Gevrey solutions of threefold singular nonlinear PDEs

Alberto Lastra*, Stéphane Malek ${ }^{\dagger}$, Javier Sanz ${ }^{\diamond}$

* Universidad de Alcalá, Spain
\dagger Université Lille 1, France
\diamond Universidad de Valladolid, Spain

Bedlewo, 26th of August, 2013

Notation

$\mathbb{N}=\{0,1,2, \ldots\} \quad \mathbb{N}^{\star}=\mathbb{N} \backslash\{0\}$
$\mathcal{O}(S) \quad$ holomorphic functions in S.
$\mathcal{O}_{b}(S) \quad$ holomorphic and bounded functions in S.
$\mathcal{O}\left\{z_{1}, z_{2}, \ldots, z_{n}\right\} \quad$ holomorphic functions on some neighborhood of $0 \in \mathbb{C}^{n}$ in the variables z_{1}, \ldots, z_{n}.
$\mathbb{K}\left[z_{1}, z_{2}, \ldots, z_{n}\right] \quad$ polynomials in z_{1}, \ldots, z_{n} with coefficients in \mathbb{K}.
$D(0, R) \quad$ disc at 0 with radius $R>0$.

The main problem

We study a family of threefold singular nonlinear PDEs of the form

$$
\begin{aligned}
& \left(\left(z \partial_{z}+1\right)^{r_{1}} \epsilon^{r_{3}}\left(t^{2} \partial_{t}+t\right)^{r_{2}}+1\right) \partial_{z}^{S} X(t, z, \epsilon) \\
& \quad=\sum_{\left(s, \kappa_{0}, \kappa_{1}\right) \in \mathcal{S}} b_{s, \kappa_{0}, \kappa_{1}}(z, \epsilon) t^{s}\left(\partial_{t}^{\kappa_{0}} \partial_{z}^{\kappa_{1}} X\right)(t, z, \epsilon)+P(t, z, \epsilon, X(t, z, \epsilon))
\end{aligned}
$$

for given initial conditions

$$
\left(\partial_{z}^{j} X\right)(t, 0, \epsilon)=\varphi_{j}(t, \epsilon) \in \mathcal{O}(\mathcal{T} \times \mathcal{E}), \quad 0 \leq j \leq S-1
$$

The main problem

We study a family of threefold singular nonlinear PDEs of the form

$$
\begin{aligned}
& \left(\left(z \partial_{z}+1\right)^{r_{1}} \epsilon^{r_{3}}\left(t^{2} \partial_{t}+t\right)^{r_{2}}+1\right) \partial_{z}^{S} X(t, z, \epsilon) \\
& \quad=\sum_{\left(s, \kappa_{0}, \kappa_{1}\right) \in \mathcal{S}} b_{s, \kappa_{0}, \kappa_{1}}(z, \epsilon) t^{s}\left(\partial_{t}^{\kappa_{0}} \partial_{z}^{\kappa_{1}} X\right)(t, z, \epsilon)+P(t, z, \epsilon, X(t, z, \epsilon))
\end{aligned}
$$

for given initial conditions

$$
\left(\partial_{z}^{j} X\right)(t, 0, \epsilon)=\varphi_{j}(t, \epsilon) \in \mathcal{O}(\mathcal{T} \times \mathcal{E}), \quad 0 \leq j \leq S-1
$$

\mathcal{T} and \mathcal{E} are finite sectors in \mathbb{C} with vertex at the origin.

The main problem

We study a family of threefold singular nonlinear PDEs of the form

$$
\begin{aligned}
& \left(\left(z \partial_{z}+1\right)^{r_{1}} \epsilon^{r_{3}}\left(t^{2} \partial_{t}+t\right)^{r_{2}}+1\right) \partial_{z}^{S} X(t, z, \epsilon) \\
& \quad=\sum_{\left(s, \kappa_{0}, \kappa_{1}\right) \in \mathcal{S}} b_{s, \kappa_{0}, \kappa_{1}}(z, \epsilon) t^{s}\left(\partial_{t}^{\kappa_{0}} \partial_{z}^{\kappa_{1}} X\right)(t, z, \epsilon)+P(t, z, \epsilon, X(t, z, \epsilon))
\end{aligned}
$$

for given initial conditions

$$
\left(\partial_{z}^{j} X\right)(t, 0, \epsilon)=\varphi_{j}(t, \epsilon) \in \mathcal{O}(\mathcal{T} \times \mathcal{E}), \quad 0 \leq j \leq S-1
$$

