The monodromy of parametrized linear differential systems

Claude Mitschi

Institut de Recherche mathématique Avancée Université de Strasbourg

August 25, 2013

Formal and Analytic Solutions of Differential, Difference and Discrete Equations FASDE III

Będlewo, August 26-30, 2013.

The talk is about joint work with Michael F. Singer
North Carolina State University singer@ncsu.edu

Monodromy, Picard-Vessiot group

Consider an order n differential system with coefficients in $\mathbb{C}(x)$
(S)

$$
\frac{d Y}{d x}=A(x) Y
$$

Monodromy, Picard-Vessiot group

Consider an order n differential system with coefficients in $\mathbb{C}(x)$
(S)

$$
\frac{d Y}{d x}=A(x) Y
$$

$\Sigma=\left\{x_{1}, \ldots, x_{p}\right\}$ the set of singular points in $\overline{\mathbb{C}}$,

Monodromy, Picard-Vessiot group

Consider an order n differential system with coefficients in $\mathbb{C}(x)$
(S)

$$
\frac{d Y}{d x}=A(x) Y
$$

$\Sigma=\left\{x_{1}, \ldots, x_{p}\right\}$ the set of singular points in $\overline{\mathbb{C}}$,
$U_{\Sigma}=\overline{\mathbb{C}} \backslash \Sigma$

Monodromy, Picard-Vessiot group

Consider an order n differential system with coefficients in $\mathbb{C}(x)$

$$
\begin{equation*}
\frac{d Y}{d x}=A(x) Y \tag{S}
\end{equation*}
$$

$\Sigma=\left\{x_{1}, \ldots, x_{p}\right\}$ the set of singular points in $\overline{\mathbb{C}}$,
$\mathrm{U}_{\Sigma}=\overline{\mathbb{C}} \backslash \Sigma$
$Y_{0}=\left(y_{i j}\right)$ a fundamental solution at some non-singular point x_{0}

Monodromy, Picard-Vessiot group

Consider an order n differential system with coefficients in $\mathbb{C}(x)$

$$
\begin{equation*}
\frac{d Y}{d x}=A(x) Y \tag{S}
\end{equation*}
$$

$\Sigma=\left\{x_{1}, \ldots, x_{p}\right\}$ the set of singular points in $\overline{\mathbb{C}}$,
$\mathrm{U}_{\Sigma}=\overline{\mathbb{C}} \backslash \Sigma$
$Y_{0}=\left(y_{i j}\right)$ a fundamental solution at some non-singular point x_{0}
$\mathbb{C}(x)\left(Y_{0}\right)=\mathbb{C}\left(x, y_{11}, \ldots, y_{n n}\right)$, is a differential field with derivation induced by the formula $Y^{\prime}=A Y$.
It is a Picard-Vessiot extension of the differential field $(\mathbb{C}(x), d / d x)$, since it has no new constants.

Monodromy, Picard-Vessiot group

Consider an order n differential system with coefficients in $\mathbb{C}(x)$

$$
\begin{equation*}
\frac{d Y}{d x}=A(x) Y \tag{S}
\end{equation*}
$$

$\Sigma=\left\{x_{1}, \ldots, x_{p}\right\} \quad$ the set of singular points in $\overline{\mathbb{C}}$,
$\mathrm{U}_{\Sigma}=\overline{\mathbb{C}} \backslash \Sigma$
$Y_{0}=\left(y_{i j}\right)$ a fundamental solution at some non-singular point x_{0}
$\mathbb{C}(x)\left(Y_{0}\right)=\mathbb{C}\left(x, y_{11}, \ldots, y_{n n}\right)$, is a differential field with derivation induced by the formula $Y^{\prime}=A Y$.
It is a Picard-Vessiot extension of the differential field $(\mathbb{C}(x), d / d x)$, since it has no new constants.
The Picard-Vessiot group over $\mathbb{C}(x)$, or differential Galois group, is the group of differential $\mathbb{C}(x)$-automorphisms of $\mathbb{C}(x)\left(Y_{0}\right)$. It is a linear algebraic group, with a natural representation

$$
\mathrm{Gal}_{\mathbb{C}(x)}((S)) \subset \mathrm{GL}(n, \mathbb{C})
$$

with respect to Y_{0} and x_{0} (it is Zariski-closed).

- Analytic continuation of Y_{0} along a loop γ yields the monodromy representation :

$$
\begin{array}{r}
\pi_{1}\left(\mathrm{U}_{\Sigma} ; x_{0}\right) \xrightarrow{\rho} \mathrm{GL}(n, \mathbb{C}) \\
{[\gamma] \longmapsto M_{\gamma}}
\end{array}
$$

where Y_{0}, analytically continued along γ, turns into a new fundamental solution $Y_{0} M_{\gamma}$ at x_{0}

- Analytic continuation of Y_{0} along a loop γ yields the monodromy representation :

$$
\begin{array}{r}
\pi_{1}\left(\mathrm{U}_{\Sigma} ; x_{0}\right) \xrightarrow{\rho} \mathrm{GL}(n, \mathbb{C}) \\
{[\gamma] \longmapsto M_{\gamma}}
\end{array}
$$

where Y_{0}, analytically continued along γ, turns into a new fundamental solution $Y_{0} M_{\gamma}$ at x_{0}

- The monodromy matrices M_{γ} belong to the Picard-Vessiot group :

$$
\operatorname{Im} \rho \subset \operatorname{Gal}_{\mathbb{C}(x)}((S))
$$

Density theorems and inverse problems

- Theorem 1 (Schlesinger, 1897) If all singularities of (S) are regular singular, the monodromy group is Zariski-dense in the Picard-Vessiot group over $\mathbb{C}(x)$.

Schlesinger's original formulation: Wenn die Differentialgleichung der Fuchs'schen Classe angehört, so ist ihre Transformationsgruppe die engste algebraische Gruppe linearer homogener Transformationen, die die Gruppe der Differentialgleichung als Untergruppe in sich schliesst.

Density theorems and inverse problems

- Theorem 1 (Schlesinger, 1897) If all singularities of (S) are regular singular, the monodromy group is Zariski-dense in the Picard-Vessiot group over $\mathbb{C}(x)$.

Schlesinger's original formulation: Wenn die Differentialgleichung der Fuchs'schen Classe angehört, so ist ihre Transformationsgruppe die engste algebraische Gruppe linearer homogener Transformationen, die die Gruppe der Differentialgleichung als Untergruppe in sich schliesst.

- Ramis's density theorem for irregular singularities :

Theorem 2 (Ramis, 1985) : The local PV-group at 0 ($P V$-group over $\mathbb{C}(\{x\}))$ is the Zariski closure in $\mathrm{GL}(n, \mathbb{C})$ of the subgroup generated by the formal monodromy, the exponential torus and the Stokes matrices.

The local PV- groups together generate a dense subgroup of the global PV-group over $\mathbb{C}(x)$.

- Theorem 3 (Plemelj 1908, Treibich-Kohn 1983) Any representation

$$
\rho: \pi_{1}\left(\mathrm{U}_{\Sigma} ; x_{0}\right) \longrightarrow \mathrm{GL}(n, \mathbb{C})
$$

is realizable as the monodromy representation of some (S) with regular singularities, all Fuchsian but one, all Fuchsian if one of the elementary generators $M_{\gamma_{i}}$ of $\operatorname{Im} \rho$ is diagonalizable.
(known as the "weak Riemann-Hilbert problem")

- Theorem 3 (Plemelj 1908, Treibich-Kohn 1983) Any representation

$$
\rho: \pi_{1}\left(\mathrm{U}_{\Sigma} ; x_{0}\right) \longrightarrow \mathrm{GL}(n, \mathbb{C})
$$

is realizable as the monodromy representation of some (S) with regular singularities, all Fuchsian but one, all Fuchsian if one of the elementary generators $M_{\gamma_{i}}$ of $\operatorname{Im} \rho$ is diagonalizable.
(known as the "weak Riemann-Hilbert problem")

- Theorem 4 (M. \& C. Tretkoff, 1979) Any linear algebraic group over \mathbb{C} is realizable as the Picard-Vessiot group over $\mathbb{C}(x)$ of some (S) with regular singularities.
- Theorem 3 (Plemelj 1908, Treibich-Kohn 1983) Any representation

$$
\rho: \pi_{1}\left(\mathrm{U}_{\Sigma} ; x_{0}\right) \longrightarrow \mathrm{GL}(n, \mathbb{C})
$$

is realizable as the monodromy representation of some (S) with regular singularities, all Fuchsian but one, all Fuchsian if one of the elementary generators $M_{\gamma_{i}}$ of $\operatorname{Im} \rho$ is diagonalizable.
(known as the "weak Riemann-Hilbert problem")

- Theorem 4 (M. \& C. Tretkoff, 1979) Any linear algebraic group over \mathbb{C} is realizable as the Picard-Vessiot group over $\mathbb{C}(x)$ of some (S) with regular singularities.
- Theorem (J. Hartmann, 2005) Over any algebraically closed field C of char.0, any linear algebraic group is realizable as a Picard-Vessiot group over $C(x)$.

Parametrized versions

Theorems 1, 2, 3 and (partially) 4 extend to parametrized differential systems.

