Discrete Painlevé equations, satisfied by the recurrence coefficients of orthogonal polynomials on a bi-lattice

Christophe Smet
K.U.Leuven

Joint work with Walter Van Assche
August 11, 2011

- Generalized Charlier and Meixner polynomials
- Generalized Charlier and Meixner polynomials
- Link with discrete Painlevé equations
- Generalized Charlier and Meixner polynomials
- Link with discrete Painlevé equations
- The bi-lattice
- Generalized Charlier and Meixner polynomials
- Link with discrete Painlevé equations
- The bi-lattice
- Asymptotic behaviour

■ We will consider a generalization of the Charlier and the Meixner orthogonal polynomials.

- We will consider a generalization of the Charlier and the Meixner orthogonal polynomials.
- Both are orthogonal with respect to a weight function on \mathbb{N} :

The classical Charlier and Meixner polynomials

- We will consider a generalization of the Charlier and the Meixner orthogonal polynomials.
- Both are orthogonal with respect to a weight function on \mathbb{N} :
- Charlier:

$$
\sum_{k=0}^{\infty} C_{n}(k ; a) C_{m}(k ; a) w_{k}=a^{-n} e^{a} n!\delta_{n, m}
$$

with

$$
w_{k}=\frac{a^{k}}{k!}, \quad a>0 .
$$

The classical Charlier and Meixner polynomials

- We will consider a generalization of the Charlier and the Meixner orthogonal polynomials.
- Both are orthogonal with respect to a weight function on \mathbb{N} :
- Meixner:

$$
\sum_{k=0}^{\infty} M_{n}(k ; \gamma, c) M_{m}(k ; \gamma, c) w_{k}=\frac{c^{-n} n!}{(\gamma)_{n}(1-c)^{\gamma}} \delta_{n, m}
$$

with

$$
w_{k}=\frac{(\gamma)_{k} c^{k}}{k!}, \quad \gamma>0,0<c<1
$$

- Notation: the Pochhammer symbol

$$
(\gamma)_{k}=\prod_{j=0}^{k-1}(\gamma+j)=\gamma(\gamma+1) \cdots(\gamma+k-1)
$$

Recurrence relation

- Orthogonal polynomials satisfy a three-term recurrence relation, determined by two sequences a_{n} and b_{n}, with $a_{0}=0$ and $a_{n}>0$ for $n>0$.

Recurrence relation

- Orthogonal polynomials satisfy a three-term recurrence relation, determined by two sequences a_{n} and b_{n}, with $a_{0}=0$ and $a_{n}>0$ for $n>0$.
- For monic polynomials:

$$
x P_{n}(x)=P_{n+1}(x)+b_{n} P_{n}(x)+a_{n}^{2} P_{n-1}(x) .
$$

Recurrence relation

- Orthogonal polynomials satisfy a three-term recurrence relation, determined by two sequences a_{n} and b_{n}, with $a_{0}=0$ and $a_{n}>0$ for $n>0$.
- For monic polynomials:

$$
x P_{n}(x)=P_{n+1}(x)+b_{n} P_{n}(x)+a_{n}^{2} P_{n-1}(x) .
$$

- For orthonormal polynomials:

$$
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x) .
$$

Recurrence relation

■ Orthogonal polynomials satisfy a three-term recurrence relation, determined by two sequences a_{n} and b_{n}, with $a_{0}=0$ and $a_{n}>0$ for $n>0$.

- For monic polynomials:

$$
x P_{n}(x)=P_{n+1}(x)+b_{n} P_{n}(x)+a_{n}^{2} P_{n-1}(x) .
$$

- For orthonormal polynomials:

$$
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x) .
$$

- We are interested in these sequences a_{n} and b_{n}.

