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Monodromy, Picard-Vessiot group
Consider an order n differential system with coefficients in C(x)

(S)
dY
dx

= A(x)Y

Σ = {x1, . . . , xp} the set of singular points in C,

UΣ = C \ Σ

Y0 = (yij ) a fundamental solution at some non-singular point x0

C(x)(Y0) = C(x , y11, . . . , ynn), is a differential field with derivation induced by
the formula Y ′ = AY .

It is a Picard-Vessiot extension of the differential field (C(x), d/dx), since it
has no new constants.

The Picard-Vessiot group over C(x), or differential Galois group,

is the group of differential C(x)-automorphisms of C(x)(Y0).

It is a linear algebraic group, with a natural representation

GalC(x)

(
(S)
)
⊂ GL(n,C).

with respect to Y0 and x0 (it is Zariski-closed).
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I Analytic continuation of Y0 along a loop γ yields the monodromy
representation :

π1(UΣ; x0)
ρ−→ GL(n,C)

[γ] 7−→ Mγ

where Y0, analytically continued along γ, turns into a new fundamental
solution Y0Mγ at x0

I The monodromy matrices Mγ belong to the Picard-Vessiot group :

Im ρ ⊂ GalC(x)

(
(S)
)
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Density theorems and inverse problems

I Theorem 1 (Schlesinger, 1897) If all singularities of (S) are regular
singular, the monodromy group is Zariski-dense in the Picard-Vessiot
group over C(x).

Schlesinger’s original formulation: Wenn die Differentialgleichung der
Fuchs’schen Classe angehört, so ist ihre Transformationsgruppe die engste
algebraische Gruppe linearer homogener Transformationen, die die Gruppe
der Differentialgleichung als Untergruppe in sich schliesst.

I Ramis’s density theorem for irregular singularities :

Theorem 2 (Ramis, 1985) : The local PV-group at 0 (PV-group over
C
(
{x}
)
) is the Zariski closure in GL(n,C) of the subgroup generated by

the formal monodromy, the exponential torus and the Stokes matrices.

The local PV- groups together generate a dense subgroup of the global
PV-group over C(x).
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I Theorem 3 (Plemelj 1908, Treibich-Kohn 1983) Any representation

ρ : π1(UΣ; x0) −→ GL(n,C)

is realizable as the monodromy representation of some (S) with regular
singularities, all Fuchsian but one, all Fuchsian if one of the elementary
generators Mγi of Im ρ is diagonalizable .

(known as the "weak Riemann-Hilbert problem")

I Theorem 4 (M. & C. Tretkoff, 1979) Any linear algebraic group over C is
realizable as the Picard-Vessiot group over C(x) of some (S) with regular
singularities.

I Theorem (J. Hartmann, 2005) Over any algebraically closed field C of
char.0, any linear algebraic group is realizable as a Picard-Vessiot group
over C(x).
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Parametrized versions

Theorems 1, 2, 3 and (partially) 4 extend to parametrized differential systems.

Theorems 1 and 3 :

/ / Michael F. SINGER & C. M. : Monodromy groups of parametrized linear
differential equations with regular singularities, Proc. of the Amer. Math. Soc.
141, 605-617 (2011) / /

Theorem 2

/ / Thomas DREYFUS : A parameterized density theorem in differential Galois
theory, arXiv:1203.2904 [math.CA] (2012) / /

Theorem 4 :

/ / Michael F. SINGER : Linear algebraic groups as parameterized
Picard-Vessiot Galois groups, Journal of Algebra 373 (2013) / /
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Singularities of parametrized equations

Notation :
I U open connected subset of Cr (parameter space) with 0 ∈ U

I OU the ring of analytic functions on U (of the multi-parameter t)

I α ∈ OU a function such that α(0) = 0 (a “singularity" moving in the
neighbourhood of 0)

I OU
(
(x − α)

)
the ring of formal Laurent series

f (x , t) =
∑
i≥m

ai (t)(x − α(t))i

(think of x − α(t) as a “moving local coordinate", centered at α(t))

I OU
(
{x − α}

)
the ring of convergent Laurent series f ∈ OU

(
(x − α)

)
, for

t ∈ U and 0 < |x − α(t)| < Rt , for some Rt > 0.