\mathcal{T} and \mathcal{E} are finite sectors in \mathbb{C} with vertex at the origin.

$$
r_{1}, r_{3} \in \mathbb{N} \quad r_{2}, S \in \mathbb{N}^{\star} \quad P(t, z, \epsilon, X) \in(\mathcal{O}\{z, \epsilon\})[t, X]
$$

\mathcal{S} finite subset of \mathbb{N}^{3}.
For every $\left(s, \kappa_{0}, \kappa_{1}\right) \in \mathcal{S}$

$$
\kappa_{1}<S
$$

$$
b_{s, \kappa_{0}, \kappa_{1}} \in \mathcal{O}\{z, \epsilon\} .
$$

Introduction

The problem gives generalization to [1] in three respects:

- The fuchsian operator $\left(z \partial_{z}+1\right)^{r_{1}}$ is added to the equation.
- The irregular operator $\left(t^{2} \partial_{t}+t\right)^{r_{2}}$ admits $r_{2} \geq 1$ (not just $r_{2}=1$).
- More freedom on the choice of the powers of ϵ (not just $r_{3}=1$).

Fuchsian singularities for PDEs are widely studied (see [2]), and also the asymptotic properties of irregular singularities (see [3]).
[1] S. Malek, On the summability of formal solutions for doubly nonlinear partial differential equations, J. Dyn. Control Syst. 18 (2012), no. 1, 45-82.
[2] R. Gérard, H. Tahara, Singular nonlinear partial differential equations. Aspects of Mathematics.
Friedr. Vieweg and Sohn, Braunschweig, 1996. viii +269 pp.
[3] H. Chen, Z. Luo, H. Tahara, Formal solutions of nonlinear first order totally characteristic type PDE with irregular singularity. Ann. Inst. Fourier (Grenoble) 51 (2001), no. 6, 1599-1620.

Auxiliary equation

We transform the main problem into an auxiliary problem by means of the linear map $t \mapsto t / \epsilon^{\frac{r_{3}}{r_{2}}}$. This strategy is adapted from [4].

For every ϵ, we consider the Cauchy problem

$$
\begin{aligned}
\left(\left(z \partial_{z}\right.\right. & \left.+1)^{r_{1}}\left(t^{2} \partial_{t}+t\right)^{r_{2}}+1\right) \partial_{z}^{S} Y_{\epsilon}(t, z) \\
& =\sum_{\left(s, \kappa_{0}, \kappa_{1}\right) \in \mathcal{S}} b_{s, \kappa_{0}, \kappa_{1}}(z, \epsilon) \epsilon^{r\left(\kappa_{0}-s\right)} t^{s}\left(\partial_{t}^{\kappa_{0}} \partial_{z}^{\kappa_{1}} Y_{\epsilon}\right)(t, z)+\tilde{P}(t, z, \epsilon, X)
\end{aligned}
$$

with initial conditions

$$
\left(\partial_{z}^{j} Y_{\epsilon}\right)(t, 0)=Y_{\epsilon, j}(t), \quad j=0, \ldots, S-1 .
$$

- Regularly perturbed nonlinear PDE with irregular ularity at $t=0$ and fuchsian singularity at $z=0$.
- Poles in the coefficients with respect to $\epsilon=0$ are induced.
- The domain of definition of the initial data depends on ϵ.
[4] M. Canalis-Durand, J. Mozo-Fernandez, R. Schäfke, Monomial summability and doubly singular differential equations, J. Differential Equations 233 (2007), no. 2, 485-511

Auxiliary equation

We assume each initial conditions $\left(Y_{\epsilon, j}(t)\right)_{0 \leq j \leq S-1}$ are chosen

$$
Y_{\epsilon, j}(t)=\mathcal{L}_{\tau}^{d}\left(V_{j}(\tau, \epsilon)\right)(t)
$$

with $V_{j}(\tau, \epsilon) \in \mathcal{O}\left(\left(S_{d} \cup D\left(0, \rho_{j}\right)\right) \times \mathcal{E}\right)$ and with

$$
\left|V_{j}(\tau, \epsilon)\right| \leq \delta\left(1+\frac{|\tau|^{2}}{|\epsilon|^{2 r_{3} / r_{2}}}\right)^{-1} \exp \left(\frac{\sigma|\tau|}{|\epsilon|^{r_{3} / r_{2}}} \sum_{n=0}^{j} \frac{1}{(n+1)^{2}}\right)
$$

for some $\delta, \sigma>0$. This is valid for every $\epsilon \in \mathcal{E}, \tau \in S_{d} \cup D\left(0, \rho_{j}\right)$.

