What is K-theory and what is it good for?

University of Colorado Ulam Minicourse

April 23, 2019

- The basic definition of K-theory
- A brief history of K-theory
- Algebraic versus topological K-theory
- The unity of K-theory

Dedicated to the memory of Sir Michael Atiyah

Let J be an abelian semi-group.

 \widehat{J} denotes the abelian group :

$$\begin{split} \widehat{J} &= J \bigoplus J/\sim \\ (\xi,\eta) \sim (\xi',\eta') & \Longleftrightarrow \quad \exists \quad \theta \in J \quad \text{with} \\ & \xi + \eta' + \theta = \xi' + \eta + \theta \\ \underline{\text{Example}} \ \mathbb{N} &= \{1,2,3,\ldots\} \\ & \widehat{\mathbb{N}} = \mathbb{Z} \end{split}$$

Let Λ be a ring with unit 1_{Λ} .

 $M_n(\Lambda)$ denotes the ring of all $n \times n$ matrices $[a_{ij}]$ with each $a_{ij} \in \Lambda$. n = 1, 2, 3, ...

 $M_n(\Lambda)$ is again a ring with unit.

 $GL(n,\Lambda) = \{ \text{ invertible elements of } M_n(\Lambda) \}$

$$P_n(\Lambda) = \{ \alpha \in M_n(\Lambda) | \alpha^2 = \alpha \} \quad n = 1, 2, 3 \dots$$

Definition

 $\alpha, \beta \in P_n(\Lambda)$ are similar if $\exists \gamma \in GL(n, \Lambda)$ with $\gamma \alpha \gamma^{-1} = \beta$.

Set
$$P(\Lambda) = P_1(\Lambda) \cup P_2(\Lambda) \cup P_3(\Lambda) \cup \dots$$

Impose an equivalence relation stable similarity on $P(\Lambda)$.

<u>Notation</u>. If r is a non-negative integer $[0_r]$ is the $r \times r$ zero matrix.

Definition

 $\alpha\in P_n(\Lambda)$ and $\beta\in P_m(\Lambda)$ are stably similar iff there exist non-negative integers r,s with n+r=m+s and with

 $\alpha \oplus [0_r]$ is similar to $\beta \oplus [0_s]$

 $J(\Lambda) = P(\Lambda)/(\text{stable similarity})$ $J(\Lambda) \text{ is an abelian semi-group}.$

 $\alpha + \beta =$

α	0
0	β

Definition

 $\alpha \in P_n(\Lambda)$ and $\beta \in P_m(\Lambda)$ are stably similar iff there exist non-negative integers r, s with n + r = m + s and with

Set $J(\Lambda) = P(\Lambda)/(\text{stable similarity})$.

 $J(\Lambda) = P(\Lambda)/(\text{stable similarity})$ $J(\Lambda)$ is an abelian semi-group.

 $\alpha + \beta =$

α	0
0	β

Definition

$$K_0\Lambda = \widehat{J(\Lambda)}$$

This is the basic definition of K-theory.

 Λ, Ω rings with unit

 $\varphi \colon \Lambda \to \Omega$ ring homomorphism with $\varphi(1_{\Lambda}) = 1_{\Omega}$ $\varphi_* \colon K_0 \Lambda \to K_0 \Omega$ $\varphi_*[a_{ij}] = [\varphi(a_{ij})]$ $\varphi \colon K_0 \Lambda \to K_0 \Omega$ is a homomorphism of abelian groups

Example

If Λ is a field, then $[a_{ij}], [b_{kl}]$ in $P(\Lambda)$ are stably similar iff

$$\operatorname{rank}[a_{ij}] = \operatorname{rank}[b_{kl}],$$

where the rank of an $n \times n$ matrix is the dimension (as a vector space over Λ) of the sub vector space of $\Lambda^n = \Lambda \oplus \cdots \oplus \Lambda$ spanned by the rows of the matrix.

Hence if Λ is a field, $J(\Lambda) = \{0, 1, 2, 3, ...\}$ and $K_0\Lambda = \mathbb{Z}$.

X compact Hausdorff topological space

 $C(X) = \{ \alpha \colon X \to \mathbb{C} | \alpha \text{ is continuous} \}$

C(X) is a ring with unit.

 $(\alpha + \beta)x = \alpha(x) + \beta(x)$

 $(\alpha\beta)x = \alpha(x)\beta(x)$ $x \in X$, $\alpha, \beta \in C(X)$

The unit is the constant function 1.