(For a given f ∈ OU
(
{x − α}

)
, one may shrink U so that f converges for

all t ∈ U and 0 < |x − α(t)| < R, independent of t).
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I Consider a parametrized family of differential systems of order n

∂Y
∂x

= A(x ,t)Y

with coefficients in OU
(
{x − α(t)}

)
. Then for some m ∈ N

A(x , t) =
A−m(t)

(x − α(t))m
+

A−m+1(t)(
x − α(t)

)m−1 + . . . =
∑
i≥−m

(
x − α(t)

)iAi (t),

with Ai ∈ gln(OU ) and A−m 6≡ 0.

I Two parametrized systems

∂Y
∂x

= AY ,
∂Y
∂x

= BY ,

are equivalent as such if

B =
∂P
∂x

P−1 + PAP−1

for some invertible P∈ GLn
(
OU ({x − α})

)
.
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Definition: (parametric analogues of “Fuchsian" (= first kind) and "regular
singular")

I The system (S) has simple singular points near 0 if m = 1 and A−1 6≡ 0
as a function ∈ gl(n,OU ).

I The system (S) has parametrized regular singular points near 0 (notation
p.r .s.0) if it is equivalent to a system with simple singular points near 0.

I Proposition : Assume the system (S) has p.r .s.0 . Then (S) is equivalent
to a system

∂Y
∂x

=
Ã(t)

x
Y .
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An example

I Consider the system ∂Y /∂x = AY where

A =

(
0 −3
0 0

)
1

(x − t)2 +

(
t 0
0 t − 2

)
1

x − t

I It is equivalent to the system ∂Y /∂x = BY , with

B =

(
t − 1 0
0 t − 1

)
1

x − t

I via B = ∂P
∂x P

−1 + PAP−1, where

P =

( 1
x−t

−1
(x−t)2

0 x − t

)
I ∂Y /∂x = AY has parametrized regular singular points near 0

since ∂Y /∂x = BY has simple singular points near 0

I Note that B has the form announced in the Proposition.
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As expected, solutions have moderate growth as “x tends to α(t)".

Proposition: Assume the system (S) has p.r .s.0. Then there is an open
connected U ′ ⊂ U such that

• (S) has a solution Y of the form

Y (x , t) =
(∑
i≥i0

Qi (t)(x − α(t))i
)
.(x − α(t))Ã(t)

with Ã ∈ gln(OU′) and Qi ∈ gln(OU′) for all i ≥ i0,

• for any r -tuple (m1, . . . ,mr ) of nonnegative integers there is an integer N
such that for any t ∈ U ′ and any sector St from α(t) in the complex plane, of
opening < 2π,

lim
x→α(t)
x∈St

(
x − α(t)

)N ∂m1+...+mrY (x , t)

∂m1t1 . . . ∂mr tr
= 0.
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As expected, solutions have moderate growth as “x tends to α(t)".
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Isomonodromy

Consider a parametrized differential system

(S) ∂xY = A(x , t)Y

of order n, where
I A(x , t) is analytic in (x , t) ∈ Ω× U ,

t = (t1, . . . , tr ) ∈ U parameter,

U some polydisk in Cr with 0 ∈ U .

I Ω open subset of C , complement of a finite disjoint union of disks Di

(for any base-point x0 ∈ Ω , the fundamental group (π1(Ω; x0) is
generated by elementary loops [γ1], . . . , [γm]).

I for fixed t ∈ U , there is one singularity αi (t) in each Di and none in Ω.
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I The system

(S) ∂xY = A(x , t)Y

is isomonodromic if for some solution Yt(x) of (S) at x0 there are
constant matrices M1, . . . ,Mm ∈ GL(n,C) such that for each fixed t ∈ U
the Mi are the monodromy matrices of (S) with respect to Yt(x) along
the elementary loops γi .