Recurrence coefficients in the classical case

For Charlier and Meixner polynomials, the a_{n} and b_{n} are explicitly known:

- Charlier:

$$
a_{n}^{2}=n a, \quad b_{n}=n+a .
$$

- Meixner:

$$
a_{n}^{2}=\frac{n(n+\gamma-1) c}{(1-c)^{2}}, \quad b_{n}=\frac{n+(n+\gamma) c}{1-c}
$$

Modification of the weights: Charlier

■ Generalized Charlier:

$$
w_{k}=\frac{a^{k}}{(\beta)_{k} k!}, \quad a, \beta>0
$$

Modification of the weights: Charlier

- Generalized Charlier:

$$
w_{k}=\frac{a^{k}}{(\beta)_{k} k!}, \quad a, \beta>0 .
$$

- Connection to classical Charlier: let $a=\beta c$ in the generalized Charlier weight. Letting $\beta \rightarrow \infty$ gives the classical Charlier weight.

Modification of the weights: Meixner

■ Generalized Meixner:

$$
w_{k}=\frac{(\gamma)_{k} a^{k}}{(\beta)_{k} k!}, \quad a, \beta, \gamma>0
$$

Modification of the weights: Meixner

- Generalized Meixner:

$$
w_{k}=\frac{(\gamma)_{k} a^{k}}{(\beta)_{k} k!}, \quad a, \beta, \gamma>0
$$

- Connection to classical Meixner: let $a=\beta c$ in the generalized Meixner weight. Letting $\beta \rightarrow \infty$ gives the classical Meixner weight.

Ladder operators (Meixner)

- With the potential

$$
u(x)=\frac{w(x-1)-w(x)}{w(x)}
$$

we define, following Ismail, Nikolova and Simeonov,

Ladder operators (Meixner)

- With the potential

$$
u(x)=\frac{w(x-1)-w(x)}{w(x)}
$$

we define, following Ismail, Nikolova and Simeonov,

$$
\begin{aligned}
& A_{n}(x)=a_{n} \sum_{\ell=0}^{\infty} p_{n}(\ell) p_{n}(\ell-1) \frac{u(x+1)-u(\ell)}{x+1-\ell} w(\ell) \\
& B_{n}(x)=a_{n} \sum_{\ell=0}^{\infty} p_{n}(\ell) p_{n-1}(\ell-1) \frac{u(x+1)-u(\ell)}{x+1-\ell} w(\ell) .
\end{aligned}
$$

Compatibility relations (Meixner)

The structure relation
$\Delta p_{n}(x):=p_{n}(x+1)-p_{n}(x)=A_{n}(x) p_{n-1}(x)-B_{n}(x) p_{n}(x)$ gives rise to two compatibility relations:

Compatibility relations (Meixner)

The structure relation
$\Delta p_{n}(x):=p_{n}(x+1)-p_{n}(x)=A_{n}(x) p_{n-1}(x)-B_{n}(x) p_{n}(x)$ gives rise to two compatibility relations:

$$
B_{n}(x)+B_{n+1}(x)=\frac{x-b_{n}}{a_{n}} A_{n}(x)-u(x+1)+\sum_{j=0}^{n} \frac{A_{j}(x)}{a_{j}}
$$

Compatibility relations (Meixner)

The structure relation

$\Delta p_{n}(x):=p_{n}(x+1)-p_{n}(x)=A_{n}(x) p_{n-1}(x)-B_{n}(x) p_{n}(x)$ gives rise to two compatibility relations:

$$
B_{n}(x)+B_{n+1}(x)=\frac{x-b_{n}}{a_{n}} A_{n}(x)-u(x+1)+\sum_{j=0}^{n} \frac{A_{j}(x)}{a_{j}}
$$

and

$$
\begin{gathered}
a_{n+1} A_{n+1}(x)-a_{n}^{2} \frac{A_{n-1}(x)}{a_{n-1}} \\
=\left(x-b_{n}\right) B_{n+1}(x)-\left(x+1-b_{n}\right) B_{n}(x)+1 .
\end{gathered}
$$

Compatibility relations (Meixner)

With

$$
A_{n}(x)=\frac{a_{n}}{a} R_{n}+\frac{a_{n}}{a} \frac{x+\beta}{x+\gamma} T_{n}
$$

and

$$
B_{n}(x)=\frac{1}{a} r_{n}+\frac{1}{a} \frac{x+\beta}{x+\gamma} t_{n}
$$

Compatibility relations (Meixner)

With

$$
A_{n}(x)=\frac{a_{n}}{a} R_{n}+\frac{a_{n}}{a} \frac{x+\beta}{x+\gamma} T_{n}
$$

and

$$
B_{n}(x)=\frac{1}{a} r_{n}+\frac{1}{a} \frac{x+\beta}{x+\gamma} t_{n}
$$

we find 6 relations connecting $r_{n}, R_{n}, t_{n}, T_{n}, a_{n}, b_{n}$.