Definition (M. Atiyah - F. Hirzebruch)

Let X be a compact Hausdorff topological space.

 $K^0(X) = K_0 C(X)$

Example

$$S^{2} = \{(t_{1}, t_{2}, t_{3}) \in \mathbb{R}^{3} \mid t_{1}^{2} + t_{2}^{2} + t_{3}^{2} = 1\}$$
$$x_{j} \in C(S^{2}) \qquad x_{j}(t_{1}, t_{2}, t_{3}) = t_{j} \qquad j = 1, 2, 3$$
$$K_{0}C(S^{2}) = \mathbb{Z} \oplus \mathbb{Z}$$

[1]
$$\begin{bmatrix} \frac{1+x_3}{2} & \frac{x_1+ix_2}{2} \\ \frac{x_1-ix_2}{2} & \frac{1-x_3}{2} \end{bmatrix}$$

 $i = \sqrt{-1}$

A brief history of K-theory

HIRZEBRUCH-RIEMANN-ROCH

- M non-singular projective algebraic variety / $\mathbb C$
- ${\cal E}\,$ an algebraic vector bundle on ${\cal M}\,$
- \underline{E} = sheaf of germs of algebraic sections of E
- $H^j(M,\underline{E}) \, := j\text{-th}$ cohomology of M using $\underline{E},\, j=0,1,2,3,\ldots$

<u>Lemma</u>

For all $j = 0, 1, 2, ... \dim_{\mathbb{C}} H^j(M, \underline{E}) < \infty$. For all $j > \dim_{\mathbb{C}}(M)$, $H^j(M, \underline{E}) = 0$.

$$\chi(M,E) := \sum_{j=0}^{n} (-1)^{j} \dim_{\mathbb{C}} H^{j}(M,\underline{E})$$

$$n = \dim_{\mathbb{C}}(M)$$

Theorem (HRR)

Let M be a non-singular projective algebraic variety / $\mathbb C$ and let E be an algebraic vector bundle on M. Then

$$\chi(M, E) = (ch(E) \cup Td(M))[M]$$

 $\begin{pmatrix} a & b \\ c & a \end{pmatrix}$ | ad - bc = 1, b = 1, a

Tangent Vector Fields on Spheres

 S^{n-1} denotes the unit sphere of \mathbb{R}^n $S^{n-1} = \{(t_1, t_2, \dots, t_n) \in \mathbb{R}^n \mid t_1^2 + t_2^2 + \dots + t_n^2 = 1\}$ A continuous tangent vector field V on S^{n-1} can be viewed as a

continuous function

$$V\colon S^{n-1}\to\mathbb{R}^n$$

such that every $p \in S^{n-1}$ has V(p) perpendicular to p.

 $V(p) \perp p$

Definition

Continuous tangent vector fields V_1, V_2, \ldots, V_r on S^{n-1} are <u>linearly independent</u> if for every $p \in S^{n-1}$, $V_1(p), V_2(p), \ldots, V_r(p)$ are linearly independent in \mathbb{R}^n .

$$\begin{split} &\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}\\ &\text{usual inner product}\\ &\langle (t_1,t_2,\ldots,t_n),(s_1,s_2,\ldots,s_n)\rangle=t_1s_1+t_2s_2+\cdots+t_ns_n\\ &p\in\mathbb{R}^n,q\in\mathbb{R}^n\ p\perp q\Leftrightarrow\langle p,q\rangle=0. \end{split}$$

 $S^{n-1} \subset \mathbb{R}^n$

A continuous tangent vector field V on ${\cal S}^{n-1}$ an be viewed as a continuous function

$$V\colon S^{n-1}\to\mathbb{R}^n$$

such that $\forall p \in S^{n-1}$

 $p\perp V(p).$

Problem

What is the maximum r such that S^{n-1} admits r linearly independent continuous tangent vector fields?

Example

For $S^2, S^4, S^6, S^8, \ldots, r = 0$.

If V is a continuous tangent vector field on an even-dimensional sphere, then for at least one point p in the sphere V(p) = 0.

Theorem (J. F. Adams)

Set

$$n = 2^{c(n)} 16^{d(n)} u, \quad 0 \le c(n) \le 3, \quad u \text{ odd.}$$

Define $\rho(n)$ by $\rho(n) = 2^{c(n)} + 8d(n)$.

