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Abstract

We show that with every separable calssical Stäckel system of Benenti type on a Riemannian space one

can associate, by a proper deformation of the metric tensor, a multi-parameter family of non-Hamiltonian

systems on the same space, sharing the same trajectories and related to the seed system by appropriate

reciprocal transformations. These system are known as bi-cofactor systems and are integrable in quadra-

tures as the seed Hamiltonian system is. We show that with each class of bi-cofactor systems a pair

of separation curves can be related. We also investigate conditions under which a given flat bi-cofactor

system can be deformed to a family of geodesically equivalent flat bi-cofactor systems.

AMS 2000 Subject Classification: 70H06, 70H20, 37J35, 14H70

1 Introduction

A significant progress in the geometric separability theory for classical Hamiltonian systems separable by
Hamilton-Jacobi method has been achieved in recent years (see for example [1] - [4]). Among other things
a new class of non-Hamiltonian Newton systems was introduced [5], [6]. These systems were shown to have
very interesting geometric properties when considered as systems on Riemann spaces [7],[8] (see also [9]). In
[10] we showed that they can be separated by the Hamilton-Jacobi method after certain reparametrization
of the evolution parameter (see also [11]). Originally these systems were called quasi-Lagrangian systems.
In the present literature they are called bi-cofactor systems or cofactor-pair systems. In [12] it was further
shown that each bi-cofactor system is geodesically equivalent (in the classical sense of Levi-Civita [13]) to some
separable Lagrangian system which means that it has the same trajectories on the underlying configuration
manifold as the Lagrangian system only traversed with a different speed and moreover that the metric tensors
associated with both systems are equivalent i.e. have the same geodesics (considered as unparametrized
curves). In the same paper one can also find a thorough geometric theory of bi-cofactor systems on an
arbitrary pseudoriemannian space.

In the present paper we demonstrate on the level of differential equations the geodesic equivalence prop-
erties of cofactor and bi-cofactor systems expressed by an appropriate class of reciprocal transformations. We
clarify and systematize their bi-quasihamiltonian formulation on the phase space. We show explicitly that a
bi-cofactor system is geodesically equivalent to two different separable Hamiltonian systems of Benenti type
and we show explicitly the transformation between all geometric structures associated with these two Benenti
systems and the original bi-cofactor system. We further demonstrate that with each bi-cofactor system one
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can relate two different separation curves and we find a map between these curves. From this point of view we
therefore show that with each pair of separation curves that are related through the above mentioned map we
can associate a whole class of geodesically equivalent bi-cofactor systems. Every such class contains at least
two separable Hamiltonian systems and on the phase space all the members of a given class are related by
a composition of an appropriate non-canonical transformation and a reciprocal transformation. Further, we
investigate geodesically equivalent families of flat (in the sense of the underlying metric tensor) cofactor sys-
tems and find a sufficient condition for a so called J-tensor to generate from any given flat bi-cofactor system
a multi-parameter family of flat bi-cofactor systems. Finally, we illustrate our considerations by presenting
a thorough example of the class of separable bi-cofactor systems geodesically equivalent to the Henon-Heiles
system and then specify this example to the flat case.

2 Cofactor systems

Let us consider the following Newton system

d2qi

dt2
+ Γi

jk

dqj

dt

dqk

dt
= F i, i = 1, . . . , n (1)

where qi are some coordinates on an n-dimensional pseudo-Riemannian manifold Q endowed with a metric
tensor g = (gij) and where F = (F i) is a vector field on Q representing the force which we assume time-
and velocity-independent. Here and in what follows we use the Einstein summation convention if not stated
otherwise. The functions Γi

jk are the Christoffel symbols of the Levi-Civita connection associated with the

metric tensor g and if all Γi
jk are zero we call the system (1) a flat Newton system. In case that F = 0 (1) is

the equation of geodesic motion on Q and the variable t becomes an affine parameter of geodesic lines.
If the force F is conservative (potential) i.e. if

F = −∇V = −GdV, (2)

where G = g−1 is the contravariant form of the metric tensor g and where V = V (q) is a potential function,
then (1) is equivalent to the Lagrangian system

d

dt

∂L

∂vi
−

∂L

∂qi
= 0, vi =

d

dt
qi, i = 1, . . . , n (3)

on the tangent bundle TQ endowed with coordinates (q, v) = (q1, . . . qn, v1, . . . , vn), where L = 1
2gij(q)vivj −

V (q) is a Lagrangian of the system. By the Legendre map pi = gijv
j the system (3) is transformed to the

Hamiltonian dynamical system

d

dt

(
q
p

)
=

(
0 I
−I 0

)( ∂H
∂q
∂H
∂p

)
= Πc dH (4)

on the cotangent bundle T ∗Q endowed with coordinates (q, p) = (qi, pj) where H = 1
2Gij(q)pipj + V (q) is the

Hamiltonian of the system, Πc is the canonical Poisson tensor and dH is the differential of H.
We will now remind the notion of a J-tensor.

Definition 1 A (1, 1)-tensor J = (J i
j) on Q is called a J-tensor associated with the metric g or G = g−1

(we often write that J is a JG-tensor when emphasizing the underlying metric) if its contravariant form
J ij = J i

kGkj is a symmetric (2, 0)-tensor and if J itself satisfies the following characteristic equation

∇hJ i
j =

(
αjδ

i
h + αigjh

)
(5)

where ∇h is the covariant derivative associated with the metric g and where αi is some 1-form.

From (5) it follows that the Nijenhuis torsion of J vanishes:

Jh
[i∇|h|J

k
j] − Jk

l ∇[i J
l
j] = 0

(the square brackets denote skew-symmetric permutations of indices i, j; the index h is not permuted) and
that J is a conformal Killing tensor of trace type which means that Jij = Jk

i gkj satisfies the relation ∇(h J ij) =
α(h g ij) with αi = ∂i tr J (the brackets denote symmetric permutations of indices h, i, j).

2



Remark 2 All J-tensors of a given metric tensor g constitute an R-linear vector space of dimension less or
equal to 1

2 (n + 1)(n + 2). This space attains its maximum dimension for metrics of constant curvature. In
case the metric g is pseudoeuclidean so that g = diag(ε1, . . . , εn) with εi = ±1 in its Cartesian coordinates,
the general form of J in these coordinates is [12]

J ij = mqiqj + βiqj + βjqi + γij (6)

where m,βi and γij = γji are 1
2 (n+1)(n+2) independent constants and where J ij = J i

kGkj is the contravariant
form of J.

