β:

∞
∑

k=0

qn(k + 1 − β)qm(k + 1 − β)w(k + 1 − β) = δm,n

� or even the bi-lattice N ∪ N + 1 − β:

∞
∑

k=0

rn(k)rm(k)w(k)

+t

∞
∑

k=0

rn(k + 1− β)rm(k + 1− β)w(k + 1− β) = δm,n,

with t > 0.
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Bi-lattice (Meixner)

� Both the shifted lattice and the bi-lattice give a new
family of orthogonal polynomials, hence new
sequences ân and b̂n, resp. ãn and b̃n.
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Bi-lattice (Meixner)

� Both the shifted lattice and the bi-lattice give a new
family of orthogonal polynomials, hence new
sequences ân and b̂n, resp. ãn and b̃n.

� However, they still satisfy the same system of
recurrence relations, related to α-dPIV .
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Bi-lattice (Meixner)

� Both the shifted lattice and the bi-lattice give a new
family of orthogonal polynomials, hence new
sequences ân and b̂n, resp. ãn and b̃n.

� However, they still satisfy the same system of
recurrence relations, related to α-dPIV .

� The only difference: the initial condition

b̂0 =
m̂1

m̂0

for the shifted lattice;

b̃0 =
m1 + tm̂1

m0 + tm̂0

for the bi-lattice. Discrete Painlevé equations, satisfied by the recurrence coefficients of orthogonal polynomials on a bi-lattice – p.17/24



Generalized Charlier

Generalized Charlier: the recurrence coefficients an, bn

are determined by

bn + bn−1 − n + β =
an

a2
n

(a2

n+1 − a)(a2

n − a) = a(bn − n)(bn − n + β − 1)

with a0 = 0 and

b0 =
m1

m0

=
√

a
Iβ(2

√
a)

Iβ−1(2
√

a)
,

where Iν is the modified Bessel function

Iν(z) =
∞

∑

k=0

(z/2)2k+ν

k!Γ(k + ν + 1)
.
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Generalized Charlier

� For β = 1 (considered by Van Assche,
Foupouagnigni), this is a discrete Painlevé-II.

Discrete Painlevé equations, satisfied by the recurrence coefficients of orthogonal polynomials on a bi-lattice – p.19/24



Generalized Charlier

� For β = 1 (considered by Van Assche,
Foupouagnigni), this is a discrete Painlevé-II.

� For β 6= 1 it is the limiting case of dPIV (Dc
4):

xnxn+1 =
(yn − zn)

2 − A

y2
n − B

yn + yn−1 =
zn−1/2 − C

1 + Dxn
+

zn−1/2 + C

1 + xn/D

with

xn = i(a2

n − a)/
√

aB, yn = bn, zn = n − (β − 1)/2,

A = (β − 1)2/4, C = −β/2, D = −i
√

B/a, B → ∞.
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Asymptotics: generalized Charlier

Figure 1: Recurrence coefficients for generalized Char-

lier polynomials (a = 3, β = 1/3, t = 10). Left: an, right:

bn
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Asymptotics: generalized Meixner

Figure 2: Recurrence coefficients for generalized

Meixner polynomials (a = 3, β = 2/3, γ = 9/10, t = 2).

Left: an, right: bn
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Asymptotics: conjectures

� Generalized Charlier on the simple lattices:

lim
n→∞

a2

n = a, lim
n→∞

(bn − n) =

{

0, on N;
1 − β, on N + 1 − β.
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Asymptotics: conjectures

� Generalized Charlier on the simple lattices:

lim
n→∞

a2

n = a, lim
n→∞

(bn − n) =

{

0, on N;
1 − β, on N + 1 − β.

� Generalized Charlier on the bi-lattice:

a2

n = n
√

a/2 + O(1),

bn = n/2 + O(1),

with the O(1) terms oscillating.
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Asymptotics: conjectures

� Generalized Meixner on the simple lattices:

lim
n→∞

(a2

n − an) =

{

(γ − β)a, on N;
(γ − 1)a, on N + 1 − β,

lim
n→∞

(bn − n) =

{

a, on N;
a + 1 − β, on N + 1 − β.
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Asymptotics: conjectures

� Generalized Meixner on the simple lattices:

lim
n→∞

(a2

n − an) =

{

(γ − β)a, on N;
(γ − 1)a, on N + 1 − β,

lim
n→∞

(bn − n) =

{

a, on N;
a + 1 − β, on N + 1 − β.

� Generalized Meixner on the bi-lattice:

a2

n/n
3/2 = O(1),

bn/n = O(1),

with the O(1) terms oscillating.
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Arxiv:

CS, Walter Van Assche: Orthogonal polynomials on a
bi-lattice.
http://arxiv.org/abs/1101.1817
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