Parametrized versions

Theorems 1, 2, 3 and (partially) 4 extend to parametrized differential systems.
Theorems 1 and 3 :
/ / Michael F. SINGER \& C. M. : Monodromy groups of parametrized linear differential equations with regular singularities, Proc. of the Amer. Math. Soc. 141, 605-617 (2011) / /

Parametrized versions

Theorems 1, 2, 3 and (partially) 4 extend to parametrized differential systems.
Theorems 1 and 3 :
/ / Michael F. SINGER \& C. M. : Monodromy groups of parametrized linear differential equations with regular singularities, Proc. of the Amer. Math. Soc. 141, 605-617 (2011) / /

Theorem 2
/ / Thomas DREYFUS : A parameterized density theorem in differential Galois theory, arXiv:1203.2904 [math.CA] (2012) / /

Parametrized versions

Theorems 1, 2, 3 and (partially) 4 extend to parametrized differential systems.
Theorems 1 and 3 :
/ / Michael F. SINGER \& C. M. : Monodromy groups of parametrized linear differential equations with regular singularities, Proc. of the Amer. Math. Soc. 141, 605-617 (2011) / /

Theorem 2
/ / Thomas DREYFUS: A parameterized density theorem in differential Galois theory, arXiv:1203.2904 [math.CA] (2012) / /

Theorem 4:

/ / Michael F. SINGER: Linear algebraic groups as parameterized Picard-Vessiot Galois groups, Journal of Algebra 373 (2013) / /

Singularities of parametrized equations

Notation :

- \mathcal{U} open connected subset of \mathbb{C}^{r} (parameter space) with $0 \in \mathcal{U}$

Singularities of parametrized equations

Notation :

- \mathcal{U} open connected subset of \mathbb{C}^{r} (parameter space) with $0 \in \mathcal{U}$
- $\mathcal{O}_{\mathcal{U}}$ the ring of analytic functions on \mathcal{U} (of the multi-parameter t)

Singularities of parametrized equations

Notation :

- \mathcal{U} open connected subset of \mathbb{C}^{r} (parameter space) with $0 \in \mathcal{U}$
- $\mathcal{O}_{\mathcal{U}}$ the ring of analytic functions on \mathcal{U} (of the multi-parameter t)
- $\alpha \in \mathcal{O}_{\mathcal{U}}$ a function such that $\alpha(0)=0$ (a "singularity" moving in the neighbourhood of 0)

Singularities of parametrized equations

Notation :

- \mathcal{U} open connected subset of \mathbb{C}^{r} (parameter space) with $0 \in \mathcal{U}$
- $\mathcal{O}_{\mathcal{U}}$ the ring of analytic functions on \mathcal{U} (of the multi-parameter t)
- $\alpha \in \mathcal{O}_{\mathcal{U}}$ a function such that $\alpha(0)=0$ (a "singularity" moving in the neighbourhood of 0)
- $\mathcal{O}_{\mathcal{U}}((x-\alpha))$ the ring of formal Laurent series

$$
f(x, t)=\sum_{i \geq m} a_{i}(t)(x-\alpha(t))^{i}
$$

(think of $x-\alpha(t)$ as a "moving local coordinate", centered at $\alpha(t)$)

Singularities of parametrized equations

Notation :

- \mathcal{U} open connected subset of \mathbb{C}^{r} (parameter space) with $0 \in \mathcal{U}$
- $\mathcal{O}_{\mathcal{U}}$ the ring of analytic functions on \mathcal{U} (of the multi-parameter t)
- $\alpha \in \mathcal{O}_{\mathcal{U}}$ a function such that $\alpha(0)=0$ (a "singularity" moving in the neighbourhood of 0)
- $\mathcal{O}_{\mathcal{U}}((x-\alpha))$ the ring of formal Laurent series

$$
f(x, t)=\sum_{i \geq m} a_{i}(t)(x-\alpha(t))^{i}
$$

(think of $x-\alpha(t)$ as a "moving local coordinate", centered at $\alpha(t)$)

- $\mathcal{O}_{\mathcal{U}}(\{x-\alpha\})$ the ring of convergent Laurent series $f \in \mathcal{O}_{\mathcal{U}}((x-\alpha))$, for $t \in \mathcal{U}$ and $0<|x-\alpha(t)|<R_{t}$, for some $R_{t}>0$.
(For a given $f \in \mathcal{O}_{\mathcal{U}}(\{x-\alpha\})$, one may shrink \mathcal{U} so that f converges for all $t \in \mathcal{U}$ and $0<|x-\alpha(t)|<R$, independent of t).
- Consider a parametrized family of differential systems of order n

$$
\frac{\partial Y}{\partial x}=A(x, t) Y
$$

with coefficients in $\mathcal{O}_{\mathcal{U}}(\{x-\alpha(t)\})$. Then for some $m \in \mathbb{N}$

$$
A(x, t)=\frac{A_{-m}(t)}{(x-\alpha(t))^{m}}+\frac{A_{-m+1}(t)}{(x-\alpha(t))^{m-1}}+\ldots=\sum_{i \geq-m}(x-\alpha(t))^{i} A_{i}(t),
$$

with $A_{i} \in \mathrm{gl}_{n}\left(\mathrm{O}_{u}\right)$ and $A_{-m} \not \equiv 0$.

- Consider a parametrized family of differential systems of order n

$$
\frac{\partial Y}{\partial x}=A(x, t) Y
$$

with coefficients in $\mathcal{O}_{\mathcal{U}}(\{x-\alpha(t)\})$. Then for some $m \in \mathbb{N}$
$A(x, t)=\frac{A_{-m}(t)}{(x-\alpha(t))^{m}}+\frac{A_{-m+1}(t)}{(x-\alpha(t))^{m-1}}+\ldots=\sum_{i \geq-m}(x-\alpha(t))^{i} A_{i}(t)$,
with $A_{i} \in \mathrm{gl}_{n}\left(\mathcal{O}_{\mathcal{U}}\right)$ and $A_{-m} \not \equiv 0$.

- Two parametrized systems

$$
\frac{\partial Y}{\partial x}=A Y, \quad \frac{\partial Y}{\partial x}=B Y
$$

are equivalent as such if

$$
B=\frac{\partial P}{\partial x} P^{-1}+P A P^{-1}
$$

for some invertible $P \in G L_{n}\left(\mathcal{O}_{\mathcal{U}}(\{x-\alpha\})\right)$.

Definition: (parametric analogues of "Fuchsian" (= first kind) and "regular singular")

- The system (S) has simple singular points near 0 if $m=1$ and $A_{-1} \not \equiv 0$ as a function $\in \operatorname{gl}\left(n, \mathcal{O}_{\mathcal{U}}\right)$.

Definition: (parametric analogues of "Fuchsian" (= first kind) and "regular singular")

- The system (S) has simple singular points near 0 if $m=1$ and $A_{-1} \not \equiv 0$ as a function $\in \operatorname{gl}\left(n, \mathcal{O}_{\mathcal{U}}\right)$.
- The system (S) has parametrized regular singular points near 0 (notation p.r.s.o) if it is equivalent to a system with simple singular points near 0.

Definition: (parametric analogues of "Fuchsian" (= first kind) and "regular singular")

- The system (S) has simple singular points near 0 if $m=1$ and $A_{-1} \not \equiv 0$ as a function $\in \operatorname{gl}\left(n, \mathcal{O}_{\mathcal{U}}\right)$.
- The system (S) has parametrized regular singular points near 0 (notation p.r.s.o) if it is equivalent to a system with simple singular points near 0.
- Proposition : Assume the system (S) has p.r.s.o . Then (S) is equivalent to a system

$$
\frac{\partial Y}{\partial x}=\frac{\widetilde{A}(t)}{x} Y
$$

An example

- Consider the system $\partial Y / \partial x=A Y$ where

$$
A=\left(\begin{array}{cc}
0 & -3 \\
0 & 0
\end{array}\right) \frac{1}{(x-t)^{2}}+\left(\begin{array}{cc}
t & 0 \\
0 & t-2
\end{array}\right) \frac{1}{x-t}
$$

An example

- Consider the system $\partial Y / \partial x=A Y$ where

$$
A=\left(\begin{array}{cc}
0 & -3 \\
0 & 0
\end{array}\right) \frac{1}{(x-t)^{2}}+\left(\begin{array}{cc}
t & 0 \\
0 & t-2
\end{array}\right) \frac{1}{x-t}
$$

- It is equivalent to the system $\partial Y / \partial x=B Y$, with

$$
B=\left(\begin{array}{cc}
t-1 & 0 \\
0 & t-1
\end{array}\right) \frac{1}{x-t}
$$

An example

- Consider the system $\partial Y / \partial x=A Y$ where

$$
A=\left(\begin{array}{cc}
0 & -3 \\
0 & 0
\end{array}\right) \frac{1}{(x-t)^{2}}+\left(\begin{array}{cc}
t & 0 \\
0 & t-2
\end{array}\right) \frac{1}{x-t}
$$

- It is equivalent to the system $\partial Y / \partial x=B Y$, with

$$
B=\left(\begin{array}{cc}
t-1 & 0 \\
0 & t-1
\end{array}\right) \frac{1}{x-t}
$$

- via $B=\frac{\partial P}{\partial x} P^{-1}+P A P^{-1}$, where

$$
P=\left(\begin{array}{cc}
\frac{1}{x-t} & \frac{-1}{(x-t)^{2}} \\
0 & x-t
\end{array}\right)
$$