If a J-tensor J has n real and simple eigenvalues then it is called L-tensor and its signed eigenvalues
(λ1, . . . , λn) given by det (J + λ(q)I) = 0 define a coordinate web on Q. Such webs will turn out to be
separation webs for our systems (see below). See [12] for further details on J-tensors and L-tensors.

The system (1) is called cofactor if the force F has the following form

F = − (cof J)
−1

∇V (7)

for some J-tensor J, where cof J is the cofactor matrix of J (i.e. the transposed matrix of signed minors of
J) so that J cof J = (cof J) J = (det J) I or in case that J is invertible cof J = (det J) J−1. In the case J = I
the system (7) becomes Lagrangian (potential).

In our further considerations the notion of equivalent metric tensors will play an important role. Two metric
tensors G and G on manifold Q are said to be equivalent if their geodesics locally coincide as unparametrized
curves. As it was shown in [12], a metric G admits an equivalent metric G if and only if it admits a nonsingular

J-tensor J. In such a case G
ij

= σJ i
kGkj = σJ ij or in the matrix form

G = σJG

with σ = det J = dt

dt
where t and t are affine parameters associated with the (parametrized) geodesic of G

and G respectively. Moreover, J−1 is a J-tensor for the new metric G.
Two dynamical systems (g, F ) and (g, F ) of the form (1) on Q are said to be equivalent if their trajectories

coincide up to a reparametrization of the evolution parameter. Moreover, they are called geodesically equivalent
if also metrics g and g are equivalent. As it was proved in [12] two systems (g, F ) and (g, F ) are geodesically
equivalent if and only if the metric g admits a nonsingular J-tensor J such that

G
ij

= σJ i
kGkj , F = σ2F , σ = det J.

Also in this case the evolution parameters t and t of the systems (g, F ) and (g, F ) are related through the
above mentioned reciprocal transformation

dt

dt
= σ.

We will now show that every cofactor system belongs to a whole class of geodesically equivalent cofactor
systems.

Theorem 3 Consider the cofactor system

d2qi

dt2
+ Γi

jk

dqj

dt

dqk

dt
= −

(
(cof J)

−1
∇V

)i

, i = 1, . . . , n. (8)

Assume that J1 is another J-tensor for the metric G and denote by G1 = σ1J1G (with σ1 = det J1) a new
metric tensor equivalent to G. In a new independent variable t1 defined through the reciprocal transformation

dt1 =
dt

σ1

the cofactor system (8) attains the form

d2qi

dt 2
1

+ (Γ(1))i
jk

dqj

dt1

dqk

dt1
= −

([
cof
(
JJ−1

1

)]−1
∇(1)V

)i

, i = 1, . . . , n (9)

where (Γ(1))i
jk are Christoffel symbols of the metric G1 and ∇(1) = G1d is the gradient operator associated

with the metric G1.
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Proof. Since dt1 = dt/σ1 we have, by the chain rule,

dqi

dt
=

1

σ1

dqi

dt1
,

d2qi

dt2
=

1

σ2
1

d2qi

dt21
−

1

σ3
1

dqi

dt1

∂σ1

∂ql

dql

dt1
.

Moreover (see for example [14]) the Christoffel symbols of G and G1 are related by

Γi
jk = (Γ(1))i

jk +
1

2σ1

(
δi

j

∂σ1

∂qk

+ δi
k

∂σ1

∂qj

)
. (10)

Further
∇(1)V = G1dV = σ1J1GdV = σ1J1∇V,

so that

(cof J)
−1

∇V =
1

σ1
(cof J)

−1
J−1

1 ∇(1)V =
1

σ2
1

(cof J)
−1

cof J1∇
(1)V =

=
1

σ2
1

cof(J−1) cof J1∇
(1)V =

1

σ2
1

cof(J1J
−1)∇(1)V =

=
1

σ2
1

(
cof
(
JJ−1

1

)−1
)
∇(1)V.

Plugging all this into (8) we obtain (9).

Remark 4 The tensor JJ−1
1 is a JG1

-tensor i.e. a J-tensor for the metric G1. It means that the system (9)
is a cofactor system geodesically equivalent to (8) with G1 as the underlying metric.

Note that in the particular case J1 = J the system (9) becomes potential

d2qi

dt
2 + Γ

i

jk

dqj

dt

dqk

dt
= −

(
∇V

)i
, i = 1, . . . , n. (11)

with the affine parameter

dt1 = dt =
dt

σ

and with Γ
i

jk and ∇ = Gd defined by the new metric G = σJG with σ = det(J). This shows that every
cofactor system is geodesically equivalent (in the sense of the definition above) to a potential system. This
fact yields us a possibility of determining a quasi-hamiltonian formulation for the cofactor system (8).

Proposition 5 The cofactor system (8) has on T ∗Q the following quasi-Hamiltonian representation:

d

dt

(
q
p

)
=

1

σ
ΠncdH (12)

with the noncanonical Poisson operator

Πnc =

(
0 J

−JT Ω

)
, Ωi

j =

(
∂Jk

i

∂qj
−

∂Jk
j

∂qi

)
pk

and with the Hamiltonian

H(q, p) =
1

2
pT (cof J)Gp + V (q). (13)

Proof. The systems (8) and (11) are related by the reciprocal transformation dt = dt/σ with σ = σ(q)
yielding that dqi/dt = σdqi/dt. Let us thus introduce new variables on TQ:

q = q, v = σv. (14)
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The Lagrangian of (11) written in coordinates (q, v) is:

L =
1

2
gij(q)vivj − V (q)

This Lagrangian defines a new Legendre map from TQ to T ∗Q that is just the fiberwise isomorphism between
TQ and T ∗Q induced by the new metric g i.e. p = g v. From G = σJG we have

g = G
−1

=
1

σ
gJ−1 =

1

σ
(JT )−1g

so that

p = g v =
1

σ
(JT )−1gσv = (JT )−1gv = (JT )−1p.

Thus, the map (14) on TQ induces the following non-canonical map on T ∗Q:

q = q, p =
(
JT
)−1

p. (15)

In the coordinates (q, p) the system (11) has the following canonical Hamiltonian representation (cf (4)):

d

dt

(
q
p

)
= ΠcdH, (16)

with the usual Hamiltonian H = 1
2pT G p + V (q). In order to obtain the quasi-hamiltonian form (12) of (8)

it is enough to transform the system (16) back to the variables (q, p, t). The map between these variables is

q = q, p =
(
JT
)−1

p, dt =
dt

σ
. (17)

or equivalently
q = q, p = JT p, dt = σdt. (18)

Note that this map consists of a ”space” part (11) that involves only (q, p) and (q, p) variables followed by the
reciprocal transformation (reparametrization of evolution parameter) dt = dt/σ. By using that d/dt = σd/dt
(which generates the factor 1/σ in (12)) and after some calculations that exploit the fact that J is torsionfree
we obtain (12) with H denoting the function H written in (q, p)-coordinates. Since

pT G p = pT J−1σJG(JT )−1p = pT σJ−1Gp = pT cof(J)Gp

we get that H is of the form (13).

