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Notation

N = {0, 1, 2, ...} N
? = N \ {0}

O(S) holomorphic functions in S.

Ob(S) holomorphic and bounded functions in S.

O{z1, z2, ..., zn} holomorphic functions on some neighborhood of 0 ∈ C
n

in the variables z1,...,zn.

K[z1, z2, ..., zn] polynomials in z1,...,zn with coefficients in K.

D(0, R) disc at 0 with radius R > 0.
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The main problem

We study a family of threefold singular nonlinear PDEs of the form

(

(z∂z + 1)r1εr3(t2∂t + t)r2 + 1
)

∂S
z X(t, z, ε)

=
∑

(s,κ0,κ1)∈S

bs,κ0,κ1(z, ε)t
s(∂κ0

t ∂κ1
z X)(t, z, ε) + P (t, z, ε,X(t, z, ε)),

for given initial conditions

(∂j
zX)(t, 0, ε) = ϕj(t, ε) ∈ O(T × E), 0 ≤ j ≤ S − 1.
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for given initial conditions

(∂j
zX)(t, 0, ε) = ϕj(t, ε) ∈ O(T × E), 0 ≤ j ≤ S − 1.

T and E are finite sectors in C with vertex at the origin.
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The main problem

We study a family of threefold singular nonlinear PDEs of the form

(

(z∂z + 1)r1εr3(t2∂t + t)r2 + 1
)

∂S
z X(t, z, ε)

=
∑

(s,κ0,κ1)∈S

bs,κ0,κ1(z, ε)t
s(∂κ0

t ∂κ1
z X)(t, z, ε) + P (t, z, ε,X(t, z, ε)),

for given initial conditions

(∂j
zX)(t, 0, ε) = ϕj(t, ε) ∈ O(T × E), 0 ≤ j ≤ S − 1.

T and E are finite sectors in C with vertex at the origin.

r1, r3 ∈ N r2, S ∈ N
? P (t, z, ε,X) ∈ (O{z, ε}) [t,X]

S finite subset of N3.
For every (s, κ0, κ1) ∈ S

κ1 < S bs,κ0,κ1 ∈ O{z, ε}.
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Introduction

The problem gives generalization to [1] in three respects:

The fuchsian operator (z∂z + 1)r1 is added to the equation.

The irregular operator (t2∂t + t)r2 admits r2 ≥ 1 (not just r2 = 1).

More freedom on the choice of the powers of ε (not just r3 = 1).

Fuchsian singularities for PDEs are widely studied (see [2]), and also the
asymptotic properties of irregular singularities (see [3]).

[1] S. Malek, On the summability of formal solutions for doubly nonlinear partial differential

equations, J. Dyn. Control Syst. 18 (2012), no. 1, 45-82.
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Auxiliary equation

We transform the main problem into an auxiliary problem by means of the

linear map t 7→ t/ε
r3
r2 . This strategy is adapted from [4].

For every ε, we consider the Cauchy problem

(

(z∂z + 1)r1(t2∂t + t)r2 + 1
)

∂S
z Yε(t, z)

=
∑

(s,κ0,κ1)∈S

bs,κ0,κ1(z, ε)ε
r(κ0−s)ts(∂κ0

t ∂κ1
z Yε)(t, z) + P̃ (t, z, ε,X)

with initial conditions

(∂j
zYε)(t, 0) = Yε,j(t), j = 0, ..., S − 1.

Regularly perturbed nonlinear PDE with irregular ularity at t = 0 and
fuchsian singularity at z = 0.
Poles in the coefficients with respect to ε = 0 are induced.
The domain of definition of the initial data depends on ε.

[4] M. Canalis-Durand, J. Mozo-Fernandez, R. Schäfke, Monomial summability and doubly singular

differential equations, J. Differential Equations 233 (2007), no. 2, 485-511.
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Auxiliary equation

We assume each initial conditions (Yε,j(t))0≤j≤S−1 are chosen

Yε,j(t) = Ld
τ (Vj(τ, ε))(t)

with Vj(τ, ε) ∈ O((Sd ∪D(0, ρj))× E) and with

|Vj(τ, ε)| ≤ δ

(

1 +
|τ |2

|ε|2r3/r2

)−1

exp

(

σ|τ |

|ε|r3/r2

j
∑

n=0

1

(n+ 1)2

)

,

for some δ, σ > 0. This is valid for every ε ∈ E , τ ∈ Sd ∪D(0, ρj).

Alberto Lastra∗ , Stéphane Malek† , Javier Sanz3 Gevrey solutions of threefold singular nonlinear PDEs



Introduction and main problem
Auxiliary problem

Formal solution and asymptotics

Auxiliary equation

We assume each initial conditions (Yε,j(t))0≤j≤S−1 are chosen

Yε,j(t) = Ld
τ (Vj(τ, ε))(t)

with Vj(τ, ε) ∈ O((Sd ∪D(0, ρj))× E) and with

|Vj(τ, ε)| ≤ δ

(

1 +
|τ |2

|ε|2r3/r2

)−1

exp

(

σ|τ |

|ε|r3/r2

j
∑

n=0

1

(n+ 1)2

)

,

for some δ, σ > 0. This is valid for every ε ∈ E , τ ∈ Sd ∪D(0, ρj).
Then, one can construct (Vβ)β≥0 and

Yε,β(t) = Ld
τ (Vβ(τ, ε))(t),

where

Yε(t, z) =
∑

β≥0

Yε,β(t)
zβ

β!

turns out to be a formal solution to the auxiliary Cauchy problem.
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The formal power series Vε(τ, z) =
∑

β≥0 Vβ(τ, ε)
zβ

β!
is a formal solution to an

auxiliary convolution integro-differential Cauchy problem.