Auxiliary equation

We assume each initial conditions $\left(Y_{\epsilon, j}(t)\right)_{0 \leq j \leq S-1}$ are chosen

$$
Y_{\epsilon, j}(t)=\mathcal{L}_{\tau}^{d}\left(V_{j}(\tau, \epsilon)\right)(t)
$$

with $V_{j}(\tau, \epsilon) \in \mathcal{O}\left(\left(S_{d} \cup D\left(0, \rho_{j}\right)\right) \times \mathcal{E}\right)$ and with

$$
\left|V_{j}(\tau, \epsilon)\right| \leq \delta\left(1+\frac{|\tau|^{2}}{|\epsilon|^{2 r_{3} / r_{2}}}\right)^{-1} \exp \left(\frac{\sigma|\tau|}{|\epsilon|^{r_{3} / r_{2}}} \sum_{n=0}^{j} \frac{1}{(n+1)^{2}}\right)
$$

for some $\delta, \sigma>0$. This is valid for every $\epsilon \in \mathcal{E}, \tau \in S_{d} \cup D\left(0, \rho_{j}\right)$. Then, one can construct $\left(V_{\beta}\right)_{\beta \geq 0}$ and

$$
Y_{\epsilon, \beta}(t)=\mathcal{L}_{\tau}^{d}\left(V_{\beta}(\tau, \epsilon)\right)(t)
$$

where

$$
Y_{\epsilon}(t, z)=\sum_{\beta \geq 0} Y_{\epsilon, \beta}(t) \frac{z^{\beta}}{\beta!}
$$

turns out to be a formal solution to the auxiliary Cauchy problem.

Auxiliary equation

The formal power series $V_{\epsilon}(\tau, z)=\sum_{\beta \geq 0} V_{\beta}(\tau, \epsilon) \frac{z^{\beta}}{\beta!}$ is a formal solution to an auxiliary convolution integro-differential Cauchy problem.

$$
\begin{aligned}
& \left(\left(z \partial_{z}+1\right)^{r_{1}} \tau^{r_{2}}+1\right) \partial_{z}^{S} V_{\epsilon}(\tau, z)=\sum_{\left(\kappa_{0}, \kappa_{1}\right) \in \mathcal{A}_{1}} a_{\left(\kappa_{0}, \kappa_{1}\right)}(\tau, z, \epsilon) \partial_{\tau}^{-\kappa_{0}} \partial_{z}^{\kappa_{1}} V_{\epsilon}(\tau, z) \\
& +\sum_{\left(\ell_{0}, \ell_{1}\right) \in \mathcal{A}_{2}} \alpha_{\left(\ell_{0}, \ell_{1}\right)}(\tau, z, \epsilon) \partial_{\tau}^{-\ell_{0}}\left(V_{\epsilon}(\tau, z)\right)^{\star \ell_{1}}
\end{aligned}
$$

with initial contitions

$$
\left(\partial_{z}^{j} V_{\epsilon}\right)(\tau, 0)=V_{j}(\tau, \epsilon), \quad j=0, \ldots, S-1
$$

Auxiliary equation

The formal power series $V_{\epsilon}(\tau, z)=\sum_{\beta \geq 0} V_{\beta}(\tau, \epsilon) \frac{z^{\beta}}{\beta!}$ is a formal solution to an auxiliary convolution integro-differential Cauchy problem.