3 Bi-cofactor systems

The system of Newton equations of the form

d2qi

dt2
+ Γi

jk

dqj

dt

dqk

dt
= −

(
(cof J1)

−1
∇V

)i

= −
(

(cof J2)
−1

∇W
)i

(19)

with two independent JG-tensors J1 and J2 and with two different potentials V and W is called a bi-cofactor
system on Q. It means that the force F has two different cofactor representations of the form (7). The
following is a simple corollary of Theorem 3.

Proposition 6 Assume that the metric G has a third J-tensor J3 and denote by G3 = σ3J3G (with σ3 =
det J3) a new metric tensor equivalent to G. In the new independent variable t3 defined through

dt3 =
dt

σ3
(20)
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the bi-cofactor system (19) attains the form

d2qi

dt 2
3

+ (Γ(3))i
jk

dqj

dt3

dqk

dt3
= −

([
cof
(
J1 J−1

3

)]−1
∇(3)V

)i

= −
([

cof
(
J2 J−1

3

)]−1
∇(3)W

)i

(21)

where (Γ(3))i
jk are Christoffel symbols of the metric G3 and ∇(3) = G3d.

As before, both the tensor J1 J−1
3 and J2 J−1

3 are JG3
-tensors so that G3 is the underlying metric of the

system (21).
In case that J3 = J1 the system (21) attains the potential-cofactor form

d2qi

dt
2 + Γ

i

jk

dqj

dt

dqk

dt
= −

(
∇V

)i
= −

((
cof J

)−1
∇W

)i

(22)

with the affine parameter dt = dt/σ and with J = J2 J−1
1 being a JG-tensor for the new metric G = σJ1G

with σ = det(J1) = σ1.
If J3 = J2 then the system (21) attains the cofactor-potential form

d2qi

dt̃2
+ Γ̃i

jk

dqj

dt̃

dqk

dt̃
= −

((
cof J̃

)−1

∇̃V

)i

= −
(
∇̃W

)i

(23)

with the affine parameter dt̃ = dt/σ̃ and with J̃ = J1 J−1
2 = J

−1
being a J eG

-tensor for the new metric

G̃ = σ̃J2G with σ̃ = det(J2) = σ2.

Proposition 7 The bi-cofactor system (19) has on T ∗Q the following bi-quasihamiltonian representation:

d

dt

(
q
p

)
=

1

σ1
Πnc(J1)dH =

1

σ2
Πnc(J2)dF, (24)

with two compatible noncanonical Poisson operators Πnc(J1) and Πnc(J2) given by

Πnc(J) =

(
0 J

−JT Ω

)
, Ωi

j =

(
∂Jk

i

∂qj
−

∂Jk
j

∂qi

)
pk

and with the Hamiltonians

H =
1

2
pT (cof J1)Gp + V (q), F =

1

2
pT (cof J2)Gp + W (q).

The representation (24) follows directly from Proposition 5 applied independently to both cofactor rep-
resentations of (19). The fact that the operators Πnc(J1) and Πnc(J2) are compatible (i.e. that any linear
combination η1Πnc(J1) + η2Πnc(J2) is Poisson) is shown below. In the particular case of potential-cofactor
systems (22) and (23) this proposition yields their well-known quasi-bi-Hamiltonian representation [15], [16].

Theorem 8 1. The system (24) has n constants of motion

Hr = Er + Vr(q) =
1

2
pT KrGp + Vr(q), r = 1, ..., n, (25)

(with H = H1 and F = Hn) where Kr are (1, 1)-Killing tensors (for the metric G) defined by

cof(J2+ξJ1) =

n−1∑

i=0

Kn−iξ
i (26)

(so that K1 = cof J1, Kn = cof J2) and where the potentials Vr can be obtained from two equivalent
formulas

∇Vr =
1

σ1
KrJ1∇V1 or ∇Vr =

1

σ2
KrJ2∇Vn, V = V1,W = Vn. (27)
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2. The constants Hr are in involution with respect to both operators Πnc(J1) and Πnc(J2):

{Hr,Hs}Πnc(J1)
= {Hr,Hs}Πnc(J2)

= 0 for all r, s = 1, . . . , n.

To prove this theorem, we will first need

Proposition 9 In the variables (q, p, t) related with (q, p, t) through the map

q = q, p =
(
JT

1

)−1
p, dt =

dt

σ1
(28)

the system (24) attains the quasi-bihamiltonian form

d

dt

(
q
p

)
= ΠcdH =

1

det(J)
Πnc(J)dF , (29)

with H = H and F = F (as functions on T ∗Q) and with

Πc = Πnc(J1), Πnc(J) = Πnc(J2) (30)

(as tensors on T ∗Q). Moreover, the tensor Πc is canonical in (q, p)-variables. Similarly, in the variables
(q̃, p̃, t̃) defined by

q̃ = q, p̃ =
(
JT

2

)−1
p, dt̃ =

dt

σ2
. (31)

(24) attains the form
d

dt̃

(
q̃
p̃

)
=

1

det(J̃)
Π̃nc(J̃)dH̃ = Π̃cdF̃ , (32)

with H̃ = H and F̃ = F (as functions on T ∗Q) and with

Π̃c = Πnc(J2), Π̃nc(J̃) = Πnc(J1) (33)

(again considered as tensors on T ∗Q) so that

Π̃c = Πnc(J), Πc = Π̃nc(J̃).

Again, the tensor Π̃c is canonical in (q̃, p̃)-variables.