Compatibility relations (Meixner)

With

$$
A_{n}(x)=\frac{a_{n}}{a} R_{n}+\frac{a_{n}}{a} \frac{x+\beta}{x+\gamma} T_{n}
$$

and

$$
B_{n}(x)=\frac{1}{a} r_{n}+\frac{1}{a} \frac{x+\beta}{x+\gamma} t_{n}
$$

we find 6 relations connecting $r_{n}, R_{n}, t_{n}, T_{n}, a_{n}, b_{n}$. We immediately find that $r_{n}=t_{n}$ and $R_{n}=1-T_{n}$, so 4 equations connect t_{n}, T_{n}, a_{n} and b_{n}.

■ After some substitutions...

- After some substitutions...

■ some telescoping sums...

- After some substitutions. . .

■ some telescoping sums. . .

- some eliminations. . .

System of difference equations (Meixner)

With $u_{n}=\frac{\gamma-\beta}{\gamma-1} t_{n}$ and $v_{n}=\frac{\gamma-\beta}{\gamma-1} a T_{n}$

System of difference equations (Meixner)

With $u_{n}=\frac{\gamma-\beta}{\gamma-1} t_{n}$ and $v_{n}=\frac{\gamma-\beta}{\gamma-1} a T_{n}$ we obtain

$$
\begin{aligned}
& \left(u_{n}+v_{n}\right)\left(u_{n+1}+v_{n}\right)=\frac{\gamma-1}{a^{2}} v_{n}\left(v_{n}-a\right)\left(v_{n}-a \frac{\gamma-\beta}{\gamma-1}\right) \\
& \left(u_{n}+v_{n}\right)\left(u_{n}+v_{n-1}\right)=\frac{u_{n}}{u_{n}-\frac{a n}{\gamma-1}}\left(u_{n}+a\right)\left(u_{n}+a \frac{\gamma-\beta}{\gamma-1}\right)
\end{aligned}
$$

System of difference equations (Meixner)

With $u_{n}=\frac{\gamma-\beta}{\gamma-1} t_{n}$ and $v_{n}=\frac{\gamma-\beta}{\gamma-1} a T_{n}$ we obtain
$\left(u_{n}+v_{n}\right)\left(u_{n+1}+v_{n}\right)=\frac{\gamma-1}{a^{2}} v_{n}\left(v_{n}-a\right)\left(v_{n}-a \frac{\gamma-\beta}{\gamma-1}\right)$
$\left(u_{n}+v_{n}\right)\left(u_{n}+v_{n-1}\right)=\frac{u_{n}}{u_{n}-\frac{a n}{\gamma-1}}\left(u_{n}+a\right)\left(u_{n}+a \frac{\gamma-\beta}{\gamma-1}\right)$
with

$$
a_{n}^{2}=n a-(\gamma-1) u_{n}
$$

and

$$
b_{n}=n+\gamma-\beta+a-(\gamma-1) v_{n} / a .
$$

System of difference equations (Meixner)

Initial conditions: $u_{0}=a_{0}=0$ and

$$
b_{0}=\frac{m_{1}}{m_{0}} \text {, hence } v_{0}=\frac{a}{\gamma-1}\left(\gamma-\beta+a-\frac{m_{1}}{m_{0}}\right) \text {. }
$$

System of difference equations (Meixner)