An example

- Consider the system $\partial Y / \partial x=A Y$ where

$$
A=\left(\begin{array}{cc}
0 & -3 \\
0 & 0
\end{array}\right) \frac{1}{(x-t)^{2}}+\left(\begin{array}{cc}
t & 0 \\
0 & t-2
\end{array}\right) \frac{1}{x-t}
$$

- It is equivalent to the system $\partial Y / \partial x=B Y$, with

$$
B=\left(\begin{array}{cc}
t-1 & 0 \\
0 & t-1
\end{array}\right) \frac{1}{x-t}
$$

- via $B=\frac{\partial P}{\partial x} P^{-1}+P A P^{-1}$, where

$$
P=\left(\begin{array}{cc}
\frac{1}{x-t} & \frac{-1}{(x-t)^{2}} \\
0 & x-t
\end{array}\right)
$$

- $\partial Y / \partial x=A Y$ has parametrized regular singular points near 0 since $\partial Y / \partial x=B Y$ has simple singular points near 0

An example

- Consider the system $\partial Y / \partial x=A Y$ where

$$
A=\left(\begin{array}{cc}
0 & -3 \\
0 & 0
\end{array}\right) \frac{1}{(x-t)^{2}}+\left(\begin{array}{cc}
t & 0 \\
0 & t-2
\end{array}\right) \frac{1}{x-t}
$$

- It is equivalent to the system $\partial Y / \partial x=B Y$, with

$$
B=\left(\begin{array}{cc}
t-1 & 0 \\
0 & t-1
\end{array}\right) \frac{1}{x-t}
$$

- via $B=\frac{\partial P}{\partial x} P^{-1}+P A P^{-1}$, where

$$
P=\left(\begin{array}{cc}
\frac{1}{x-t} & \frac{-1}{(x-t)^{2}} \\
0 & x-t
\end{array}\right)
$$

- $\partial Y / \partial x=A Y$ has parametrized regular singular points near 0 since $\partial Y / \partial x=B Y$ has simple singular points near 0
- Note that B has the form announced in the Proposition.

As expected, solutions have moderate growth as " x tends to $\alpha(t)$ ".

As expected, solutions have moderate growth as " x tends to $\alpha(t)$ ".
Proposition: Assume the system (S) has p.r.s.o. Then there is an open connected $\mathcal{U}^{\prime} \subset \mathcal{U}$ such that

As expected, solutions have moderate growth as " x tends to $\alpha(t)$ ".
Proposition: Assume the system (S) has p.r.s.o. Then there is an open connected $\mathcal{U}^{\prime} \subset \mathcal{U}$ such that

- (S) has a solution Y of the form

$$
Y(x, t)=\left(\sum_{i \geq i_{0}} Q_{i}(t)(x-\alpha(t))^{i}\right) \cdot(x-\alpha(t))^{\tilde{A}(t)}
$$

with $\tilde{A} \in \mathrm{gl}_{n}\left(\mathcal{O}_{\mathcal{U}^{\prime}}\right)$ and $Q_{i} \in \mathrm{gl}_{n}\left(\mathcal{O}_{\mathcal{U}^{\prime}}\right)$ for all $i \geq i_{0}$,

As expected, solutions have moderate growth as " x tends to $\alpha(t)$ ".
Proposition: Assume the system (S) has p.r.s.o. Then there is an open connected $\mathcal{U}^{\prime} \subset \mathcal{U}$ such that

- (S) has a solution Y of the form

$$
Y(x, t)=\left(\sum_{i \geq i_{0}} Q_{i}(t)(x-\alpha(t))^{i}\right) \cdot(x-\alpha(t))^{\tilde{A}(t)}
$$

with $\tilde{A} \in \mathrm{gl}_{n}\left(\mathcal{O}_{\mathcal{U}^{\prime}}\right)$ and $Q_{i} \in \mathrm{gl}_{n}\left(\mathcal{O}_{\mathcal{U}^{\prime}}\right)$ for all $i \geq i_{0}$,

- for any r-tuple $\left(m_{1}, \ldots, m_{r}\right)$ of nonnegative integers there is an integer N such that for any $t \in \mathcal{U}^{\prime}$ and any sector \mathcal{S}_{t} from $\alpha(t)$ in the complex plane, of opening $<2 \pi$,

$$
\lim _{\substack{x \rightarrow \alpha(t) \\ x \in \mathcal{S}_{t}}}(x-\alpha(t))^{N} \frac{\partial^{m_{1}+\ldots+m_{r}} Y(x, t)}{\partial^{m_{1}} t_{1} \ldots \partial^{m_{r}} t_{r}}=0
$$

Isomonodromy

Consider a parametrized differential system
(S)

$$
\partial_{x} Y=A(x, t) Y
$$

of order n, where

- $A(x, t)$ is analytic in $(x, t) \in \Omega \times \mathcal{U}$, $t=\left(t_{1}, \ldots, t_{r}\right) \in \mathcal{U}$ parameter, \mathcal{U} some polydisk in \mathbb{C}^{r} with $0 \in \mathcal{U}$.

Isomonodromy

Consider a parametrized differential system

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

of order n, where

- $A(x, t)$ is analytic in $(x, t) \in \Omega \times \mathcal{U}$, $t=\left(t_{1}, \ldots, t_{r}\right) \in \mathcal{U}$ parameter, \mathcal{U} some polydisk in \mathbb{C}^{r} with $0 \in \mathcal{U}$.
- Ω open subset of $\overline{\mathbb{C}}$, complement of a finite disjoint union of disks D_{i}

Isomonodromy

Consider a parametrized differential system

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

of order n, where

- $A(x, t)$ is analytic in $(x, t) \in \Omega \times \mathcal{U}$, $t=\left(t_{1}, \ldots, t_{r}\right) \in \mathcal{U}$ parameter, \mathcal{U} some polydisk in \mathbb{C}^{r} with $0 \in \mathcal{U}$.
- Ω open subset of $\overline{\mathbb{C}}$, complement of a finite disjoint union of disks D_{i}

Isomonodromy

Consider a parametrized differential system

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

of order n, where

- $A(x, t)$ is analytic in $(x, t) \in \Omega \times \mathcal{U}$, $t=\left(t_{1}, \ldots, t_{r}\right) \in \mathcal{U}$ parameter, \mathcal{U} some polydisk in \mathbb{C}^{r} with $0 \in \mathcal{U}$.
- Ω open subset of $\overline{\mathbb{C}}$, complement of a finite disjoint union of disks D_{i} (for any base-point $x_{0} \in \Omega$, the fundamental group $\left(\pi_{1}\left(\Omega ; x_{0}\right)\right.$ is generated by elementary loops $\left.\left[\gamma_{1}\right], \ldots,\left[\gamma_{m}\right]\right)$.
- for fixed $t \in \mathcal{U}$, there is one singularity $\alpha_{i}(t)$ in each D_{i} and none in Ω.
- The system

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

is isomonodromic if for some solution $Y_{t}(x)$ of (S) at x_{0} there are constant matrices $M_{1}, \ldots, M_{m} \in \mathrm{GL}(n, \mathbb{C})$ such that for each fixed $t \in \mathcal{U}$ the M_{i} are the monodromy matrices of (S) with respect to $Y_{t}(x)$ along the elementary loops γ_{i}.

- The system

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

is isomonodromic if for some solution $Y_{t}(x)$ of (S) at x_{0} there are constant matrices $M_{1}, \ldots, M_{m} \in \mathrm{GL}(n, \mathbb{C})$ such that for each fixed $t \in \mathcal{U}$ the M_{i} are the monodromy matrices of (S) with respect to $Y_{t}(x)$ along the elementary loops γ_{i}.

- Classically, only Fuchsian systems

$$
\begin{equation*}
\partial_{x} Y=\sum_{i=1}^{m} \frac{B_{i}(a)}{x-a_{i}}, \quad \sum_{i=1}^{m} B_{i}(a)=0 \tag{F}
\end{equation*}
$$

were considered, where the multi-parameter is the moving configuration $a=\left(a_{1}, \ldots, a_{m}\right)$ of the poles in a neighborhood $D\left(a^{0}\right)$ of their initial position a^{0}.

Schlesinger (1905) defined isomonodromy by requiring that the monodromy representation

$$
\pi_{1}\left(\mathrm{U}_{\Sigma} ; x_{0}\right) \xrightarrow{\rho_{\mathbf{a}}} \mathrm{GL}(n, \mathbb{C})
$$

be independent of a for the particular solution Y_{a} with initial condition $\tilde{Y}_{a}\left(x_{0}\right)=/$ for each a.

Schlesinger (1905) defined isomonodromy by requiring that the monodromy representation

$$
\pi_{1}\left(\mathrm{U}_{\Sigma} ; x_{0}\right) \xrightarrow{\rho_{\mathbf{a}}} \mathrm{GL}(n, \mathbb{C})
$$

be independent of a for the particular solution Y_{a} with initial condition $\tilde{Y}_{a}\left(x_{0}\right)=/$ for each a.