This proposition can be proved either by direct calculation or by observing that the underlying bi-cofactor
system (19) has in the variables (q, t) the potential-cofactor form (22) and in the variables (q̃, t̃) the cofactor-
potential form (23) and using arguments similar to those used in the proof of Proposition 5.
Proof. (of Theorem 8). By Proposition 9, the system (24) has in variables (q, p, t) the form (29) so that it is
a so called Benenti system and therefore (see [3]) Πc = Πnc(J1), Πnc(J) = Πnc(J2) are compatible and the
system has n constants of motion of the form

Hr = Er + V r(q) =
1

2
pT KrGp + V r(q), r = 1, ..., n, (34)

with G = σ1J1G and where the Killing tensors Kr of the metric G are determined by the expansion

cof
(
J+ξI

)
=

n−1∑

i=0

Kn−iξ
i (35)

(so that K1 = I, Kn = cof J) while V r are separable potentials satisfying

Kr∇V 1 = ∇V r. (36)

On the other hand,
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cof
(
J+ξI

)
= cof

(
J2J

−1
1 +ξI

)
= cof(J1)−1 cof (J2+ξJ1) = K−1

1

n−1∑

i=0

Kn−iξ
i,

so that by comparing with (35) we obtain

Ki = K−1
1 Ki, i = 1, . . . , n (37)

and

Er =
1

2
pT KrGp =

1

2
pT J−1

1 K−1
1 Krσ1J1G

(
J−1

)T
p = Er.

The last equality follows from J−1
1 K−1

1 = σ1I and J1G
(
J−1

)T
= J1J

−1G = G, so that indeed Er = Er if

we define Ki as in (26). Thus, if we put Vr = V r we obtain that Hr = Hr (as functions on T ∗Q). Now,
substituting (37) into (36) we get

K−1
1 Krσ1J1∇V1 = σ1J1∇Vr or KrJ1∇V1 = K1J1∇Vr

which yields the first formula in (27). Naturally, the functions Hr Poisson-commute with respect to both Pois-
son tensors Πnc(Ji) in (24) since Hr = Hr Poisson-commute with respect to both Poisson tensors Πc, Πnc(J)
in (29) and since these tensors are just Πnc(Ji) written in the variables (q, p), according to (30). That proves
all the statements in Theorem 8 except the second formula in (27). Consider now the system (32). It is also
a Benenti system so it also has n constants of motion of the form

H̃r = Ẽr + Ṽr(q̃) =
1

2
p̃T K̃rG̃p̃ + Ṽr(q̃), r = 1, ..., n, (38)

(with G̃ = σ2J2G and with H̃ = H̃n, F̃ = H̃1) where the Killing tensors K̃r of the metric G̃ are determined
by

cof
(
J̃+ξI

)
=

n−1∑

i=0

K̃n−iξ
i

(so that K̃1 = I, K̃n = cof J̃) while Ṽr are separable potentials satisfying

K̃r∇̃V1 = ∇̃Ṽr. (39)

Repeating the procedure above we obtain an equivalent proof of Theorem 8. However, this time we get

n−1∑

i=0

K̃n−iξ
i = cof

(
J̃+ξI

)
= cof(J1J

−1
2 + ξI) = K−1

n cof(J1 + ξJ2) =

= K−1
n ξn−1

n−1∑
i=0

Kn−iξ
−i = K−1

n

n−1∑
i=0

Kn−iξ
n−i−1,

which gives
K̃i = K−1

n Kn−i+1, i = 1, . . . , n. (40)

This also yields Ẽi = En−i+1 and thus Ṽi = Vn−i+1, H̃i = Hn−i+1 = Hn−i+1 for all i = 1, . . . , n. By
transforming the formula (39) to (q, p)-coordinates (similarly as we did for bar-coordinates) we obtain the
second formula in (27). Finally, the functions Ki defined by (26) must be (1, 1)-Killing tensors for G since
cof(J2+ξJ1) is a (1, 1)-Killing tensor for any value of the parameter ξ and since Killing tensors of G constitute
a vector space.

Note also that the direct map between variables (q, p, t) and (q̃, p̃, t̃) is obtained by composing the map
(28) with the map (31). It attains the form

q̃ = q, p̃ =
(
J

T
)−1

p, dt̃ =
dt

det(J)
or q = q̃, p =

(
J̃T
)−1

p̃, dt =
dt̃

det(J̃)
. (41)
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Further, by comparing (37) and (40) we obtain

K̃i = K
−1

n Kn−i+1.

In the remaining part of this chapter will shortly discuss how the two equivalent systems (29) and (32) can
be embedded in quasi-bihamiltonian chains and discuss the relation between these chains.

Since the system (29) has n commuting with respect to both operators Πc and Πnc integrals of motion Hr

it belongs to the set of n commuting Hamiltonian vector fields

d

dtr

(
q
p

)
= Πc dHr ≡ Xr, r = 1, ..., n, (42)

(where dt1 = dt = dt/ det(J1)) and the system (29) itself defines the first vector field X1. Similarly, since

the system (32) has n commuting with respect to both Π̃c and Π̃nc integrals of motion H̃r it belongs to the
set of n commuting Hamiltonian vector fields

d

dt̃r

(
q̃
p̃

)
= Π̃c dH̃r ≡ X̃r, r = 1, ..., n, (43)

(where dt̃1 = dt̃ = dt/ det(J2) so that dt̃1 = dt1/ det(J)) and it also is the first vector field X̃1. By the above

construction, the vector fields X1 and X̃1 are parallel

X̃1 = det(J) X1 or X1 = det(J̃) X̃1

which once again reflects the geodesic equivalence of the systems (22) and (23) on Q.
Moreover, vector fields (42) belong to the following quasi-bihamiltonian chain:

X1 = Πc dH1 =
1

ρn

Πnc(J)dHn

Xr = Πc dHr =
ρr−1

ρn

Πnc(J)dHn − Πnc(J)dHr−1, r = 2, ..., n,

where the functions ρr are defined through the polynomial expansion of det(J + ξI):

det(J + ξI) =
n∑

i=0

ρiξ
n−i

(so that ρn = det J). Similarly, vector fields (43) belong to a similar quasi-bihamiltonian chain:

X̃1 = Π̃c dH̃1 =
1

ρ̃n

Π̃nc(J̃)dHn

X̃r = Π̃c dH̃r =
ρ̃r−1

ρ̃n

Π̃nc(J̃)dH̃n − Π̃nc(J̃)dH̃r−1, r = 2, ..., n,

where ρ̃r are defined through

det(J̃ + ξI) =

n∑

i=0

ρ̃iξ
n−i

(so that ρ̃n = det J̃). Since J̃ = J
−1

we have that ρr and ρ̃r are related via

ρ̃r =
ρn−r

ρn

or ρr =
ρ̃n−r

ρ̃n

.

Comparing both chains we obtain that the vector fields Xr and X̃r are related through

X̃1 = ρn X1, X̃i = ρn−i+1X1 − Xn−i+2, i = 2, . . . , n.