((z∂z + 1)r1τr2 + 1)∂S
z Vε(τ, z) =

∑

(κ0,κ1)∈A1

a(κ0,κ1)(τ, z, ε)∂
−κ0
τ ∂κ1

z Vε(τ, z)

+
∑

(`0,`1)∈A2

α(`0,`1)(τ, z, ε)∂
−`0
τ (Vε(τ, z))

?`1 ,

with initial contitions

(∂j
zVε)(τ, 0) = Vj(τ, ε), j = 0, ..., S − 1.
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τ (Vε(τ, z))
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with initial contitions

(∂j
zVε)(τ, 0) = Vj(τ, ε), j = 0, ..., S − 1.

A1, A2 are finite subsets of N2
0,

a(κ0,κ1) ∈ Ob((Sd ∪D(0, ρ0))× E)[[z]] ,
α(`0,`1) is a formal power series in z with coefficients being holomorphic
functions for τ ∈ Sd ∪D(0, ρ0) and meromorphic for ε ∈ E .
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with initial contitions

(∂j
zVε)(τ, 0) = Vj(τ, ε), j = 0, ..., S − 1.

A1, A2 are finite subsets of N2
0,

a(κ0,κ1) ∈ Ob((Sd ∪D(0, ρ0))× E)[[z]] ,
α(`0,`1) is a formal power series in z with coefficients being holomorphic
functions for τ ∈ Sd ∪D(0, ρ0) and meromorphic for ε ∈ E .

Vβ ∈ O((Sd ∪D(0, ρβ))× E), with ρβ → 0, when β → ∞.
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Main problem: holomorphic solution

The elements in (Vβ(τ, ε))β≥0 are constructed by means of a fixed point
argument in a Banach space of holomorphic functions attained to appropriate
bounds. Vβ satisfies exponential bounds for β ≥ 0, in the shape of Vj ,
j = 0, ..., S − 1.

|Vβ(τ, ε)| ≤ Cβ!

(

1

ρ

)β (

1 +
|τ |2

|ε|2r3/r2

)−1

exp

(

σ|τ |

|ε|r3/r2

β
∑

n=0

1

(n+ 1)2

)

,

for some C, ρ > 0, for every (τ, ε) ∈ (Sd ∪D(0, ρβ))× E .
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Main problem: holomorphic solution

The elements in (Vβ(τ, ε))β≥0 are constructed by means of a fixed point
argument in a Banach space of holomorphic functions attained to appropriate
bounds. Vβ satisfies exponential bounds for β ≥ 0, in the shape of Vj ,
j = 0, ..., S − 1.

|Vβ(τ, ε)| ≤ Cβ!

(

1

ρ

)β (

1 +
|τ |2

|ε|2r3/r2

)−1

exp

(

σ|τ |

|ε|r3/r2

β
∑

n=0

1

(n+ 1)2

)

,

for some C, ρ > 0, for every (τ, ε) ∈ (Sd ∪D(0, ρβ))× E .

The solution of the main problem is given by

X(t, z, ε) := Yεr3/r2 (t, z) ∈ O((T ∩D(0, h))×D(0, ρ)× E),

for some h, ρ > 0.

Let (Ei)1≤i≤n be a good covering at the origin in C.

Alberto Lastra∗ , Stéphane Malek† , Javier Sanz3 Gevrey solutions of threefold singular nonlinear PDEs



Introduction and main problem
Auxiliary problem

Formal solution and asymptotics
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Formal solution and asymptotics

For every 1 ≤ i ≤ n, we have

sup
t∈T ∩D(0,h′)

z∈D(0,ρ)

|Xi+1(t, z, ε)−Xi(t, z, ε)| ≤ Ki exp

(

−
Mi

|ε|
r3

r1+r2

)

, ε ∈ Ei∩Ei+1,

for some 0 < h′ < h, and some Ki,Mi > 0.

This result rests on a careful estimation of a Dirichlet-like series of the
form

∑

κ≥0 e
− 1

(κ+1)α
1
ε aκ, for some 0 < a < 1, α > 0 and 0 < ε < ε0.

It leans on Malgrange-Sibuya theorem (see [5]).

[5] W. Balser, Formal power series and linear systems of meromorphic ordinary differential

equations, Springer-Verlag, New-York, 2000.
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For a small enough h′ > 0, there exists a formal power series

X̂(t, z, ε) =
∑

κ≥0

Hκ(t, z)
εκ

κ!
∈ Ob((T ∩D(0, h′))×D(0, ρ))[[ε]].

Moreover, for every 0 ≤ i ≤ n and all Ti ≺ Ei there exist K,M > 0 such that

sup
t∈T ∩D(0,h′)

z∈D(0,ρ)

∣

∣

∣

∣

∣

Xi(t, z, ε)−

N−1
∑

n=0

Hn(t, z)
εn

n!

∣

∣

∣

∣

∣

≤ KMNN !
r1+r3

r2 |ε|N ,

for ε ∈ Ti.
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