I Classically, only Fuchsian systems

(F ) ∂xY =
m∑
i=1

Bi (a)

x − ai
,

m∑
i=1

Bi (a) = 0

were considered, where the multi-parameter is the moving configuration
a = (a1, . . . , am) of the poles in a neighborhood D(a0) of their initial
position a0.
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Schlesinger (1905) defined isomonodromy by requiring that the monodromy
representation

π1(UΣ; x0)
ρa−→ GL(n,C)

be independent of a for the particular solution Ya with initial condition
Ỹa(x0) = I for each a.

The Schlesinger isomonodromic deformations are characterized by the Pfaffian
system (called the Schlesinger equation)

dBi (a) = −
m∑

j=1,j 6=i

[Bi (a),Bj (a)]

ai − aj
d(ai − aj ), i = 1, . . . ,m

which is the compatibility condition of the systems

∂aiY = − Bi (a)

x − ai
Y .
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Bolibrukh (1995) extended Schlesinger’s definition : Equation (S) is
isomonodromic if there is a fundamental solution Ya of (S) with initial value
Ya(x0) = C(a) holomorphic in a, such that ρa does not depend on a.

He proved (1997) that for Fuchsian equations this is equivalent to Definition 1
and gave examples of non-Schlesinger isomonodromic deformations.

In the special case of order two Fuchsian systems with 4 singularities the
Schlesinger equation translates into a Painlevé VI equation : a non-linear
second order scalar equation with no moving essential singularities (the
“Painlevé property"), satisfied by the additional apparent singularity of a linear
scalar Fuchsian equation representing the system.
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Theorem (Sibuya, 1990) Let (S) be a parametrized system as before. The
system (S) is isomonodromic if and only if (S) is part of an integrable system{

∂xY = A(x , t)Y
∂tiY = Bi (x , t)Y , i = 1, . . . , r

where the matrices Bi (x , t) are analytic in Ω× U .
Assume (S) has only parametrized regular singularities (p.r.s.) . Then if A is
rational in x, so are the Bi .
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Monodromy evolving deformations

A special case of monodromy evolving deformation was studied in

/ / S. CHAKRAVARTY, M. J. ABLOWITZ, Integrability, monodromy evolving
deformations, and self-dual Bianchi IX systems, Physical Review Letters 76, 6
(1996), 857–860./ /

/ / Y. OHYAMA, Monodromy evolving deformations and Halphen’s equation
in Groups and Symmetries, CRM Proc. Lecture Notes 47 (2009), Amer. Math.
Soc. (2009)./ /

These authors studied the Darboux-Halphen equation and showed that it
describes a certain type of m. e. d., in the same way as the Schlesinger
equation accounts for the Schlesinger isomonodromy.
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The Darboux-Halphen equation

The Darboux-Halphen V equation

(DH V)


ω′1 = ω2ω3 − ω1(ω2 + ω3) + φ2

ω′2 = ω3ω1 − ω2(ω3 + ω1) + θ2

ω′3 = ω1ω2 − ω3(ω1 + ω2) − θφ
φ′ = ω1(θ − φ) − ω3(θ + φ)
θ′ = − ω2(θ − φ) − ω3(θ + φ),

plays an important rôle in physics.

It occurs as a reduction of the selfdual Yang-Mills equation (SDYM).

For θ = φ, (DH V) is equivalent to Einstein’s selfdual vacuum equations.

For θ = φ = 0, it is Halphen’s original equation (H II), solving Darboux’s
geometry problem about orthogonal surfaces.