9



4 Flat bi-cofactor systems.

Let us recall that a pseudoriemannian space is called space of constant curvature if the curvature tensor Rijkl

has the form
Rijkl = K (gjlgik − gjkgil) (44)

for some scalar function K . By Bianchi identity it follows then that K is a constant, related to scalar (Ricci)
curvature κ = Rikgik through κ = Kn(n − 1). Thus, for such spaces the condition κ = 0 or K = 0 implies
that the Riemann tensor Rijkl is zero i.e. that the metric g is flat.

Suppose now that g is a metric of constant curvature and that g is another metric tensor obtained by
deforming g through

G = σJG (45)

(with J being a JG-tensor J and with σ = det J). Then, by the classical result of Beltrami [17] we know
that g is also of constant curvature. Moreover, for two metrics g and g that are geodesically equivalent and
of constant curvature their scalar curvatures κ and κ are related by the formula

κ gij = κgij −∇ifj + fifj (46)

(see [14] p. 293) where the covector fi is defined as

fi =
1

2(n + 1)

∂

∂qi

(
ln

det g

det g

)
. (47)

A simple calculation shows that for our choice of g, g we have

fi = −
1

n + 1
σi where σi =

1

σ

∂σ

∂qi

.

Substituting this into (46) and performing contraction with G we obtain

κ =
σ

n

[
κ tr J + 1

n+1J ij
(
σiσj + 1

n+1∇iσj

)]
.

(the summation convention applies as usual). Thus, we see that if κ = 0 then a sufficient condition for κ to
be zero is

J ij
(
σiσj + 1

n+1∇iσj

)
= 0. (48)

Let us now assume that the metric G of the system (19) is flat (i.e. κ = 0) so that in some coordinate system
(qi) it assumes the form

G = diag(ε1, . . . , εn) with εi = ±1. (49)

(note that then g = G−1 = diag(ε1, . . . , εn) in this particular coordinate system too while Γi
jk = 0). Suppose

now that we want to ”deform” this system as in Proposition 6 by introducing the new independent variable
dt3 = dt/σ where σ = det J for some new JG-tensor J but in such a way that the resulting equivalent metric
G = σJG is also flat so that the geodesically equivalent system (21) is a flat Newton system (in this section
we will use J, σ and G instead of J3, det J3 and G3 to shorten the notation). A sufficient condition for doing
this is to take J that satisfies (48). In the Cartesian (with respect to g) coordinates (qi) the contravariant
form of the tensor J is given by (6). However, by Theorem B.4.3 in [12] we know that m = 0 or else κ 6= 0.
Thus, our aim is to find a more explicit form of the condition (48) for J given by (6) with m = 0.

Let us for the moment denote the (2, 0)-form of J as given in (6) by Jc (J-contravariant) so that Jc = JG
or J = Jcg. We have then

Theorem 10 Assume that G is of the form (49) and that J is a JG-tensor such that its contravariant form
Jc is given by (6). Then for the metric G = σJG to be flat it is sufficient that m = 0 and

βT g (cof J) β = 0 or βT (cof Jc) β = 0. (50)

10



Proof. Both conditions in (50) are equivalent since cof Jc = cof(JG) = cof G cof J = det(G) g cof J. We
have to show that the condition (48) in our setting attains the form (50). Since J is torsionless it satisfies the
identity

σ
∂ (tr J)

∂qi
= Jh

i

∂σ

∂qh
,

or in the matrix form
σ d(tr J) = JT dσ. (51)

Since J i
j = J ikgkj = βiεjq

j + βjεjq
i + γijεj (no summation) we have tr(J) = J i

i = 2βiεiq
i + γiiεi so that

d(tr J) = (ε1β
1, . . . , εnβn)T . Thus, (51) reads

dσ = 2 (cof J)
T

gβ = 2g (cof J) β. (52)

Therefore

σiJ
ijσj =

1

σ2

∂σ

∂qi
J ij ∂σ

∂qj
=

1

σ2
(dσ)T J dσ =

4

σ2
βT g (cof J) β. (53)

Further

J ij∇iσj = J ij ∂

∂qi

(
1

σ

∂σ

∂qj

)
= −σiJ

ijσj +
1

σ
J ij ∂2σ

∂qi∂qj
.

But, using (52) twice and (49) we obtain

J ij ∂2σ

∂qi∂qj
= J ij ∂

∂qi

(
∂σ

∂qj

)
= 2J ijgjk

∂

∂qi
(cof J)

k
s βs = 2J i

k

∂

∂qi
(cof J)

k
s βs =

= 2

[
∂

∂qi

(
J i

k (cof J)
k
s

)
− (cof J)

k
s

∂

∂qi
J i

k

]
βs = 2

∂σ

∂qi
βi − 2(n + 1)βkεk (cof J)

k
s βs =

= 4βT g (cof J) β − 2(n + 1)βT g (cof J) β.

so that

J ij ∂2σ

∂qi∂qj
= 2(1 − n)βT g(cof J) β.

Thus,

J ij∇iσj = −
2

σ
(1 + n)βT g(cof J) β. (54)

Plugging (53) and (54) into (48) we immediately obtain (50).
Therefore, we have showed that for any flat bi-cofactor system (19) there exists a multi-parameter family

(with 1
2n(n + 3) − 1 parameters) of geodesically equivalent (but algebraically very different) flat bi-cofactor

systems.

Remark 11 The condition (50) can be written as

βT g (cof γg) β = 0 or βT (cof γ) β = 0. (55)

5 Separation curves for bi-cofactor systems

A system of n algebraic equations of the form

ϕi(λ
i, µi; a1, ..., an) = 0, i = 1, ..., n, det

[
∂ϕi

∂aj

]
6= 0, (56)

each containing only one pair (λi, µi) of coordinates (λ, µ) on T ∗Q (and with real coefficients ai) is called
separation relations. The condition in (56) means that we can solve the equations (56) with respect to ai

obtaining n independent functions on T ∗Q of the form ai = Hi(λ, µ), i = 1, . . . , n. If the functions Wi(λ
i, a)

are solutions of a system of n decoupled ODE’s

ϕi

(
λi, µi =

dWi(λ
i, a)

dλi
, a1, . . . , an

)
= 0, i = 1, ..., n, (57)
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then the function W (λ, a) =
∑n

i=1 Wi(λ
i, a) is a solution of all the equations (57) and simultaneously it is an

additively separable solution of all Hamilton-Jacobi equations

Hi

(
λ1, ..., λn,

∂W

∂λ1 , ...,
∂W

∂λn

)
= ai, i = 1, ..., n. (58)

simply because solving (56) to the form ai = Hi(λ, µ) is a purely algebraic operation. The Hamiltonians Hi