The Schlesinger isomonodromic deformations are characterized by the Pfaffian system (called the Schlesinger equation)

$$
\mathrm{d} B_{i}(a)=-\sum_{j=1, j \neq i}^{m} \frac{\left[B_{i}(a), B_{j}(a)\right]}{a_{i}-a_{j}} \mathrm{~d}\left(a_{i}-a_{j}\right), \quad i=1, \ldots, m
$$

which is the compatibility condition of the systems

$$
\partial_{a_{i}} Y=-\frac{B_{i}(a)}{x-a_{i}} Y
$$

Bolibrukh (1995) extended Schlesinger's definition : Equation (S) is isomonodromic if there is a fundamental solution Y_{a} of (S) with initial value $Y_{a}\left(x_{0}\right)=C(a)$ holomorphic in a, such that ρ_{a} does not depend on a.

He proved (1997) that for Fuchsian equations this is equivalent to Definition 1 and gave examples of non-Schlesinger isomonodromic deformations.

Bolibrukh (1995) extended Schlesinger's definition: Equation (S) is isomonodromic if there is a fundamental solution Y_{a} of (S) with initial value $Y_{a}\left(x_{0}\right)=C(a)$ holomorphic in a, such that ρ_{a} does not depend on a.

He proved (1997) that for Fuchsian equations this is equivalent to Definition 1 and gave examples of non-Schlesinger isomonodromic deformations.

In the special case of order two Fuchsian systems with 4 singularities the Schlesinger equation translates into a Painlevé VI equation : a non-linear second order scalar equation with no moving essential singularities (the "Painlevé property"), satisfied by the additional apparent singularity of a linear scalar Fuchsian equation representing the system.

Theorem (Sibuya, 1990) Let (S) be a parametrized system as before. The system (S) is isomonodromic if and only if (S) is part of an integrable system

$$
\left\{\begin{aligned}
\partial_{x} Y & =A(x, t) Y \\
\partial_{t_{i}} Y & =B_{i}(x, t) Y, \quad i=1, \ldots, r
\end{aligned}\right.
$$

where the matrices $B_{i}(x, t)$ are analytic in $\Omega \times \mathcal{U}$.
Assume (S) has only parametrized regular singularities (p.r.s.) . Then if A is rational in x, so are the B_{i}.

Monodromy evolving deformations

A special case of monodromy evolving deformation was studied in
/ / S. CHAKRAVARTY, M. J. ABLOWITZ, Integrability, monodromy evolving deformations, and self-dual Bianchi IX systems, Physical Review Letters 76, 6 (1996), 857-860./ /
/ / Y. OHYAMA, Monodromy evolving deformations and Halphen's equation in Groups and Symmetries, CRM Proc. Lecture Notes 47 (2009), Amer. Math. Soc. (2009)./ /

Monodromy evolving deformations

A special case of monodromy evolving deformation was studied in
/ / S. CHAKRAVARTY, M. J. ABLOWITZ, Integrability, monodromy evolving deformations, and self-dual Bianchi IX systems, Physical Review Letters 76, 6 (1996), 857-860./ /
/ / Y. OHYAMA, Monodromy evolving deformations and Halphen's equation in Groups and Symmetries, CRM Proc. Lecture Notes 47 (2009), Amer. Math. Soc. (2009)./ /

These authors studied the Darboux-Halphen equation and showed that it describes a certain type of m. e. d., in the same way as the Schlesinger equation accounts for the Schlesinger isomonodromy.

The Darboux-Halphen equation

The Darboux-Halphen V equation

$$
(\mathrm{DHV})\left\{\begin{array}{cccccc}
\omega_{1}^{\prime} & = & \omega_{2} \omega_{3} & -\omega_{1}\left(\omega_{2}+\omega_{3}\right) & +\phi^{2} \\
\omega_{2}^{\prime} & = & \omega_{3} \omega_{1} & -\omega_{2}\left(\omega_{3}+\omega_{1}\right) & +\theta^{2} \\
\omega_{3}^{\prime} & = & \omega_{1} \omega_{2} & -\omega_{3}\left(\omega_{1}+\omega_{2}\right) & -\theta \phi \\
\phi^{\prime} & = & \omega_{1}(\theta-\phi) & -\omega_{3}(\theta+\phi) & \\
\theta^{\prime} & = & -\omega_{2}(\theta-\phi) & -\omega_{3}(\theta+\phi), &
\end{array}\right.
$$

plays an important rôle in physics.

The Darboux-Halphen equation

The Darboux-Halphen V equation

$$
(\mathrm{DHV})\left\{\begin{array}{cccccc}
\omega_{1}^{\prime} & = & \omega_{2} \omega_{3} & -\omega_{1}\left(\omega_{2}+\omega_{3}\right) & +\phi^{2} \\
\omega_{2}^{\prime} & = & \omega_{3} \omega_{1} & -\omega_{2}\left(\omega_{3}+\omega_{1}\right) & +\theta^{2} \\
\omega_{3}^{\prime} & = & \omega_{1} \omega_{2} & -\omega_{3}\left(\omega_{1}+\omega_{2}\right) & -\theta \phi \\
\phi^{\prime} & = & \omega_{1}(\theta-\phi) & -\omega_{3}(\theta+\phi) & \\
\theta^{\prime} & = & -\omega_{2}(\theta-\phi) & -\omega_{3}(\theta+\phi), &
\end{array}\right.
$$

plays an important rôle in physics.
It occurs as a reduction of the selfdual Yang-Mills equation (SDYM).
For $\theta=\phi,(\mathrm{DH} \mathrm{V})$ is equivalent to Einstein's selfdual vacuum equations.

The Darboux-Halphen equation

The Darboux-Halphen V equation

$$
(\mathrm{DHV})\left\{\begin{array}{cccccc}
\omega_{1}^{\prime} & = & \omega_{2} \omega_{3} & -\omega_{1}\left(\omega_{2}+\omega_{3}\right) & +\phi^{2} \\
\omega_{2}^{\prime} & = & \omega_{3} \omega_{1} & -\omega_{2}\left(\omega_{3}+\omega_{1}\right) & +\theta^{2} \\
\omega_{3}^{\prime} & = & \omega_{1} \omega_{2} & -\omega_{3}\left(\omega_{1}+\omega_{2}\right) & -\theta \phi \\
\phi^{\prime} & = & \omega_{1}(\theta-\phi) & -\omega_{3}(\theta+\phi) & \\
\theta^{\prime} & = & -\omega_{2}(\theta-\phi) & -\omega_{3}(\theta+\phi), &
\end{array}\right.
$$

plays an important rôle in physics.
It occurs as a reduction of the selfdual Yang-Mills equation (SDYM).
For $\theta=\phi$, (DH V) is equivalent to Einstein's selfdual vacuum equations.
For $\theta=\phi=0$, it is Halphen's original equation (H II), solving Darboux's geometry problem about orthogonal surfaces.

History of the DH-equation

Equation (H II) goes back to Darboux's work on orthogonal systems of surfaces:
[1] Gaston DARBOUX : Systèmes orthogonaux. Ann. Sc. É.N.S. (1866)1e série, tome 3, pp. 97-141.
[2] Gaston DARBOUX : Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux. Ann. Sc. É.N.S. (1878), 2e série, tome 7, pp. 101-150, 227-260, 275-348.

Problem 1: On which condition on a given pair ($\mathcal{F}_{1}, \mathcal{F}_{2}$) of orthogonal families of surfaces in \mathbb{R}^{3} does there exist a family \mathcal{F}_{3} such that $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right)$ is a triorthogonal system of pairwise orthogonal families?

Problem 1: On which condition on a given pair $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ of orthogonal families of surfaces in \mathbb{R}^{3} does there exist a family \mathcal{F}_{3} such that $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right)$ is a triorthogonal system of pairwise orthogonal families?

In [1], Darboux gave a necessary and sufficient condition on $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ to solve the problem: that the intersection of any surfaces $S_{1} \in \mathcal{F}_{1}$ and $S_{2} \in \mathcal{F}_{2}$ be a line of curvature of both \mathcal{F}_{1} and \mathcal{F}_{2}.

The necessary condition was Dupin's theorem (1813).

Problem 2: On which condition on its parameter $u=\varphi(x, y, z)$ does a given one-parameter family \mathcal{F} of surfaces belong to a triorthogonal system $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right)$, of three pairwise orthogonal families?

Problem 2: On which condition on its parameter $u=\varphi(x, y, z)$ does a given one-parameter family \mathcal{F} of surfaces belong to a triorthogonal system $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right)$, of three pairwise orthogonal families?

In [2] Darboux found and solved an order three PDE satisfied by u. He obtained the general solution from a particular family of ruled helicoidal surfaces.

Problem 2: On which condition on its parameter $u=\varphi(x, y, z)$ does a given one-parameter family \mathcal{F} of surfaces belong to a triorthogonal system $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right)$, of three pairwise orthogonal families?

In [2] Darboux found and solved an order three PDE satisfied by u. He obtained the general solution from a particular family of ruled helicoidal surfaces.
(based on previous work by Bonnet and Cayley)

Élie CARTAN later used his exterior differential calculus to prove that Problem 1 has a solution.
/ / Élie CARTAN : Les systèmes différentiels extérieurs et leurs applications géométriques, Exposés de géométrie XII, Hermann ed. (1945) / /

É. Cartan generalized the problem, replacing orthogonality by any given angle, or considering p pairwise orthogonal families of hypersurfaces in p-space.