The Darboux-Halphen equation

The Darboux-Halphen V equation

(DH V)


ω′1 = ω2ω3 − ω1(ω2 + ω3) + φ2

ω′2 = ω3ω1 − ω2(ω3 + ω1) + θ2

ω′3 = ω1ω2 − ω3(ω1 + ω2) − θφ
φ′ = ω1(θ − φ) − ω3(θ + φ)
θ′ = − ω2(θ − φ) − ω3(θ + φ),

plays an important rôle in physics.

It occurs as a reduction of the selfdual Yang-Mills equation (SDYM).

For θ = φ, (DH V) is equivalent to Einstein’s selfdual vacuum equations.

For θ = φ = 0, it is Halphen’s original equation (H II), solving Darboux’s
geometry problem about orthogonal surfaces.



The Darboux-Halphen equation

The Darboux-Halphen V equation

(DH V)


ω′1 = ω2ω3 − ω1(ω2 + ω3) + φ2

ω′2 = ω3ω1 − ω2(ω3 + ω1) + θ2

ω′3 = ω1ω2 − ω3(ω1 + ω2) − θφ
φ′ = ω1(θ − φ) − ω3(θ + φ)
θ′ = − ω2(θ − φ) − ω3(θ + φ),

plays an important rôle in physics.

It occurs as a reduction of the selfdual Yang-Mills equation (SDYM).

For θ = φ, (DH V) is equivalent to Einstein’s selfdual vacuum equations.

For θ = φ = 0, it is Halphen’s original equation (H II), solving Darboux’s
geometry problem about orthogonal surfaces.



History of the DH-equation

Equation (H II) goes back to Darboux’s work on orthogonal systems of surfaces:

[1] Gaston DARBOUX : Systèmes orthogonaux. Ann. Sc. É.N.S. (1866)1e
série, tome 3, pp. 97 -141.

[2] Gaston DARBOUX : Mémoire sur la théorie des coordonnées curvilignes, et
des systèmes orthogonaux. Ann. Sc. É.N.S. (1878), 2e série, tome 7, pp.
101-150, 227-260, 275-348.



Problem 1 : On which condition on a given pair (F1,F2) of orthogonal families
of surfaces in R3 does there exist a family F3 such that (F1,F2,F3) is a
triorthogonal system of pairwise orthogonal families?

In [1], Darboux gave a necessary and sufficient condition on (F1,F2) to solve
the problem: that the intersection of any surfaces S1 ∈ F1 and S2 ∈ F2 be a
line of curvature of both F1 and F2.

The necessary condition was Dupin’s theorem (1813).
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Problem 2 : On which condition on its parameter u = ϕ(x , y , z) does a given
one-parameter family F of surfaces belong to a triorthogonal system
(F1,F2,F3), of three pairwise orthogonal families?

In [2] Darboux found and solved an order three PDE satisfied by u. He obtained
the general solution from a particular family of ruled helicoidal surfaces.

(based on previous work by Bonnet and Cayley)

Élie CARTAN later used his exterior differential calculus to prove that
Problem 1 has a solution.

/ / Élie CARTAN : Les systèmes différentiels extérieurs et leurs applications
géométriques, Exposés de géométrie XII, Hermann ed. (1945) / /

É. Cartan generalized the problem, replacing orthogonality by any given angle,
or considering p pairwise orthogonal families of hypersurfaces in p-space.
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Problem 3 (Darboux): Given two families F1 and F2 consisting each of parallel
surfaces does there exist a family F orthogonal to both F1 and F2 ?

It is easy to prove that a solution must either consist of planes, or of ruled
quadrics.

If F consists of quadrics with a center, these have a simultaneously reduced
equations:

x2

a(u)
+

y2

b(u)
+

z2

c(u)
= 1

which depends on the parameter u.
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The family F is a solution iff

(D) c(a′ + b′) = b(a′ + c ′) = a(b′ + c ′).

(the Darboux equation).

“These equations do not seem to be integrable by known procedures"
(Darboux, 1878).