Poisson-commute by the classical theorem of Jacobi. The function W (λ, a) is a generating function for the
canonical transformation (λ, µ) → (b, a) to the new set of coordinates that simultaneously linearize all the
Hamiltonian equations

uti
= Πc dHi = XHi

, i = 1, ..., n. (59)

The coordinates (λ, µ) are thus called the separation coordinates for the Hamiltonian systems (59).
In the case that the relations (56) are affine in ai the obtained systems belong to the well-known class of

(generalized) Stäckel separable systems.
Let us now consider a special subclass of Stäckel systems given by the following separation relations:

H1(λi)n−1 − H2(λi)n−2 + ... + (−1)n−1Hn =
1

2
fi(λ

i)µ2
i + γi(λ

i), i = 1, ..., n, (60)

where fi and γi are smooth functions. Such systems are known as Benenti systems. In the particular case that
fi(λ

i) = f(λi) and γi(λ
i) = γ(λi), separation relations (60) are given by n copies of the so called separation

curve

H1λ
n−1 − H2λ

n−2 + ... + (−1)n−1Hn =
1

2
f(λ)µ2 + γ(λ). (61)

so that now λ and µ ∈ R. By solving the system of n copies of this relation (with i-th copy containing
variables labelled (λi, µi)) with respect to Hi we find that the Hamiltonians Hi attain the form

Hr = Er + Vr(λ) =
1

2
µT KrGµ + Vr(λ), r = 1, ..., n,

(cf (25)) with the metric tensor

G = diag

(
f(λ1)

∆1
, ...,

f(λn)

∆n

)

where ∆i =
∏
j 6=i

(λi − λj) while the (1, 1)-tensors Kr are generated by the expansion

cof(J+ξI) =
n−1∑

i=0

Kn−iξ
i

with the JG-tensor J = diag(λ1, . . . , λn). Thus [19]:

Kr = diag

(
∂ρr

∂λ1 , ...,
∂ρr

∂λn

)

where the functions ρr can be obtained from

det(J + ξI) =

n∑

i=0

ρiξ
n−i.

Coordinate-free expression for Kr is as follows [18]

Kr+1 = ρrI − JKr, r = 0, 1, . . . , n − 1, ρ0 = 1, K0 = 0,

or alternatively

Kr =

r−1∑

k=0

ρk (−J)
r−1−k

, r = 1, . . . , n.
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It is important to stress that in case that eigenvalues of J are not simple the obtained tensors Kr will not be
independent and thus will not generate an integrable system (see also below).

For a particular choice γ(λi) = (λi)k, k ∈ Z in the separation curve (61) we obtain a family of separable
potentials that can be constructed recursively by [19]

V (k+1)
r = ρrV

(k)
1 − V

(k)
r+1 with V (0)

r = (−1)n−1δrn. (62)

This recursion can be reversed
V (k−1)

r =
ρr−1

ρn

V (k)
n − V

(k)
r−1. (63)

In both cases we put V
(k)
r = 0 for r < 0 or r > n. The above recursion can be written in a matrix form as

V (k)(λ) = Rk(λ)V (0), k ∈ Z, (64)

where V (k)(λ) = (V
(k)
1 (λ), ..., V

(k)
n (λ))T , V (0) = (0, ..., 0, (−1)n−1)T and

R =




ρ1(λ) −1 0 · · · 0
ρ2(λ) 0 −1 · · · 0

...
...

... · · ·
...

ρn−1(λ) 0 0 · · · −1
ρn(λ) 0 0 · · · 0




. (65)

This recursion is equivalent to (62) and (63) and is invariant with respect to any point change of variables on
Q as R in (65) is expressed by coefficients of the characteristic polynomial of J. The first nontrivial potentials

in the positive hierarchy are V
(n)
r (λ) = ρr(λ), while for the negative hierarchy V

(−1)
r = ρr−1(λ)/ρn(λ).

Let us now once again consider our systems (22) and (23) and their Hamiltonian formulations (42) and (43)

respectively. From now on we will additionally assume that the tensor J (and hence J̃) has all its eigenvalues

real and simple (i.e. both are so called L-tensors [12]). Then the tensors Kr (and K̃r likewise) are independent
and thus (42) and (43) are integrable. Moreover, both systems belong to the class of separable (in the sense
of Hamilton-Jacobi theory) systems called Benenti systems. It is known that all Hamiltonian flows in (42) are

separable in variables (λ, µ) where the new coordinates λ
i

are obtained from the characteristic equation of J:

det(J + λI) = 0 (66)

(i.e. are (signed) eigenvalues of J) while the corresponding momenta µi are obtained from µ = (Φ′−1)T p
where Φ′ is the Jacobi matrix of the map Φ : q → λ given by (66). Similarly, all the flows in (43) are separable

in variables (λ̃, µ̃) where λ̃
i

are obtained from

det(J̃ + λ̃I) = 0 (67)

with the corresponding momenta µ̃i obtained by µ̃ = (Ψ′−1)T p̃ where Ψ′ is the Jacobi matrix of the map

Ψ : q → λ̃ given by (67).

Theorem 12 The separation variables (λ, µ) of (42) and the separation variables (λ̃, µ̃) of (43) are related
by the transformation

λ̃
i

=
1

λ
i
, µ̃i = −λ

i
µi (no summation), i = 1, . . . , n. (68)

Proof. By comparing (66) with (67) we obtain that λ
i

= 1
eλ

i . The map between momenta µ̃ and µ can be

found in the following way. We know (cf. (28) and (31)) that p =
(
JT

1

)−1
p and p̃ =

(
JT

2

)−1
p which yields

p̃ =
(
J

T
)−1

p. Thus

µ̃ = (Ψ′−1)T p̃ = (Ψ′−1)T (J
T

)−1Φ′T µ = Φ′J
−1

(Ψ′−1)T µ.
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Since λ
i

= 1/λ̃
i

we see that Ψ′ = ΘΦ′ where

Θ = −diag

(
1

(λ
1
)2

, . . . ,
1

(λ
n
)2

)

so that Ψ′−1 = −Φ′−1 diag
(

(λ
1
)2, . . . , (λ

n
)2
)

. Inserting it in the above formula yields

µ̃ = −
(

Φ′J
−1

Φ′−1 diag((λ
1
)2, . . . , (λ

n
)2)
)T

µ.