Initial conditions: $u_{0}=a_{0}=0$ and

$$
b_{0}=\frac{m_{1}}{m_{0}}, \text { hence } v_{0}=\frac{a}{\gamma-1}\left(\gamma-\beta+a-\frac{m_{1}}{m_{0}}\right) .
$$

m_{0} and m_{1} can be expressed using confluent hypergeometric functions:

$$
b_{0}=\frac{\gamma a}{\beta} \frac{M(\gamma+1, \beta+1, a)}{M(\gamma, \beta, a)}
$$

where

$$
M(a, b, z)={ }_{1} F_{1}(a ; b ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k} z^{k}}{(b)_{k} k!} .
$$

Discrete Painlevé (Meixner)

This system is a limiting case of $\alpha-\mathrm{d} P_{I V}$, the asymmetric discrete Painlevé-IV equation $\left(E_{6}^{\delta}\right)$:

Discrete Painlevé (Meixner)

This system is a limiting case of $\alpha-\mathrm{d} P_{I V}$, the asymmetric discrete Painlevé-IV equation $\left(E_{6}^{\delta}\right)$:

$$
\begin{aligned}
\left(X_{n}+Y_{n}\right)\left(X_{n+1}+Y_{n}\right) & =\frac{\left(Y_{n}-A\right)\left(Y_{n}-B\right)\left(Y_{n}-C\right)\left(Y_{n}-D\right)}{\left(Y_{n}+\Gamma-Z_{n}\right)\left(Y_{n}-\Gamma-Z_{n}\right)} \\
\left(X_{n}+Y_{n}\right)\left(X_{n}+Y_{n-1}\right) & =\frac{\left(X_{n}+A\right)\left(X_{n}+B\right)\left(X_{n}+C\right)\left(X_{n}+D\right)}{\left(X_{n}+\Delta-Z_{n+1 / 2}\right)\left(Z_{n}-\Delta-Z_{n+1 / 2}\right)}
\end{aligned}
$$

Discrete Painlevé (Meixner)

This system is a limiting case of $\alpha-\mathrm{d} P_{I V}$, the asymmetric discrete Painlevé-IV equation $\left(E_{6}^{\delta}\right)$:

$$
\begin{aligned}
\left(X_{n}+Y_{n}\right)\left(X_{n+1}+Y_{n}\right) & =\frac{\left(Y_{n}-A\right)\left(Y_{n}-B\right)\left(Y_{n}-C\right)\left(Y_{n}-D\right)}{\left(Y_{n}+\Gamma-Z_{n}\right)\left(Y_{n}-\Gamma-Z_{n}\right)} \\
\left(X_{n}+Y_{n}\right)\left(X_{n}+Y_{n-1}\right) & =\frac{\left(X_{n}+A\right)\left(X_{n}+B\right)\left(X_{n}+C\right)\left(X_{n}+D\right)}{\left(X_{n}+\Delta-Z_{n+1 / 2}\right)\left(Z_{n}-\Delta-Z_{n+1 / 2}\right)}
\end{aligned}
$$

with

$$
\begin{gathered}
X_{n}=u_{n}-\frac{1}{\epsilon}, \quad Y_{n}=v_{n}+\frac{1}{\epsilon}, \quad Z_{n}=\frac{a}{\gamma-1}\left(n-\frac{1}{2}\right)+\frac{1}{\epsilon}, \\
A=\frac{1}{\epsilon}, \quad B=-\frac{3}{\epsilon}-a-a \frac{\gamma-\beta}{\gamma-1}, \quad C=a+\frac{1}{\epsilon}, \quad D=\frac{1}{\epsilon}+a \frac{\gamma-\beta}{\gamma-1}, \\
\Gamma^{2}=\frac{-4 a^{2}}{(\gamma-1) \epsilon}, \quad \Delta=\frac{2}{\epsilon}, \quad \epsilon \rightarrow 0 .
\end{gathered}
$$

$$
w_{k}=\frac{(\gamma)_{k} a^{k}}{(\beta)_{k} k!}
$$

$$
w_{k}=\frac{(\gamma)_{k} a^{k}}{(\beta)_{k} k!}
$$

- Using the gamma function:

$$
w(x)=\frac{\Gamma(\beta) \Gamma(\gamma+x) a^{x}}{\Gamma(\gamma) \Gamma(\beta+x) \Gamma(x+1)} .
$$