Darboux gives up. He limits his study to centerless quadrics. He finds a family
F of paraboloids

y2

α + u
+

z2

α− u
= 2x + α log u

solution of the problem, and claims there are surfaces of revolution as well.
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Halphen’s solution

Halphen (1881) solves Darboux’s equation (D) in the following form :

(H I)


ω′1 + ω′2 = ω1ω2

ω′2 + ω′3 = ω2ω3

ω′3 + ω′1 = ω3ω1

(Halphen I equation)

He solves the more general QHDS (quadratic homogeneous differential system)

(H II)


ω′1 = a1ω

2
1 + (λ− a1)(ω1ω2 + ω3ω1 − ω2ω3)

ω′2 = a1ω
2
2 + (λ− a2)(ω2ω3 + ω1ω2 − ω3ω1)

ω′3 = a1ω
2
3 + (λ− a3)(ω3ω1 + ω2ω3 − ω1ω2)

(Halphen II equation) by means of hypergeometric functions.

He also considers more general QHDS

{ω′r = ψr (ω1, . . . , ωr )}r=1,...,l

where ψr are quadratic forms (with an extra symmetry condition) like
equation(DH-V) above.
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/ / Georges Henri HALPHEN : Sur un sytème d’équations différentielles, C. R.
Acad. Sci. 92 (1881), pp. 1101-1103. / /

/ / Georges Henri HALPHEN : Sur certains systèmes d’équations différentielles,
C. R. Acad. Sci. 92 (1881), pp. 1404-1406. / /



I Contrary to other SDYM reductions (like Painlevé equations), (DH V)
does not satisfy the Painlevé property (there is a boundary of movable
essential singularities) : not likely to rule isomonodromy !

I Equation (H II) is equivalent to a system

x ′i = Q(xi ), i = 1, 2, 3,

where Q(X ) = X 2+a(x1 − x2)2 + b(x2 − x3)2 + c(x3 − x1)2 (a, b, c,
constants)

I Equation (H II) is equivalent to a system

x ′i = Qi (x1, x2, x3), i = 1, 2, 3,

where Qi = x2
i + a(x1 − x2)2 + b(x2 − x3)2 + c(x3 − x1)2

(a, b, c, constants)
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I Equation (H-II) is the integrability condition of the Lax pair

∂Y
∂x

=

(
µI

(x − x1)(x − x2)(x − x3)
+

3∑
i=1

λiK
x − xi

)
Y (1)

∂Y
∂t

=

(
νI +

3∑
i=1

λixiK

)
Y − Q(x)

∂Y
∂x

(2)

where
xi = xi (t) are parametrized (simple) singularities

K is a constant traceless 2× 2 matrix, I the identity matrix

µ, λi are constants, µ 6= 0, λ1 + λ2 + λ3 = 0 (⇒ no singularity at ∞)

ν is solution of

∂ν

∂x
= − x + x1 + x2 + x3

(x − x1)(x − x2)(x − x3)
µ.

I Since ν is not rational in x , the system (1) is non-isomonodromic, by
Sibuya’s criterion.
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Monodromy of Equation (1)

Fix Y , a fundamental solution of the Lax pair, at some x0 not belonging to
fixed disks Di with centers xi (t), for all i . A computation shows that the
monodromy of Equation (1) is

Mi (t) = ci (t) Mi (t0)

with
Mi (t0) = e2π

√
−1Li (t0)

ci (t) = e−2π
√
−1µ

∫ t
t0
βi (t)dt

where
x +

∑3
i=1 xi∏3

i=1(x − xi (t))
=

3∑
i=1

βi (t)

x − xi (t)
.