Problem 3 (Darboux): Given two families \mathcal{F}_{1} and \mathcal{F}_{2} consisting each of parallel surfaces does there exist a family \mathcal{F} orthogonal to both \mathcal{F}_{1} and \mathcal{F}_{2} ?

Problem 3 (Darboux): Given two families \mathcal{F}_{1} and \mathcal{F}_{2} consisting each of parallel surfaces does there exist a family \mathcal{F} orthogonal to both \mathcal{F}_{1} and \mathcal{F}_{2} ?

It is easy to prove that a solution must either consist of planes, or of ruled quadrics.

If \mathcal{F} consists of quadrics with a center, these have a simultaneously reduced equations:

$$
\frac{x^{2}}{a(u)}+\frac{y^{2}}{b(u)}+\frac{z^{2}}{c(u)}=1
$$

which depends on the parameter u.

The family \mathcal{F} is a solution iff
(D) $\quad c\left(a^{\prime}+b^{\prime}\right)=b\left(a^{\prime}+c^{\prime}\right)=a\left(b^{\prime}+c^{\prime}\right)$.
(the Darboux equation).

The family \mathcal{F} is a solution iff

$$
(D) \quad c\left(a^{\prime}+b^{\prime}\right)=b\left(a^{\prime}+c^{\prime}\right)=a\left(b^{\prime}+c^{\prime}\right)
$$

(the Darboux equation).
"These equations do not seem to be integrable by known procedures" (Darboux, 1878).

The family \mathcal{F} is a solution iff

$$
\begin{equation*}
c\left(a^{\prime}+b^{\prime}\right)=b\left(a^{\prime}+c^{\prime}\right)=a\left(b^{\prime}+c^{\prime}\right) \tag{D}
\end{equation*}
$$

(the Darboux equation).
"These equations do not seem to be integrable by known procedures" (Darboux, 1878).

Darboux gives up. He limits his study to centerless quadrics. He finds a family \mathcal{F} of paraboloids

$$
\frac{y^{2}}{\alpha+u}+\frac{z^{2}}{\alpha-u}=2 x+\alpha \log u
$$

solution of the problem, and claims there are surfaces of revolution as well.

Halphen's solution

Halphen (1881) solves Darboux's equation (D) in the following form :

$$
\text { (H I) }\left\{\begin{array}{l}
\omega_{1}^{\prime}+\omega_{2}^{\prime}=\omega_{1} \omega_{2} \\
\omega_{2}^{\prime}+\omega_{3}^{\prime}=\omega_{2} \omega_{3} \\
\omega_{3}^{\prime}+\omega_{1}^{\prime}=\omega_{3} \omega_{1}
\end{array}\right.
$$

(Halphen I equation)

Halphen's solution

Halphen (1881) solves Darboux's equation (D) in the following form :

$$
\text { (H I) }\left\{\begin{array}{l}
\omega_{1}^{\prime}+\omega_{2}^{\prime}=\omega_{1} \omega_{2} \\
\omega_{2}^{\prime}+\omega_{3}^{\prime}=\omega_{2} \omega_{3} \\
\omega_{3}^{\prime}+\omega_{1}^{\prime}=\omega_{3} \omega_{1}
\end{array}\right.
$$

(Halphen I equation)
He solves the more general QHDS (quadratic homogeneous differential system)

$$
\text { (H II) }\left\{\begin{array}{l}
\omega_{1}^{\prime}=a_{1} \omega_{1}^{2}+\left(\lambda-a_{1}\right)\left(\omega_{1} \omega_{2}+\omega_{3} \omega_{1}-\omega_{2} \omega_{3}\right) \\
\omega_{2}^{\prime}=a_{1} \omega_{2}^{2}+\left(\lambda-a_{2}\right)\left(\omega_{2} \omega_{3}+\omega_{1} \omega_{2}-\omega_{3} \omega_{1}\right) \\
\omega_{3}^{\prime}=a_{1} \omega_{3}^{2}+\left(\lambda-a_{3}\right)\left(\omega_{3} \omega_{1}+\omega_{2} \omega_{3}-\omega_{1} \omega_{2}\right)
\end{array}\right.
$$

(Halphen II equation) by means of hypergeometric functions.

Halphen's solution

Halphen (1881) solves Darboux's equation (D) in the following form :

$$
\text { (H I) }\left\{\begin{array}{l}
\omega_{1}^{\prime}+\omega_{2}^{\prime}=\omega_{1} \omega_{2} \\
\omega_{2}^{\prime}+\omega_{3}^{\prime}=\omega_{2} \omega_{3} \\
\omega_{3}^{\prime}+\omega_{1}^{\prime}=\omega_{3} \omega_{1}
\end{array}\right.
$$

(Halphen I equation)
He solves the more general QHDS (quadratic homogeneous differential system)

$$
\text { (H II) }\left\{\begin{array}{l}
\omega_{1}^{\prime}=a_{1} \omega_{1}^{2}+\left(\lambda-a_{1}\right)\left(\omega_{1} \omega_{2}+\omega_{3} \omega_{1}-\omega_{2} \omega_{3}\right) \\
\omega_{2}^{\prime}=a_{1} \omega_{2}^{2}+\left(\lambda-a_{2}\right)\left(\omega_{2} \omega_{3}+\omega_{1} \omega_{2}-\omega_{3} \omega_{1}\right) \\
\omega_{3}^{\prime}=a_{1} \omega_{3}^{2}+\left(\lambda-a_{3}\right)\left(\omega_{3} \omega_{1}+\omega_{2} \omega_{3}-\omega_{1} \omega_{2}\right)
\end{array}\right.
$$

(Halphen II equation) by means of hypergeometric functions.
He also considers more general QHDS

$$
\left\{\omega_{r}^{\prime}=\psi_{r}\left(\omega_{1}, \ldots, \omega_{r}\right)\right\}_{r=1, \ldots, l}
$$

where ψ_{r} are quadratic forms (with an extra symmetry condition) like equation(DH-V) above.
/ / Georges Henri HALPHEN : Sur un sytème d'équations différentielles, C. R. Acad. Sci. 92 (1881), pp. 1101-1103. / /
/ / Georges Henri HALPHEN : Sur certains systèmes d'équations différentielles, C. R. Acad. Sci. 92 (1881), pp. 1404-1406. / /

- Contrary to other SDYM reductions (like Painlevé equations), (DH V) does not satisfy the Painlevé property (there is a boundary of movable essential singularities) : not likely to rule isomonodromy !
- Contrary to other SDYM reductions (like Painlevé equations), (DH V) does not satisfy the Painlevé property (there is a boundary of movable essential singularities) : not likely to rule isomonodromy !
- Equation (H II) is equivalent to a system

$$
x_{i}^{\prime}=Q\left(x_{i}\right), \quad i=1,2,3
$$

where $Q(X)=X^{2}+a\left(x_{1}-x_{2}\right)^{2}+b\left(x_{2}-x_{3}\right)^{2}+c\left(x_{3}-x_{1}\right)^{2}(a, b, c$, constants)

- Contrary to other SDYM reductions (like Painlevé equations), (DH V) does not satisfy the Painlevé property (there is a boundary of movable essential singularities) : not likely to rule isomonodromy !
- Equation (H II) is equivalent to a system

$$
x_{i}^{\prime}=Q\left(x_{i}\right), \quad i=1,2,3
$$

where $Q(X)=X^{2}+a\left(x_{1}-x_{2}\right)^{2}+b\left(x_{2}-x_{3}\right)^{2}+c\left(x_{3}-x_{1}\right)^{2}(a, b, c$, constants)

- Equation (H II) is equivalent to a system

$$
x_{i}^{\prime}=Q_{i}\left(x_{1}, x_{2}, x_{3}\right), \quad i=1,2,3,
$$

where $Q_{i}=x_{i}^{2}+a\left(x_{1}-x_{2}\right)^{2}+b\left(x_{2}-x_{3}\right)^{2}+c\left(x_{3}-x_{1}\right)^{2}$
(a, b, c, constants)

- Equation (H-II) is the integrability condition of the Lax pair

$$
\begin{gather*}
\frac{\partial Y}{\partial x}=\left(\frac{\mu I}{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}+\sum_{i=1}^{3} \frac{\lambda_{i} K}{x-x_{i}}\right) Y \tag{1}\\
\frac{\partial Y}{\partial t}=\left(\nu I+\sum_{i=1}^{3} \lambda_{i} x_{i} K\right) Y-Q(x) \frac{\partial Y}{\partial x} \tag{2}
\end{gather*}
$$

where
$x_{i}=x_{i}(t)$ are parametrized (simple) singularities
K is a constant traceless 2×2 matrix, I the identity matrix
μ, λ_{i} are constants, $\mu \neq 0, \lambda_{1}+\lambda_{2}+\lambda_{3}=0(\Rightarrow$ no singularity at $\infty)$
ν is solution of

$$
\frac{\partial \nu}{\partial x}=-\frac{x+x_{1}+x_{2}+x_{3}}{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)} \mu .
$$

- Equation (H-II) is the integrability condition of the Lax pair

$$
\begin{gather*}
\frac{\partial Y}{\partial x}=\left(\frac{\mu I}{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}+\sum_{i=1}^{3} \frac{\lambda_{i} K}{x-x_{i}}\right) Y \tag{1}\\
\frac{\partial Y}{\partial t}=\left(\nu I+\sum_{i=1}^{3} \lambda_{i} x_{i} K\right) Y-Q(x) \frac{\partial Y}{\partial x} \tag{2}
\end{gather*}
$$

where
$x_{i}=x_{i}(t)$ are parametrized (simple) singularities
K is a constant traceless 2×2 matrix, I the identity matrix
μ, λ_{i} are constants, $\mu \neq 0, \lambda_{1}+\lambda_{2}+\lambda_{3}=0(\Rightarrow$ no singularity at $\infty)$
ν is solution of

$$
\frac{\partial \nu}{\partial x}=-\frac{x+x_{1}+x_{2}+x_{3}}{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)} \mu .
$$

- Since ν is not rational in x, the system (1) is non-isomonodromic, by Sibuya's criterion.