But Φ′J
−1

Φ′−1 = diag(1/λ
1
, . . . , 1/λ

n
) since it is the inverse of the L-tensor J written in its separation

coordinates λ. Inserting it into the above formula we get the map between momenta as in (68).
According to the remarks above, the Benenti system (29) in variables (λ, µ) has the separation curve

H1λ
n−1

− H2λ
n−2

+ ... + (−1)n−1Hn =
1

2
f(λ)µ2 + γ(λ). (69)

Similarly, the separation curve for the Benenti system (32) is

H̃1λ̃
n−1

− H̃2λ̃
n−2

+ ... + (−1)n−1H̃n =
1

2
f̃(λ̃)µ̃2 + γ̃(λ̃). (70)

Applying the map (68) to the separation curve (70), using that Hr = H̃n−r+1 and comparing the result with
(69) we obtain

H1λ
n−1

− H2λ
n−2

+ ... + (−1)n−1Hn =
(−1)n−1

2
f̃
(
λ
−1
)

λ
n+1

µ2
i

+(−1)n−1γ̃(λ
−1

)λ
n−1

.

Corollary 13 If the functions f, f̃ and γ, γ̃ satisfy the conditions:

f(ξ) = (−1)n−1f̃
(
ξ−1
)
ξn+1, γ(ξ) = (−1)n−1γ̃(ξ−1)ξn−1, ξ ∈ R (71)

then the separation curves (69) and (70) generate two geodesically equivalent systems of Benenti type para-

metrized by two different evolution parameters t and t̃ such that dt̃ = dt/ det(σ), where σ = ρn =
∏n

i=1 λ
i
.

The corresponding families of separable potentials (64) for both systems are related by

V
(k)

= (−1)n−1 Ṽ (n−k−1) or Ṽ (k) = (−1)n−1 V
(n−k−1)

for all r ∈ Z.

It is known that the metric

G = diag

(
f(λ

1
)

∆1

, ...,
f(λ

n
)

∆n

)

is of constant curvature if and only if f(λ) =
∑n+1

k=0 ckλ
k

for some constants ck. From (71) it follows immedi-
ately that the equivalent metric

G̃ = diag

(
f̃(λ̃

1
)

∆̃1

, ...,
f̃(λ̃

n
)

∆̃n

)

is also of constant curvature, as in this case

f̃(λ̃) = (−1)n−1f(λ̃
−1

)λ̃
n+1

= (−1)n−1
n+1∑

k=0

ckλ̃
n−k+1

= (−1)n−1
n+1∑

k=0

cn−k+1λ̃
k
.
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6 Example: flat bi-cofactor systems geodesically equivalent to Henon-

Heiles system

Let us illustrate the ideas of this paper on the example of the integrable case of the Henon-Heiles system. It
has the potential-cofactor form (22):

d2q

dt
2 = −∇V = −

(
cof J

)−1
∇W = −

(
3(q1)2 + 1

2

(
q2
)2

q1q2

)
(72)

with G = I (so that Γi
jk = 0 and coordinates q are Euclidean) and with the JG-tensor J of the form (6)

J =

(
−q1 − 1

2q2

− 1
2q2 0

)
.

The potentials V and W are

V (q) =
(
q1
)3

+
1

2
q1
(
q2
)2

, W (q) =
1

4

(
q1q2

)2
+

1

16

(
q2
)4

.

The system (72) has the quasi-bihamiltonian representation (29)

d

dt

(
q
p

)
= ΠcdH =

1

det(J)
Πnc(J)dF , (73)

with Hamiltonians Hr of the form (34). Explicitly:

H1 = H =
1

2
(p1)

2
+

1

2
(p2)

2
+ V (q), H2 = F =

1

2
q2p1p2 −

1

2
q1(p2)2 + W (q).

The non-canonical Poisson operator Πnc reads explicitly as

Πnc(J) =

(
0 J

−J
T

Ω

)
with Ω =

(
0 − 1

2p2
1
2p2 0

)
.

The system (73) separates in variables (λ, µ) that can be found from the characteristic equation (66) and are
given by

q1 = −(λ
1

+ λ
2
), q2 = 2

√
−λ

1
λ

2

p1 = −

(
λ

1
µ1 − λ

2
µ2

λ
1
− λ

2

)
, p2 =

√
−λ

1
λ

2
(

µ1 − µ2

λ
1
− λ

2

)

while the separation curve (69) generating Hamiltonians Hr is

H1λ − H2 =
1

2
λµ2 − λ

4
. (74)

Let us now take another, arbitrary JG-tensor J3. Since the metric G = I in variables (q1, q2) the most
general form of J3 is (6) which reads now as

J3 =

(
m
(
q1
)2

+ 2β1q
1 + γ11 mq1q2 + β1q

2 + β2q
1 + γ12

mq1q2 + β1q
2 + β2q

1 + γ12 m
(
q2
)2

+ 2β2q
2 + γ22

)
(75)

with 6 arbitrary constants m,βi, γ
ij = γji. Using Proposition 6 (with J1 = I and J2 = J) we see that in a

new independent variable defined by

dt3 =
dt

det (J3)
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our potential-cofactor system (72) attains the bi-cofactor form (21) with (Γ(3))i
jk being Christoffel symbols of

the metric G3 = (det J3) J3G. They can be obtained from (10) which reads now (since Γi
jk = 0)

(Γ(3))i
jk = −

1

2 det J3

(
δi

j

∂ (det J3)

∂qk

+ δi
k

∂ (det J3)

∂qj

)
.

It is important to stress that for all the choices of J3 the obtained system has on Q exactly the same trajectories
as Henon-Heiles system, only traversed with different speed. Moreover, the metric G3 is of constant curvature
since it is geodesically equivalent to the flat metric G = I [17].

Among all possible choices of the deforming tensor J3 there is only one that leads to a new potential-

cofactor system, namely J3 = J. This choice leads to cofactor-potential system (23) with J̃ = J
−1

and with

the metric G̃ =
(
det J

)
JG. The metric G̃ is flat since the deforming tensor J3 = J satisfies the conditions

(50) and (55). Explicitly, we have

J̃ = J
−1

=
4

(q̃2)
2

(
0 − 1

2 q̃2

− 1
2 q̃2 q̃1

)
, G̃ =

1

4

(
q̃2
)2
(

q̃1 1
2 q̃2

1
2 q̃2 0

)

(where of course qi = q̃i). This system has the quasi-bihamiltonian form (32) with the Hamiltonians as in

(38) (H̃1 = H2 and H̃2 = H1) where the new momenta p̃ are related with the old momenta through the map
(41) and read explicitly as

p1 = −q̃1p̃1 −
1

2
q̃2p̃2, p2 = −

1

2
q̃2p̃1.