Parametrized Picard-Vessiot theory

The parametrized Picard-Vessiot theory was developed by

/ / Ellis R. KOLCHIN : Differential algebraic groups,
Academic Press, New York, 1985./ /

/ / Phyllis J. CASSIDY, Michael F. SINGER : Galois theory of parameterized
differential equations and linear differential algebraic groups,
IRMA Lectures in Mathematics and Theoretical Physics 9 (2006), 113–157.
(Special volume in memory of A. A. Bolibrukh)/ /

/ / Peter LANDESMANN : Generalized differential Galois theory
Trans. Amer. Math. Soc. 360, 8 (2008), 4441–4495./ /



I Let ∆ = {∂0, ∂1, . . . , ∂r} be a set of commuting derivations on a field L,

L{y1, y2, . . .}∆ the L-algebra of ∆-differential polynomials:

polynomials in the differential indeterminates {∂(k)
j yi}i,j≥1,k≥0.

I Closed subsets for the Kolchin topology in the affine space Lp are the
zero-sets of systems

{f1 = . . . = fs = 0}, fi ∈ L{y1, . . . , yp}∆.

I Linear differential algebraic groups are the subgroups of GL(n, L) which
are Kolchin-closed.
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Differentially closed fields

I Definition: A ∆-differential field L is differentially closed if for any
differential polynomials P1, . . . ,Ps ,Q ∈ L{y1, y2...}∆, the system{

P1 = . . . = Ps = 0
Q 6= 0

has a solution in L whenever it has a solution in some differential
∆-extension of L.

I Differentially closed fields are (almost) analogues of algebraically closed
fields.

I ROBINSON (1959), BLUM (1968), SHELAH (1972), KOLCHIN (1974),
gave different (equivalent) definitions.

They proved the existence, for any differential field k, of a unique
differential closure, that is, a differential, differentially closed extension of
k that can be embedded in any other differentially closed extension of k.
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PPV-extensions

Consider an (ordinary) differential system of order n

(S) ∂0Y = AY ,

where A has entries in the ∆-differential field k, ∆ = {∂0, . . . , ∂r}.

Definition A parametrized Picard-Vessiot extension (PPV-extension) of k for
(S) is a ∆-differential extension K of k such that

• K = k〈Z〉∆ for some fundamental solution Z of (S) in K

(= the ∆- extension generated by the entries of Z)

• K∂0 = k∂0 (no new ∂0-constants).

The corresponding parametrized Picard-Vessiot group (PPV -group), or
parametrized differential Galois group, is

Gal∆(S) = Aut∆−diff (K |k)
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Existence of PPV-extensions

In analogy with classical Picard-Vessiot theory, the key condition here is that
k∂0 , the field of ∂0-constants of k, be ∆-differentially closed.

Theorem (Cassidy & Singer, 2006): Assuming k∂0 is differentially closed,

(1) there is a unique PPV-extension K of k, up to isomorphism.

(2) its PPV-group is a linear differential algebraic group

Gal∆(S) ⊂ GL(n, kδ0)
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PPV-Galois correspondence

Let K be a PPV-extension of k for (S), and G the corresponding PPV-group.

In PPV-theory, PPV-Galois correspondence holds between

{intermediate differential extensions k ⊂ L ⊂ K} and

{Kolchin-closed subgroups of Gal∆(S)}.

Note that differentially closed ⇒ algebraically closed.

Let K̃ be the (usual) PV extension of k for (S) . Then K̃ ⊂ K and

GPV (S) = GPPV (S)

(the PPV-group is Zariski-dense in the PV-group)
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For second order equations, parametrized analogues of the Kovacic algorithm
were given by:

/ / Thomas DREYFUS : Computing the parameterized differential Galois group
of some parameterized linear differential equation of order two, arXiv:1110.1053
(2011), to appear in Proceedings of the AMS. / /

/ / Carlos E. ARRECHE : Computing the differential Galois group of a
one-parameter family of second order linear differential equations
arXiv:1208.2226 (2012)./ /



The basic example

Consider the parametrized differential equation

(E) ∂xy =
t
x
y , t ∈ C (∂x =

d
dx

)

over the differential base-field C(x , t).

I (E) has simple singularities near 0 and ∞.

I Let C = C(t)
∆
(differential closure). The PPV-extension of C(x) is

K = C(x)〈x t〉 = C(x , x t , log x).