Monodromy of Equation (1)

Fix Y, a fundamental solution of the Lax pair, at some x_{0} not belonging to fixed disks D_{i} with centers $x_{i}(t)$, for all i. A computation shows that the monodromy of Equation (1) is

$$
M_{i}(t)=c_{i}(t) M_{i}\left(t_{0}\right)
$$

with

$$
\begin{gathered}
M_{i}\left(t_{0}\right)=e^{2 \pi \sqrt{-1} L_{i}\left(t_{0}\right)} \\
c_{i}(t)=e^{-2 \pi \sqrt{-1} \mu \int_{t_{0}}^{t} \beta_{\boldsymbol{i}}(t) d t}
\end{gathered}
$$

where

$$
\frac{x+\sum_{i=1}^{3} x_{i}}{\prod_{i=1}^{3}\left(x-x_{i}(t)\right)}=\sum_{i=1}^{3} \frac{\beta_{i}(t)}{x-x_{i}(t)}
$$

Parametrized Picard-Vessiot theory

The parametrized Picard-Vessiot theory was developed by
/ / Ellis R. KOLCHIN : Differential algebraic groups,
Academic Press, New York, 1985./ /
/ / Phyllis J. CASSIDY, Michael F. SINGER: Galois theory of parameterized differential equations and linear differential algebraic groups, IRMA Lectures in Mathematics and Theoretical Physics 9 (2006), 113-157. (Special volume in memory of A. A. Bolibrukh)/ /
/ / Peter LANDESMANN : Generalized differential Galois theory
Trans. Amer. Math. Soc. 360, 8 (2008), 4441-4495./ /

- Let $\Delta=\left\{\partial_{0}, \partial_{1}, \ldots, \partial_{r}\right\}$ be a set of commuting derivations on a field L, $L\left\{y_{1}, y_{2}, \ldots\right\}_{\Delta}$ the L-algebra of Δ-differential polynomials: polynomials in the differential indeterminates $\left\{\partial_{j}^{(k)} y_{i}\right\}_{i, j \geq 1, k \geq 0}$.
- Let $\Delta=\left\{\partial_{0}, \partial_{1}, \ldots, \partial_{r}\right\}$ be a set of commuting derivations on a field L, $L\left\{y_{1}, y_{2}, \ldots\right\}_{\Delta}$ the L-algebra of Δ-differential polynomials: polynomials in the differential indeterminates $\left\{\partial_{j}^{(k)} y_{i}\right\}_{i, j \geq 1, k \geq 0}$.
- Closed subsets for the Kolchin topology in the affine space L^{p} are the zero-sets of systems

$$
\left\{f_{1}=\ldots=f_{s}=0\right\}, \quad f_{i} \in L\left\{y_{1}, \ldots, y_{p}\right\}_{\Delta}
$$

- Let $\Delta=\left\{\partial_{0}, \partial_{1}, \ldots, \partial_{r}\right\}$ be a set of commuting derivations on a field L, $L\left\{y_{1}, y_{2}, \ldots\right\}_{\Delta}$ the L-algebra of Δ-differential polynomials: polynomials in the differential indeterminates $\left\{\partial_{j}^{(k)} y_{i}\right\}_{i, j \geq 1, k \geq 0}$.
- Closed subsets for the Kolchin topology in the affine space L^{p} are the zero-sets of systems

$$
\left\{f_{1}=\ldots=f_{s}=0\right\}, \quad f_{i} \in L\left\{y_{1}, \ldots, y_{p}\right\}_{\Delta} .
$$

- Linear differential algebraic groups are the subgroups of $\mathrm{GL}(n, L)$ which are Kolchin-closed.

Differentially closed fields

- Definition: A Δ-differential field L is differentially closed if for any differential polynomials $P_{1}, \ldots, P_{s}, Q \in L\left\{y_{1}, y_{2} \ldots\right\}_{\Delta}$, the system

$$
\left\{\begin{aligned}
P_{1} & =\ldots=P_{s}=0 \\
Q & \neq 0
\end{aligned}\right.
$$

has a solution in L whenever it has a solution in some differential Δ-extension of L.

Differentially closed fields

- Definition: A Δ-differential field L is differentially closed if for any differential polynomials $P_{1}, \ldots, P_{s}, Q \in L\left\{y_{1}, y_{2} \ldots\right\}_{\Delta}$, the system

$$
\left\{\begin{aligned}
P_{1} & =\ldots=P_{s}=0 \\
Q & \neq 0
\end{aligned}\right.
$$

has a solution in L whenever it has a solution in some differential Δ-extension of L.

- Differentially closed fields are (almost) analogues of algebraically closed fields.

Differentially closed fields

- Definition: A Δ-differential field L is differentially closed if for any differential polynomials $P_{1}, \ldots, P_{s}, Q \in L\left\{y_{1}, y_{2} \ldots\right\}_{\Delta}$, the system

$$
\left\{\begin{aligned}
P_{1} & =\ldots \\
Q & \neq 0
\end{aligned}\right.
$$

has a solution in L whenever it has a solution in some differential Δ-extension of L.

- Differentially closed fields are (almost) analogues of algebraically closed fields.
- ROBINSON (1959), BLUM (1968), SHELAH (1972), KOLCHIN (1974), gave different (equivalent) definitions.
They proved the existence, for any differential field k, of a unique differential closure, that is, a differential, differentially closed extension of k that can be embedded in any other differentially closed extension of k.

PPV-extensions

Consider an (ordinary) differential system of order n
(S)

$$
\partial_{0} Y=A Y
$$

where A has entries in the Δ-differential field $k, \Delta=\left\{\partial_{0}, \ldots, \partial_{r}\right\}$.

PPV-extensions

Consider an (ordinary) differential system of order n

$$
\begin{equation*}
\partial_{0} Y=A Y \tag{S}
\end{equation*}
$$

where A has entries in the Δ-differential field $k, \Delta=\left\{\partial_{0}, \ldots, \partial_{r}\right\}$.
Definition A parametrized Picard-Vessiot extension (PPV-extension) of k for (S) is a Δ-differential extension K of k such that

- $K=k\langle Z\rangle_{\Delta}$ for some fundamental solution Z of (S) in K
($=$ the Δ - extension generated by the entries of Z)
- $K^{\partial_{0}}=k^{\partial_{0}}$ (no new ∂_{0}-constants).

PPV-extensions

Consider an (ordinary) differential system of order n

$$
\begin{equation*}
\partial_{0} Y=A Y \tag{S}
\end{equation*}
$$

where A has entries in the Δ-differential field $k, \Delta=\left\{\partial_{0}, \ldots, \partial_{r}\right\}$.
Definition A parametrized Picard-Vessiot extension (PPV-extension) of k for (S) is a Δ-differential extension K of k such that

- $K=k\langle Z\rangle_{\Delta}$ for some fundamental solution Z of (S) in K
($=$ the Δ - extension generated by the entries of Z)
- $K^{\partial_{0}}=k^{\partial_{0}}$ (no new ∂_{0}-constants).

The corresponding parametrized Picard-Vessiot group (PPV-group), or parametrized differential Galois group, is

$$
\operatorname{Gal}_{\Delta}(S)=\operatorname{Aut}_{\Delta-\operatorname{diff}}(K \mid k)
$$

Existence of PPV-extensions

In analogy with classical Picard-Vessiot theory, the key condition here is that $k^{\partial_{0}}$, the field of ∂_{0}-constants of k, be Δ-differentially closed.

Existence of PPV-extensions

In analogy with classical Picard-Vessiot theory, the key condition here is that $k^{\partial_{0}}$, the field of ∂_{0}-constants of k, be Δ-differentially closed.

Theorem (Cassidy \& Singer, 2006): Assuming $k^{\partial_{0}}$ is differentially closed,
(1) there is a unique $P P V$-extension K of k, up to isomorphism.

Existence of PPV-extensions

In analogy with classical Picard-Vessiot theory, the key condition here is that $k^{\partial_{0}}$, the field of ∂_{0}-constants of k, be Δ-differentially closed.

Theorem (Cassidy \& Singer, 2006): Assuming $k^{\partial_{0}}$ is differentially closed,
(1) there is a unique $P P V$-extension K of k, up to isomorphism.
(2) its PPV-group is a linear differential algebraic group

$$
\mathrm{Gal}_{\Delta}(S) \subset \mathrm{GL}\left(n, k^{\delta o}\right)
$$

PPV-Galois correspondence

Let K be a PPV-extension of k for (S), and G the corresponding PPV-group.
In PPV-theory, PPV-Galois correspondence holds between
$\{$ intermediate differential extensions $k \subset L \subset K\}$ and $\left\{\right.$ Kolchin-closed subgroups of $\mathrm{Gal}_{\Delta}(S)$ \}.