Our new system separates in variables (λ̃, µ̃) that can be found from the characteristic equation (67) and are
given by

q̃1 = −

(
1

λ̃
1 +

1

λ̃
2

)
, q̃2 =

2√
−λ̃

1
λ̃

2

p̃1 = −
λ̃

1
λ̃

2

λ̃
1
− λ̃

2

(
λ̃

1
µ̃1 − λ̃

2
µ̃2

)
, p̃2 = −

√
−λ̃

1
λ̃

2

λ̃
1
− λ̃

2

((
λ̃

1
)2

µ̃1 −
(
λ̃

2
)2

µ̃2

)
.

Our system can be obtained from the separation curve of the form (70) that explicitly reads as

H̃1λ̃ − H̃2 = −
1

2
λ̃

2
µ̃2 + λ̃

−3

and can also be obtained from the separation curve (74) by the transformation (71). Let us now introduce a
new coordinates (r1, r2) on Q defined through

q̃1 = −2
r1

r2
, q̃2 =

4

r2
, (76)

(see [20]). In (r1, r2) the metric G̃ attains the antidiagonal form

G̃(r) =

(
0 1
1 0

)
(77)

(so that (r1, r2) are flat coordinates for G̃ and (Γ̃(r))i
jk = 0) while the J eG

-tensor J̃ becomes

J̃(r) =
1

4

(
r1r2

(
r1
)2

+ 4(
r2
)2

r1r2

)
.

Our cofactor-potential system (geodesically equivalent to (72)) attains in variables (r1, r2) the flat Newton
form

16



d2

dt̃2

(
r̃1

r̃2

)
= −

(
cof J̃(r)

)−1

∇̃Ṽ2 = −∇̃Ṽ1 =

(
2

r2

)5
(

2
((

r1
)2

+ 1
)

−r1r2

)
(78)

with potentials

Ṽ1(r) = V (r) = 16

((
r1
)2

+ 1
)

(r2)
4 , Ṽ2(r) = W (r) = −8

((
r1
)2

+ 2
)

r1

(r2)
3 ,

while the corresponding Hamiltonians are

H̃1(r, s) = H2(r, s) = s1s2 + Ṽ1(r),

H̃2(r, s) = H1(r, s) =

(
1

8

(
r1
)2

+
1

2

)
s2
1 −

1

4
r1r2s1s2 +

1

8

(
r2
)2

s2
2 + Ṽ2(r),

where the momenta (s1, s2) are obtained from the point transformation (76) and are

p̃1 = −
2

r2
s1, p̃2 = 2

r1

(r2)
2 s1 −

4

(r2)
2 s2.

Let us finally make another choice of the deforming tensor J3, namely m = 0, γ22 = a, β2 = b 6= 0 and
β1 = γ11 = γ12 = 0 so that

J3 =

(
0 bq1

bq1 2bq2 + a

)
, G3 = (det J3) J3G =

(
0 −b3(q1)3

−b3(q1)3 −b2(q1)2(2bq2 + a)

)
.

The metric G3 is again flat since the deforming tensor J3 satisfies the conditions (50) and (55). The respective
JG3

-tensors for the related bi-cofactor system (19) are

J1 = J−1
3 =

1

bq1

(
− 2bq2+a

bq1 1

1 0

)
, J2 = JJ−1

3 =
1

bq1

(
2bq2+a

b
− 1

2q2 −q1

1
2

q2(2bq2+a)
bq1 − 1

2q2

)
.

Let us now perform a parameter-dependent change of variables to the coordinates (x1, x2) on Q defined
through

x1 =
1

2

2bq2 + a

b2q1 , x2 =
1

b2q1 .

In (x1, x2) the metric G3 attains the antidiagonal form (77), so that (x1, x2) are flat coordinates for G3 and
the JG3

-tensors J become

J1 = −b2

(
x1x2 (x1)2 + 1

b2

(x2)2 x1x2

)
, J2 =

(
1
2x1 + 1

4ax2 1
2ax1

x2 1
2x1 + 1

4ax2

)
.

Hence, our two-parameter family of flat bi-cofactor systems attains in variables (x1, x2) the flat Newton form

d2

dt23

(
x1

x2

)
= −

(
(cof J1)

−1
∇(3)V

)i

= −
(

(cof J2)
−1

∇(3)W
)i

=




1

8

x1[4(x1)2 − 4ax1x2 + a2(x2)2]

b4(x2)5
+

1

2

4x1 + ax2

b6(x2)5

1

8

4(x1)2 − 4ax1x2 + a2(x2)2

b4(x2)4
+

3

b6(x2)4


 (79)

with the potentials

V =
1

8

4(x1)2 − 4ax1x2 + a2(x2)2

b4(x2)3
+

1

b6(x2)3
,

W =
1

162

(ax2 − 2x1)[4(x1)2 − 4ax1x2 + a2(x2)2]

b4(x2)4
+

1

16

ax2 − 2x1

b6(x2)4
.

All the flat bi-cofactor systems in the 2-parameter family (79) are geodesically equivalent to both the Henon-
Heiles system (72) and the Hamiltonian system (78). They also belong to the whole family of such systems
generated by (75).
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(2000) 210

[4] Falqui G. and Pedroni M., Separation of variables for bi-Hamiltonian systems, Math. Phys. Anal. Geom.
6 (2003) 139

[5] Rauch-Wojciechowski S., Marciniak K. and Lundmark H., Quasi-Lagrangian systems of Newton equa-
tions, J. Math. Phys. 40 (1999) 6366

[6] Lundmark H., A new class of integrable Newton systems, J. Nonlinear Math. Phys. 8 supplement (2001)
195

[7] Crampin M. and Sarlet W., A class of nonconservative Lagrangian systems on Riemannian manifolds,
J. Math. Phys. 42 (2001) 4313

[8] Crampin M. and Sarlet W., Bi-quasi-Hamiltonian systems, J. Math. Phys. 43 (2001) 2505

[9] Crampin M., Projectively equivalent Riemannian spaces as quasi-bi-Hamiltonian systems, Acta Appl.
Math. 77 (2003) 237

[10] Marciniak K. and B laszak M., Separation of variables in quasi-potential systems of bi-cofactor form, J.
Phys. A: Math. Gen. 35 (2002) 2947
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