I The PPV-group over C(x) is

G = {a ∈ C∗, (∂t
2a)a− (∂ta)2 = 0},

(Kolchin-closed in C∗ = GL(1,C∗)).
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Parametrized monodromy

I Definition : Let Y (x , t) be a fundamental solution of the parametrized
differential system

(S) ∂xY = A(x , t)Y .

The parametrized monodromy matrix of (S) around αi (t) is Mi (t), where
for each fixed t ∈ U , Mi (t) is the monodromy matrix for Y around αi (t).

I Question: Do the parametrized monodromy matrices Mi (t) belong to the
PPV-group ? in which sense? over which differential field?
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I Assume the coefficients of

(S) ∂xY = A(x , t)Y

are rational in x .

I Let ∂x = d
dx , ∂ti = d

dti
, ∆ = {∂x , ∂t1 , . . . , ∂tr }, ∆t = {∂t1 , . . . , ∂tr }

I Theorem 1 (M. F. Singer & C. M.) Let C be a differentially closed
∆t-field containing C, such that the entries of A, in

(S) ∂xY = A(x , t)Y

belong to C(x).
If C1 is any differentially closed ∆t-extension of C containing the
coefficients of the parametrized monodromy matrices Mi (t), then

Mi (t) ∈ G(C1)

where G = GalC(x)

(
(S)
)
is the PPV-group of (S) over C(x).
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The proof in particular relies on

Theorem (Seidenberg, 1969) Let K and K1, with K ⊂ K1, be finitely generated
differential extensions of Q. Assume that K consists of meromorphic functions
on some open subset Ω ∈ Cr . Then K1 is differentially isomorphic to a field K̃1

of functions meromorphic on an open subset Ω1 ⊂ Ω, s. t. the restrictions of
functions of K to Ω1 belong to K̃1.

Note that the asumption on K is always satisfied (once the theorem holds).
The important information here is Ω.
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Basic example

In the example

(E) ∂xy =
t
x
y

I Let C = C(t)
∂t (differential closure)

I Parametrized monodromy matrices: m0(t) = e2πi t around 0 and

m∞(t) = 1/m0 = e−2πi t around ∞, w.r.t. the solution x t .

I The matrices m0(t) and m∞(t) clearly belong to

GalC(x)

(
(E)
)

= {a ∈ C∗, (∂t
2a)a− (∂ta)2 = 0.}

I Note that the equation is obviously non-isomonodromic since
m0(t) = e2πi t , since also it extends to an integrable system with the
non-rational equation ∂ty = log(x)y (Sibuya’s criterion).
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Parametric version of Schlesinger’s density theorem

The following extends Schlesinger’s theorem:

Theorem 2 (M. F. Singer & C. M.) Consider an order n system

(S) ∂xY = A(x , t)Y

with A ∈ gl(n,OU (x)), (x , t) ∈ Ω× U with asumptions as before.

Assume (S) has parametrized regular singularities near each αi (0) and let a

differentially closed ∆t-field C contain :

- all coefficients of powers of x fo the entries of A

- all entries of the parametrized monodromy matrices Mi (t) for each i .

Then the Mi (t) generate a Kolchin-dense subgroup of G(C), where G is the
PPV-group of (S) over C(x).



The proof uses Galois correspondence and

Lemma Let F be a differential field of meromorphic functions in (x , t) on
U × V, U ⊂ C, V ⊂ Cr (assume x ∈ F) and let C denote the field of
∂x -constants of F .

If a function f ∈ F is such that f (x , t) ∈ C(x) for all fixed t ∈ V, then
f (x , t) ∈ C(x).

(adapted from a result of R. Palais, 1978)



Parametric version of the weak Riemann-Hilbert problem

Theorem 3 (M. F. Singer & C. M.) Let Σ = {a1, . . . , as} ⊂ C (distinct) and
U ⊂ Cr an open polydisk. Let Mi (t) ∈ GL(n,OU ), i = 1, . . . , s, be matrices
such that

M1(t) . . .Ms(t) = I .