$$
\begin{aligned}
& \left(\left(z \partial_{z}+1\right)^{r_{1}} \tau^{r_{2}}+1\right) \partial_{z}^{S} V_{\epsilon}(\tau, z)=\sum_{\left(\kappa_{0}, \kappa_{1}\right) \in \mathcal{A}_{1}} a_{\left(\kappa_{0}, \kappa_{1}\right)}(\tau, z, \epsilon) \partial_{\tau}^{-\kappa_{0}} \partial_{z}^{\kappa_{1}} V_{\epsilon}(\tau, z) \\
& +\sum_{\left(\ell_{0}, \ell_{1}\right) \in \mathcal{A}_{2}} \alpha_{\left(\ell_{0}, \ell_{1}\right)}(\tau, z, \epsilon) \partial_{\tau}^{-\ell_{0}}\left(V_{\epsilon}(\tau, z)\right)^{\star \ell_{1}}
\end{aligned}
$$

with initial contitions

$$
\left(\partial_{z}^{j} V_{\epsilon}\right)(\tau, 0)=V_{j}(\tau, \epsilon), \quad j=0, \ldots, S-1
$$

$\mathcal{A}_{1}, \mathcal{A}_{2}$ are finite subsets of \mathbb{N}_{0}^{2},
$a_{\left(\kappa_{0}, \kappa_{1}\right)} \in \mathcal{O}_{b}\left(\left(S_{d} \cup D\left(0, \rho_{0}\right)\right) \times \mathcal{E}\right)[[z]]$,
$\alpha_{\left(\ell_{0}, \ell_{1}\right)}$ is a formal power series in z with coefficients being holomorphic functions for $\tau \in S_{d} \cup D\left(0, \rho_{0}\right)$ and meromorphic for $\epsilon \in \mathcal{E}$.

Auxiliary equation

The formal power series $V_{\epsilon}(\tau, z)=\sum_{\beta \geq 0} V_{\beta}(\tau, \epsilon) \frac{z^{\beta}}{\beta!}$ is a formal solution to an auxiliary convolution integro-differential Cauchy problem.

$$
\begin{aligned}
& \left(\left(z \partial_{z}+1\right)^{r_{1}} \tau^{r_{2}}+1\right) \partial_{z}^{S} V_{\epsilon}(\tau, z)=\sum_{\left(\kappa_{0}, \kappa_{1}\right) \in \mathcal{A}_{1}} a_{\left(\kappa_{0}, \kappa_{1}\right)}(\tau, z, \epsilon) \partial_{\tau}^{-\kappa_{0}} \partial_{z}^{\kappa_{1}} V_{\epsilon}(\tau, z) \\
& +\sum_{\left(\ell_{0}, \ell_{1}\right) \in \mathcal{A}_{2}} \alpha_{\left(\ell_{0}, \ell_{1}\right)}(\tau, z, \epsilon) \partial_{\tau}^{-\ell_{0}}\left(V_{\epsilon}(\tau, z)\right)^{\star \ell_{1}}
\end{aligned}
$$

with initial contitions

$$
\left(\partial_{z}^{j} V_{\epsilon}\right)(\tau, 0)=V_{j}(\tau, \epsilon), \quad j=0, \ldots, S-1
$$

$\mathcal{A}_{1}, \mathcal{A}_{2}$ are finite subsets of \mathbb{N}_{0}^{2},
$a_{\left(\kappa_{0}, \kappa_{1}\right)} \in \mathcal{O}_{b}\left(\left(S_{d} \cup D\left(0, \rho_{0}\right)\right) \times \mathcal{E}\right)[[z]]$,
$\alpha_{\left(\ell_{0}, \ell_{1}\right)}$ is a formal power series in z with coefficients being holomorphic functions for $\tau \in S_{d} \cup D\left(0, \rho_{0}\right)$ and meromorphic for $\epsilon \in \mathcal{E}$.
$V_{\beta} \in \mathcal{O}\left(\left(S_{d} \cup D\left(0, \rho_{\beta}\right)\right) \times \mathcal{E}\right)$, with $\rho_{\beta} \rightarrow 0$, when $\beta \rightarrow \infty$.

Main problem: holomorphic solution

The elements in $\left(V_{\beta}(\tau, \epsilon)\right)_{\beta \geq 0}$ are constructed by means of a fixed point argument in a Banach space of holomorphic functions attained to appropriate bounds. V_{β} satisfies exponential bounds for $\beta \geq 0$, in the shape of V_{j}, $j=0, \ldots, S-1$.

$$
\left|V_{\beta}(\tau, \epsilon)\right| \leq C \beta!\left(\frac{1}{\rho}\right)^{\beta}\left(1+\frac{|\tau|^{2}}{|\epsilon|^{2 r_{3} / r_{2}}}\right)^{-1} \exp \left(\frac{\sigma|\tau|}{|\epsilon|^{r_{3} / r_{2}}} \sum_{n=0}^{\beta} \frac{1}{(n+1)^{2}}\right)
$$

for some $C, \rho>0$, for every $(\tau, \epsilon) \in\left(S_{d} \cup D\left(0, \rho_{\beta}\right)\right) \times \mathcal{E}$.