PPV-Galois correspondence

Let K be a PPV-extension of k for (S), and G the corresponding PPV-group.
In PPV-theory, PPV-Galois correspondence holds between
$\{$ intermediate differential extensions $k \subset L \subset K\}$ and $\left\{\right.$ Kolchin-closed subgroups of $\left.\mathrm{Gal}_{\Delta}(S)\right\}$.

Note that differentially closed \Rightarrow algebraically closed.
Let \tilde{K} be the (usual) PV extension of k for (S). Then $\tilde{K} \subset K$ and

$$
G^{P V}(S)=\overline{G^{P P V}(S)}
$$

(the PPV-group is Zariski-dense in the PV-group)

For second order equations, parametrized analogues of the Kovacic algorithm were given by:
/ / Thomas DREYFUS: Computing the parameterized differential Galois group of some parameterized linear differential equation of order two, arXiv:1110.1053 (2011), to appear in Proceedings of the AMS. / /
/ / Carlos E. ARRECHE: Computing the differential Galois group of a one-parameter family of second order linear differential equations arXiv:1208.2226 (2012)./ /

The basic example

Consider the parametrized differential equation
(E)

$$
\partial_{x} y=\frac{t}{x} y, \quad t \in \mathbb{C} \quad\left(\partial_{x}=\frac{d}{d x}\right)
$$

over the differential base-field $\mathbb{C}(x, t)$.

- (E) has simple singularities near 0 and ∞.

The basic example

Consider the parametrized differential equation
(E)

$$
\partial_{x} y=\frac{t}{x} y, \quad t \in \mathbb{C} \quad\left(\partial_{x}=\frac{d}{d x}\right)
$$

over the differential base-field $\mathbb{C}(x, t)$.

- (E) has simple singularities near 0 and ∞.
- Let $C=\overline{\mathbb{C}(t)}{ }^{\Delta}$ (differential closure). The PPV-extension of $C(x)$ is

$$
K=C(x)\left\langle x^{t}\right\rangle=C\left(x, x^{t}, \log x\right) .
$$

The basic example

Consider the parametrized differential equation
(E)

$$
\partial_{x} y=\frac{t}{x} y, \quad t \in \mathbb{C} \quad\left(\partial_{x}=\frac{d}{d x}\right)
$$

over the differential base-field $\mathbb{C}(x, t)$.

- (E) has simple singularities near 0 and ∞.
- Let $C=\overline{\mathbb{C}(t)}{ }^{\Delta}$ (differential closure). The PPV-extension of $C(x)$ is

$$
K=C(x)\left\langle x^{t}\right\rangle=C\left(x, x^{t}, \log x\right) .
$$

- The PPV-group over $C(x)$ is

$$
G=\left\{a \in C^{*},\left(\partial_{t}^{2} a\right) a-\left(\partial_{t} a\right)^{2}=0\right\},
$$

(Kolchin-closed in $C^{*}=\mathrm{GL}\left(1, C^{*}\right)$).

Parametrized monodromy

- Definition : Let $Y(x, t)$ be a fundamental solution of the parametrized differential system

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y . \tag{S}
\end{equation*}
$$

The parametrized monodromy matrix of (S) around $\alpha_{i}(t)$ is $M_{i}(t)$, where for each fixed $t \in \mathcal{U}, M_{i}(t)$ is the monodromy matrix for Y around $\alpha_{i}(t)$.

Parametrized monodromy

- Definition : Let $Y(x, t)$ be a fundamental solution of the parametrized differential system

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y . \tag{S}
\end{equation*}
$$

The parametrized monodromy matrix of (S) around $\alpha_{i}(t)$ is $M_{i}(t)$, where for each fixed $t \in \mathcal{U}, M_{i}(t)$ is the monodromy matrix for Y around $\alpha_{i}(t)$.

- Question: Do the parametrized monodromy matrices $M_{i}(t)$ belong to the PPV-group ? in which sense? over which differential field?
- Assume the coefficients of
(S)

$$
\partial_{x} Y=A(x, t) Y
$$

are rational in x.

- Assume the coefficients of
(S)

$$
\partial_{x} Y=A(x, t) Y
$$

are rational in x.

- Let $\partial_{x}=\frac{d}{d x}, \partial_{t_{i}}=\frac{d}{d t_{i}}, \Delta=\left\{\partial_{x}, \partial_{t_{1}}, \ldots, \partial_{t_{r}}\right\}, \Delta_{t}=\left\{\partial_{t_{1}}, \ldots, \partial_{t_{r}}\right\}$
- Assume the coefficients of

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

are rational in x.

- Let $\partial_{x}=\frac{d}{d x}, \partial_{t_{i}}=\frac{d}{d t_{i}}, \Delta=\left\{\partial_{x}, \partial_{t_{1}}, \ldots, \partial_{t_{r}}\right\}, \Delta_{t}=\left\{\partial_{t_{1}}, \ldots, \partial_{t_{r}}\right\}$
- Theorem 1 (M. F. Singer \& C. M.) Let C be a differentially closed Δ_{t}-field containing \mathbb{C}, such that the entries of A, in

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

belong to $C(x)$.
If C_{1} is any differentially closed Δ_{t}-extension of C containing the coefficients of the parametrized monodromy matrices $M_{i}(t)$, then

$$
M_{i}(t) \in G\left(C_{1}\right)
$$

where $G=\operatorname{Gal}_{C(x)}((S))$ is the PPV-group of (S) over $C(x)$.

The proof in particular relies on
Theorem (Seidenberg, 1969) Let K and K_{1}, with $K \subset K_{1}$, be finitely generated differential extensions of \mathbb{Q}. Assume that K consists of meromorphic functions on some open subset $\Omega \in \mathbb{C}^{r}$. Then K_{1} is differentially isomorphic to a field $\widetilde{K_{1}}$ of functions meromorphic on an open subset $\Omega_{1} \subset \Omega$, s. t. the restrictions of functions of K to Ω_{1} belong to K_{1}.

The proof in particular relies on
Theorem (Seidenberg, 1969) Let K and K_{1}, with $K \subset K_{1}$, be finitely generated differential extensions of \mathbb{Q}. Assume that K consists of meromorphic functions on some open subset $\Omega \in \mathbb{C}^{r}$. Then K_{1} is differentially isomorphic to a field $\widetilde{K_{1}}$ of functions meromorphic on an open subset $\Omega_{1} \subset \Omega$, s. t. the restrictions of functions of K to Ω_{1} belong to \widetilde{K}_{1}.

Note that the asumption on K is always satisfied (once the theorem holds). The important information here is Ω.

Basic example

In the example
(E)

$$
\partial_{x} y=\frac{t}{x} y
$$

- Let $C=\overline{\mathbb{C}}(t)^{\partial_{t}}$ (differential closure)

Basic example

In the example
(E)

$$
\partial_{x} y=\frac{t}{x} y
$$

- Let $C=\overline{\mathbb{C}}(t)^{\partial_{t}}$ (differential closure)
- Parametrized monodromy matrices: $m_{0}(t)=e^{2 \pi i t}$ around 0 and $m_{\infty}(t)=1 / m_{0}=e^{-2 \pi i t}$ around ∞, w.r.t. the solution x^{t}.

Basic example

In the example
(E)

$$
\partial_{x} y=\frac{t}{x} y
$$

- Let $C=\overline{\mathbb{C}}(t)^{\partial_{t}}$ (differential closure)
- Parametrized monodromy matrices: $m_{0}(t)=e^{2 \pi i t}$ around 0 and $m_{\infty}(t)=1 / m_{0}=e^{-2 \pi i t}$ around ∞, w.r.t. the solution x^{t}.
- The matrices $m_{0}(t)$ and $m_{\infty}(t)$ clearly belong to

$$
\operatorname{Gal}_{C(x)}((E))=\left\{a \in C^{*},\left(\partial_{t}^{2} a\right) a-\left(\partial_{t} a\right)^{2}=0 .\right\}
$$

Basic example

In the example
(E)

$$
\partial_{x} y=\frac{t}{x} y
$$

- Let $C=\overline{\mathbb{C}}(t)^{\partial_{\mathbf{t}}}$ (differential closure)
- Parametrized monodromy matrices: $m_{0}(t)=e^{2 \pi i t}$ around 0 and $m_{\infty}(t)=1 / m_{0}=e^{-2 \pi i t}$ around ∞, w.r.t. the solution x^{t}.
- The matrices $m_{0}(t)$ and $m_{\infty}(t)$ clearly belong to

$$
\operatorname{Gal}_{C(x)}((E))=\left\{a \in C^{*},\left(\partial_{t}^{2} a\right) a-\left(\partial_{t} a\right)^{2}=0 .\right\}
$$

- Note that the equation is obviously non-isomonodromic since $m_{0}(t)=e^{2 \pi i t}$, since also it extends to an integrable system with the non-rational equation $\partial_{t} y=\log (x) y$ (Sibuya's criterion).