Then there is a parametrized system

(S) ∂xY = A(x , t)Y

with A ∈ gl(n,OU ′(x)), U ′ ⊂ U , such that

• the set of singular points of (S) is Σ

• the parametrized monodromy matrix of (S) around each ai is Mi (t)
(with respect to some fund. sol. and arbitrary fixed base-point x0 /∈ Σ).

Moreover, the Mi (t) can be realized by a system (S) with all singularities
simple, but one.
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Inverse problem

Corollary (M. F. Singer & C. M.) Let G ⊂ GL(n,C) be a ∆t-linear differential
algebraic group, where C is a ∆t-universal field C and ∆t = {∂t1 , . . . , ∂tr }.
If G contains a finitely generated, Kolchin-dense subgroup, then G is realizable
as the PPV-group over C(x) of some ∂xY = AY with coefficients in C(x).

Examples: Ga(C) and Gm(C) are not PPV-groups over C(x).

Theorem (Singer, 2012) Let (C , ∂) be a universal field and let G be a linear
algebraic group defined over C. Then G(C) is realizable as the PPV-group over
(C(x), ∂, ∂x) iff the identity component G 0 of G has no quotient (as an
algebraic group) isomorphic to the Ga or Gm.
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Isomonodromy (PPV-criterion)

Theorem (Cassidy & Singer, 2006) Assume the coefficients of

(S) ∂xY = A(x , t)Y

are rational in x, and that (S) has p.r .s. only.
Let C be a ∆t-differentially closed extension of OU , with ∆t = {∂t1 , . . . , ∂tr }.
Then (S) is isomonodromic if and only if the PPV-group is conjugate in
GL(n,C) to a constant linear algebraic group (that is, a subgroup of GL(n,C)).
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Projective isomonodromy

I Definition: With notation as before, a parametrized system (S) with
singularities α1(t), . . . , αs(t) is projectively isomonodromic if for all i
there are

• constant matrices Gi ∈ GL(n,C)

• analytic functions ci : U → C∗

such that for each fixed t ∈ U , some fundamental solution Yt(x) of (S)
has the parametrized monodromy matrix

Mi (t) = ci (t)Gi

around αi for each i .

I Remark: Yt(x) is not necessarily analytic in t but it is possible to find
such a solution which is analytic (proof similar to Bolibrukh’s proof in the
isomonodromic case).
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Projective isomonodromy of Fuchsian systems

Proposition: A Fuchsian (analytic) parametrized system

(S) ∂xY =
m∑
i=1

Ai (t)

x − xi (t)

is projectively isomonodromic if and only if for each i

Ai = Bi + bi I

where bi : D → C, Bi : D → gl(n,C)

are analytic functions such that

∂xY =
m∑
i=1

Bi (t)

x − xi (t)

is isomonodromic.



In the (DH V) example, Equation (1) of the Lax pair meets this condition:

∂xY =

(
µ I

(x − x1)(x − x2)(x − x3)
+

3∑
i=1

λiK
x − xi

)
Y

Here
bi =

µ

(x − x1)(x − x2)(x − x3)
, Bi =

λiK
x − xi

and

∂xY =

(
3∑

i=1

λiK
x − xi

)
Y

is clearly isomonodromic since K is a constant matrix.



Theorem (Singer & M.) : if a system (S) is absolutely irreducible
over C (x), then it is projectively isomonodromic if and only if the
commutator subgroup (G ,G ) of the PPV-group G is conjugate in
GL(n,C ) to a constant subgroup ( = subgroup of GL(n,C)).

/ / M. F. Singer, C. M. : Projective isomonodromy and Galois
groups, Bull. London Math. Soc. 44 (5), 913-930 (2012)./ /



Thank you for your attention

Dziękuję za uwagę
Podziękowania dla organizatorów