Bi-lattice (Meixner)

$$
w_{k}=\frac{(\gamma)_{k} a^{k}}{(\beta)_{k} k!}
$$

- Using the gamma function:

$$
w(x)=\frac{\Gamma(\beta) \Gamma(\gamma+x) a^{x}}{\Gamma(\gamma) \Gamma(\beta+x) \Gamma(x+1)} .
$$

- w vanishes at poles of the denominator: $x=-1,-2, \ldots$ and $x=-\beta,-\beta-1, \ldots$.

Bi-lattice (Meixner)

- Hence we can also use the shifted lattice $\mathbb{N}+1-\beta$:

$$
\sum_{k=0}^{\infty} q_{n}(k+1-\beta) q_{m}(k+1-\beta) w(k+1-\beta)=\delta_{m, n}
$$

Bi-lattice (Meixner)

■ Hence we can also use the shifted lattice $\mathbb{N}+1-\beta$:

$$
\sum_{k=0}^{\infty} q_{n}(k+1-\beta) q_{m}(k+1-\beta) w(k+1-\beta)=\delta_{m, n}
$$

■ or even the bi-lattice $\mathbb{N} \cup \mathbb{N}+1-\beta$:

$$
\begin{gathered}
\sum_{k=0}^{\infty} r_{n}(k) r_{m}(k) w(k) \\
+t \sum_{k=0}^{\infty} r_{n}(k+1-\beta) r_{m}(k+1-\beta) w(k+1-\beta)=\delta_{m, n}
\end{gathered}
$$

with $t>0$.

Bi-lattice (Meixner)

- Both the shifted lattice and the bi-lattice give a new family of orthogonal polynomials, hence new sequences \hat{a}_{n} and \hat{b}_{n}, resp. \tilde{a}_{n} and \tilde{b}_{n}.

Bi-lattice (Meixner)

- Both the shifted lattice and the bi-lattice give a new family of orthogonal polynomials, hence new sequences \hat{a}_{n} and \hat{b}_{n}, resp. \tilde{a}_{n} and \tilde{b}_{n}.
- However, they still satisfy the same system of recurrence relations, related to $\alpha-\mathrm{d} P_{I V}$.

Bi-lattice (Meixner)

- Both the shifted lattice and the bi-lattice give a new family of orthogonal polynomials, hence new sequences \hat{a}_{n} and \hat{b}_{n}, resp. \tilde{a}_{n} and \tilde{b}_{n}.
- However, they still satisfy the same system of recurrence relations, related to $\alpha-\mathrm{d} P_{I V}$.
- The only difference: the initial condition

$$
\hat{b}_{0}=\frac{\hat{m}_{1}}{\hat{m}_{0}}
$$

for the shifted lattice;

$$
\tilde{b}_{0}=\frac{m_{1}+t \hat{m}_{1}}{m_{0}+t \hat{m}_{0}}
$$

for the bi-lattice.

Generalized Charlier

Generalized Charlier: the recurrence coefficients a_{n}, b_{n} are determined by

$$
\begin{aligned}
b_{n}+b_{n-1}-n+\beta & =\frac{a n}{a_{n}^{2}} \\
\left(a_{n+1}^{2}-a\right)\left(a_{n}^{2}-a\right) & =a\left(b_{n}-n\right)\left(b_{n}-n+\beta-1\right)
\end{aligned}
$$

with $a_{0}=0$ and

$$
b_{0}=\frac{m_{1}}{m_{0}}=\sqrt{a} \frac{I_{\beta}(2 \sqrt{a})}{I_{\beta-1}(2 \sqrt{a})},
$$

where I_{ν} is the modified Bessel function

$$
I_{\nu}(z)=\sum_{k=0}^{\infty} \frac{(z / 2)^{2 k+\nu}}{k!\Gamma(k+\nu+1)} .
$$

Generalized Charlier

- For $\beta=1$ (considered by Van Assche, Foupouagnigni), this is a discrete Painlevé-II.