Main problem: holomorphic solution

The elements in $\left(V_{\beta}(\tau, \epsilon)\right)_{\beta \geq 0}$ are constructed by means of a fixed point argument in a Banach space of holomorphic functions attained to appropriate bounds. V_{β} satisfies exponential bounds for $\beta \geq 0$, in the shape of V_{j}, $j=0, \ldots, S-1$.

$$
\left|V_{\beta}(\tau, \epsilon)\right| \leq C \beta!\left(\frac{1}{\rho}\right)^{\beta}\left(1+\frac{|\tau|^{2}}{|\epsilon|^{2 r_{3} / r_{2}}}\right)^{-1} \exp \left(\frac{\sigma|\tau|}{|\epsilon|^{r_{3} / r_{2}}} \sum_{n=0}^{\beta} \frac{1}{(n+1)^{2}}\right)
$$

for some $C, \rho>0$, for every $(\tau, \epsilon) \in\left(S_{d} \cup D\left(0, \rho_{\beta}\right)\right) \times \mathcal{E}$.

The solution of the main problem is given by

$$
X(t, z, \epsilon):=Y_{\epsilon^{r_{3}} / r_{2}}(t, z) \in \mathcal{O}((\mathcal{T} \cap D(0, h)) \times D(0, \rho) \times \mathcal{E})
$$

for some $h, \rho>0$.

Let $\left(\mathcal{E}_{i}\right)_{1 \leq i \leq n}$ be a good covering at the origin in \mathbb{C}.

Formal solution and asymptotics

For every $1 \leq i \leq n$, we have
$\sup _{\substack{t \in \mathcal{T} \cap D\left(0, h^{\prime}\right) \\ z \in D(0, \rho)}}\left|X_{i+1}(t, z, \epsilon)-X_{i}(t, z, \epsilon)\right| \leq K_{i} \exp \left(-\frac{M_{i}}{|\epsilon|^{\frac{r_{3}}{r_{1}+r_{2}}}}\right), \quad \epsilon \in \mathcal{E}_{i} \cap \mathcal{E}_{i+1}$,
for some $0<h^{\prime}<h$, and some $K_{i}, M_{i}>0$.

- This result rests on a careful estimation of a Dirichlet-like series of the form $\sum_{\kappa \geq 0} e^{-\frac{1}{(\kappa+1)^{\alpha}} \frac{1}{\epsilon}} a^{\kappa}$, for some $0<a<1, \alpha>0$ and $0<\epsilon<\epsilon_{0}$.
- It leans on Malgrange-Sibuya theorem (see [5]).
[5] W. Balser, Formal power series and linear systems of meromorphic ordinary differential equations, Springer-Verlag, New-York, 2000.

Formal solution and asymptotics

For a small enough $h^{\prime}>0$, there exists a formal power series

$$
\hat{X}(t, z, \epsilon)=\sum_{\kappa \geq 0} H_{\kappa}(t, z) \frac{\epsilon^{\kappa}}{\kappa!} \in \mathcal{O}_{b}\left(\left(\mathcal{T} \cap D\left(0, h^{\prime}\right)\right) \times D(0, \rho)\right)[[\epsilon]]
$$

Moreover, for every $0 \leq i \leq n$ and all $T_{i} \prec \mathcal{E}_{i}$ there exist $K, M>0$ such that

$$
\sup _{\substack{t \in \mathcal{T} \cap D\left(0, h^{\prime}\right) \\ z \in D(0, \rho)}}\left|X_{i}(t, z, \epsilon)-\sum_{n=0}^{N-1} H_{n}(t, z) \frac{\epsilon^{n}}{n!}\right| \leq K M^{N} N!^{\frac{r_{1}+r_{3}}{r_{2}}}|\epsilon|^{N}
$$

for $\epsilon \in T_{i}$.