Parametric version of Schlesinger's density theorem

The following extends Schlesinger's theorem:
Theorem 2 (M. F. Singer \& C. M.) Consider an order n system

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

with $A \in \operatorname{gl}\left(n, \mathcal{O}_{\mathcal{U}}(x)\right),(x, t) \in \Omega \times \mathcal{U}$ with asumptions as before.
Assume (S) has parametrized regular singularities near each $\alpha_{i}(0)$ and let a differentially closed Δ_{t}-field C contain :

- all coefficients of powers of x fo the entries of A
- all entries of the parametrized monodromy matrices $M_{i}(t)$ for each i.

Then the $M_{i}(t)$ generate a Kolchin-dense subgroup of $G(C)$, where G is the PPV-group of (S) over $C(x)$.

The proof uses Galois correspondence and
Lemma Let \mathcal{F} be a differential field of meromorphic functions in (x, t) on $\mathcal{U} \times \mathcal{V}, \mathcal{U} \subset \mathbb{C}, \mathcal{V} \subset \mathbb{C}^{r}$ (assume $x \in \mathcal{F}$) and let C denote the field of ∂_{x}-constants of \mathcal{F}.

If a function $f \in \mathcal{F}$ is such that $f(x, t) \in \mathbb{C}(x)$ for all fixed $t \in \mathcal{V}$, then $f(x, t) \in C(x)$.
(adapted from a result of R. Palais, 1978)

Parametric version of the weak Riemann-Hilbert problem

Theorem 3 (M. F. Singer \& C. M.) Let $\Sigma=\left\{a_{1}, \ldots, a_{s}\right\} \subset \overline{\mathbb{C}}$ (distinct) and $\mathcal{U} \subset \mathbb{C}^{r}$ an open polydisk. Let $M_{i}(t) \in \mathrm{GL}\left(n, \mathcal{O}_{\mathcal{U}}\right), i=1, \ldots, s$, be matrices such that

$$
M_{1}(t) \ldots M_{s}(t)=1
$$

Parametric version of the weak Riemann-Hilbert problem

Theorem 3 (M. F. Singer \& C. M.) Let $\Sigma=\left\{a_{1}, \ldots, a_{s}\right\} \subset \overline{\mathbb{C}}$ (distinct) and $\mathcal{U} \subset \mathbb{C}^{r}$ an open polydisk. Let $M_{i}(t) \in \mathrm{GL}\left(n, \mathcal{O}_{\mathcal{U}}\right), i=1, \ldots, s$, be matrices such that

$$
M_{1}(t) \ldots M_{s}(t)=1
$$

Then there is a parametrized system

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

with $A \in \operatorname{gl}\left(n, \mathcal{O}_{\mathcal{U}}{ }^{\prime}(x)\right), \mathcal{U}^{\prime} \subset \mathcal{U}$, such that

- the set of singular points of (S) is Σ
- the parametrized monodromy matrix of (S) around each a_{i} is $M_{i}(t)$ (with respect to some fund. sol. and arbitrary fixed base-point $x_{0} \notin \Sigma$).

Moreover, the $M_{i}(t)$ can be realized by a system (S) with all singularities simple, but one.

Inverse problem

Corollary (M. F. Singer \& C. M.) Let $G \subset G L(n, C)$ be a Δ_{t}-linear differential algebraic group, where C is a Δ_{t}-universal field C and $\Delta_{t}=\left\{\partial_{t_{1}}, \ldots, \partial_{t_{r}}\right\}$. If G contains a finitely generated, Kolchin-dense subgroup, then G is realizable as the PPV-group over $C(x)$ of some $\partial_{x} Y=A Y$ with coefficients in $C(x)$.

Inverse problem

Corollary (M. F. Singer \& C. M.) Let $G \subset G L(n, C)$ be a Δ_{t}-linear differential algebraic group, where C is a Δ_{t}-universal field C and $\Delta_{t}=\left\{\partial_{t_{1}}, \ldots, \partial_{t_{r}}\right\}$. If G contains a finitely generated, Kolchin-dense subgroup, then G is realizable as the PPV-group over $C(x)$ of some $\partial_{x} Y=A Y$ with coefficients in $C(x)$.

Examples: $\mathbb{G}_{a}(C)$ and $\mathbb{G}_{m}(C)$ are not PPV-groups over $C(x)$.

Inverse problem

Corollary (M. F. Singer \& C. M.) Let $G \subset G L(n, C)$ be a Δ_{t}-linear differential algebraic group, where C is a Δ_{t}-universal field C and $\Delta_{t}=\left\{\partial_{t_{1}}, \ldots, \partial_{t_{r}}\right\}$. If G contains a finitely generated, Kolchin-dense subgroup, then G is realizable as the PPV-group over $C(x)$ of some $\partial_{x} Y=A Y$ with coefficients in $C(x)$.

Examples: $\mathbb{G}_{a}(C)$ and $\mathbb{G}_{m}(C)$ are not PPV-groups over $C(x)$.

Theorem (Singer, 2012) Let (C, ∂) be a universal field and let G be a linear algebraic group defined over C. Then $G(C)$ is realizable as the $P P V$-group over $\left(C(x), \partial, \partial_{x}\right)$ iff the identity component G^{0} of G has no quotient (as an algebraic group) isomorphic to the \mathbb{G}_{a} or \mathbb{G}_{m}.

Isomonodromy (PPV-criterion)

Isomonodromy (PPV-criterion)

Theorem (Cassidy \& Singer, 2006) Assume the coefficients of

$$
\begin{equation*}
\partial_{x} Y=A(x, t) Y \tag{S}
\end{equation*}
$$

are rational in x, and that (S) has p.r.s. only.
Let C be a Δ_{t}-differentially closed extension of $\mathcal{O}_{\mathcal{U}}$, with $\Delta_{t}=\left\{\partial_{t_{1}}, \ldots, \partial_{t_{r}}\right\}$. Then (S) is isomonodromic if and only if the PPV-group is conjugate in $\mathrm{GL}(n, C)$ to a constant linear algebraic group (that is, a subgroup of $\mathrm{GL}(n, \mathbb{C})$).

Projective isomonodromy

- Definition: With notation as before, a parametrized system (S) with singularities $\alpha_{1}(t), \ldots, \alpha_{\boldsymbol{s}}(t)$ is projectively isomonodromic if for all i there are
- constant matrices $G_{i} \in \mathrm{GL}(n, \mathbb{C})$
- analytic functions $c_{i}: \mathcal{U} \rightarrow \mathbb{C}^{*}$
such that for each fixed $t \in \mathcal{U}$, some fundamental solution $Y_{t}(x)$ of (S) has the parametrized monodromy matrix

$$
M_{i}(t)=c_{i}(t) G_{i}
$$

around α_{i} for each i.

Projective isomonodromy

- Definition: With notation as before, a parametrized system (S) with singularities $\alpha_{1}(t), \ldots, \alpha_{\boldsymbol{s}}(t)$ is projectively isomonodromic if for all i there are
- constant matrices $G_{i} \in G L(n, \mathbb{C})$
- analytic functions $c_{i}: \mathcal{U} \rightarrow \mathbb{C}^{*}$
such that for each fixed $t \in \mathcal{U}$, some fundamental solution $Y_{t}(x)$ of (S) has the parametrized monodromy matrix

$$
M_{i}(t)=c_{i}(t) G_{i}
$$

around α_{i} for each i.

- Remark: $Y_{t}(x)$ is not necessarily analytic in t but it is possible to find such a solution which is analytic (proof similar to Bolibrukh's proof in the isomonodromic case).

Projective isomonodromy of Fuchsian systems

Proposition: A Fuchsian (analytic) parametrized system

$$
\begin{equation*}
\partial_{x} Y=\sum_{i=1}^{m} \frac{A_{i}(t)}{x-x_{i}(t)} \tag{S}
\end{equation*}
$$

is projectively isomonodromic if and only if for each i

$$
A_{i}=B_{i}+b_{i} l
$$

where $b_{i}: \mathcal{D} \rightarrow \mathbb{C}, \quad B_{i}: \mathcal{D} \rightarrow \operatorname{gl}(n, \mathbb{C})$
are analytic functions such that

$$
\partial_{x} Y=\sum_{i=1}^{m} \frac{B_{i}(t)}{x-x_{i}(t)}
$$

is isomonodromic.

In the (DH V) example, Equation (1) of the Lax pair meets this condition:

$$
\partial_{x} Y=\left(\frac{\mu \mathrm{I}}{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}+\sum_{i=1}^{3} \frac{\lambda_{i} K}{x-x_{i}}\right) Y
$$

Here

$$
b_{i}=\frac{\mu}{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}, \quad B_{i}=\frac{\lambda_{i} K}{x-x_{i}}
$$

and

$$
\partial_{x} Y=\left(\sum_{i=1}^{3} \frac{\lambda_{i} K}{x-x_{i}}\right) Y
$$

is clearly isomonodromic since K is a constant matrix.

Theorem (Singer \& M.) : if a system (S) is absolutely irreducible over $C(x)$, then it is projectively isomonodromic if and only if the commutator subgroup (G, G) of the $P P V$-group G is conjugate in $\mathrm{GL}(n, C)$ to a constant subgroup ($=$ subgroup of $\mathrm{GL}(n, \mathbb{C})$).
/ / M. F. Singer, C. M. : Projective isomonodromy and Galois groups, Bull. London Math. Soc. 44 (5), 913-930 (2012)./ /

Thank you for your attention

Dziękuję za uwagę
Podziękowania dla organizatorów