Generalized Charlier

- For $\beta=1$ (considered by Van Assche, Foupouagnigni), this is a discrete Painlevé-II.
■ For $\beta \neq 1$ it is the limiting case of $\mathrm{d} P_{I V}\left(D_{4}^{c}\right)$:

$$
\begin{aligned}
x_{n} x_{n+1} & =\frac{\left(y_{n}-z_{n}\right)^{2}-A}{y_{n}^{2}-B} \\
y_{n}+y_{n-1} & =\frac{z_{n-1 / 2}-C}{1+D x_{n}}+\frac{z_{n-1 / 2}+C}{1+x_{n} / D}
\end{aligned}
$$

with

$$
\begin{aligned}
& x_{n}=i\left(a_{n}^{2}-a\right) / \sqrt{a B}, y_{n}=b_{n}, z_{n}=n-(\beta-1) / 2 \\
& A=(\beta-1)^{2} / 4, C=-\beta / 2, D=-i \sqrt{B / a}, B \rightarrow \infty
\end{aligned}
$$

Asymptotics: generalized Charlier

Figure 1: Recurrence coefficients for generalized Charlier polynomials ($a=3, \beta=1 / 3, t=10$). Left: a_{n}, right: b_{n}

Asymptotics: generalized Meixner

Figure 2: Recurrence coefficients for generalized Meixner polynomials $(a=3, \beta=2 / 3, \gamma=9 / 10, t=2)$. Left: a_{n}, right: b_{n}

Asymptotics: conjectures

- Generalized Charlier on the simple lattices:

$$
\lim _{n \rightarrow \infty} a_{n}^{2}=a, \lim _{n \rightarrow \infty}\left(b_{n}-n\right)= \begin{cases}0, & \text { on } \mathbb{N} \\ 1-\beta, & \text { on } \mathbb{N}+1-\beta\end{cases}
$$

Asymptotics: conjectures

■ Generalized Charlier on the simple lattices:

$$
\lim _{n \rightarrow \infty} a_{n}^{2}=a, \lim _{n \rightarrow \infty}\left(b_{n}-n\right)= \begin{cases}0, & \text { on } \mathbb{N} \\ 1-\beta, & \text { on } \mathbb{N}+1-\beta\end{cases}
$$

- Generalized Charlier on the bi-lattice:

$$
\begin{gathered}
a_{n}^{2}=n \sqrt{a} / 2+O(1), \\
b_{n}=n / 2+O(1),
\end{gathered}
$$

with the $O(1)$ terms oscillating.

Asymptotics: conjectures

- Generalized Meixner on the simple lattices:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n}^{2}-a n\right)= \begin{cases}(\gamma-\beta) a, & \text { on } \mathbb{N} ; \\
(\gamma-1) a, & \text { on } \mathbb{N}+1-\beta\end{cases} \\
& \lim _{n \rightarrow \infty}\left(b_{n}-n\right)= \begin{cases}a, & \text { on } \mathbb{N} ; \\
a+1-\beta, & \text { on } \mathbb{N}+1-\beta\end{cases}
\end{aligned}
$$

Asymptotics: conjectures

- Generalized Meixner on the simple lattices:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n}^{2}-a n\right)= \begin{cases}(\gamma-\beta) a, & \text { on } \mathbb{N} ; \\
(\gamma-1) a, & \text { on } \mathbb{N}+1-\beta,\end{cases} \\
& \lim _{n \rightarrow \infty}\left(b_{n}-n\right)= \begin{cases}a, & \text { on } \mathbb{N} ; \\
a+1-\beta, & \text { on } \mathbb{N}+1-\beta\end{cases}
\end{aligned}
$$

- Generalized Meixner on the bi-lattice:

$$
\begin{gathered}
a_{n}^{2} / n^{3 / 2}=O(1), \\
b_{n} / n=O(1)
\end{gathered}
$$

with the $O(1)$ terms oscillating.

Arxiv:

CS, Walter Van Assche: Orthogonal polynomials on a bi-lattice.
http://arxiv.org/abs/1101.1817