Then S^{n-1} admits $\rho(n)-1$ linearly independent continuous tangent vector fields and S^{n-1} does not admit $\rho(n)$ linearly independent continuous tangent vector fields.

<u>Reference</u>. J. F. Adams "Vector fields on spheres" Ann. of Math. **75** (1962), 603-632

Topic 2: C^{*} algebras

Definition

A Banach algebra is an algebra A over \mathbb{C} with a given norm $\| \|$

$$\|\,\|:A\to\{t\in\mathbb{R}\mid t\geqq 0\}$$

such that A is a complete normed algebra:

```
\begin{split} \|\lambda a\| &= |\lambda| \|a\| \quad \lambda \in \mathbb{C}, \quad a \in A \\ \|a + b\| &\le \|a\| + \|b\| \quad a, b \in A \\ \|ab\| &\le \|a\| \|b\| \qquad a, b \in A \\ \|a\| &= 0 \Longleftrightarrow a = 0 \end{split}
```

Every Cauchy sequence is convergent in A (with respect to the metric $\|a-b\|).$

 C^* algebras A C^* algebra $* \cdot A \to A$ $a \mapsto a^*$ A = (A, || ||, *)(A, || ||) is a Banach algebra $(a^*)^* = a$ $(a+b)^* = a^* + b^*$ $(ab)^* = b^*a^*$ $(\lambda a)^* = \overline{\lambda} a^* \quad a, b \in A, \quad \lambda \in \mathbb{C}$ $||aa^*|| = ||a||^2 = ||a^*||^2$ A *-homomorphism is an algebra homomorphism $\varphi \colon A \to B$ such that $\varphi(a^*) = (\varphi(a))^* \quad \forall a \in A.$

<u>Lemma</u>

If $\varphi \colon A \to B$ is a *-homomorphism, then $\|\varphi(a)\| \leq \|a\| \ \forall a \in A$.

EXAMPLES OF C* ALGEBRAS

Example

 \boldsymbol{X} topological space, Hausdorff, locally compact

 $X^+ =$ one-point compactification of X $= X \cup \{p_{\infty}\}$ $C_0(X) = \{ \alpha \colon X^+ \to \mathbb{C} \mid \alpha \text{ continuous}, \alpha(p_\infty) = 0 \}$ $\|\alpha\| = \sup |\alpha(p)|$ $p \in X$ $\alpha^*(p) = \overline{\alpha(p)}$ $(\alpha + \beta)(p) = \alpha(p) + \beta(p) \quad p \in X$ $(\alpha\beta)(p) = \alpha(p)\beta(p)$ $(\lambda \alpha(p) = \lambda \alpha(p) \quad \lambda \in \mathbb{C}$

If X is compact Hausdorff, then

$$C_0(X) = C(X) = \{ \alpha \colon X \to \mathbb{C} \mid \alpha \text{ continuous} \}$$

Example

H separable Hilbert space

separable = H admits a countable (or finite) orthonormal basis.

$$\begin{split} \mathcal{L}(H) &= \{ \text{bounded operators } T \colon H \to H \} \\ \|T\| &= \sup_{\substack{u \in H \\ \|\|u\| = 1}} \|Tu\| & \text{operator norm} \\ \|u\| &= \langle u, u \rangle^{1/2} \\ T^* &= \text{ adjoint of } T & \langle Tu, v \rangle &= \langle u, T^*v \\ (T+S)u &= Tu + Su \\ (TS)u &= T(Su) \\ (\lambda T)u &= \lambda (Tu) & \lambda \in \mathbb{C} \end{split}$$

G	topological group
	locally compact
	Hausdorff
	second countable
	(second countable = The topology of G has a countable
bas	se.)

Examples	
Lie groups ($\pi_0(G)$ finite)	$SL(n,\mathbb{R})$
p-adic groups	$SL(n,\mathbb{Q}_p)$
adelic groups	$SL(n,\mathbb{A})$
discrete groups	$SL(n,\mathbb{Z})$

G topological group locally compact Hausdorff second countable

Example

 C^*_rG the reduced C^* algebra of GFix a left-invariant Haar measure dg for G "left-invariant" = whenever $f\colon G\to\mathbb{C}$ is continuous and compactly supported

$$\int_G f(\gamma g) dg = \int_G f(g) dg \qquad \forall \gamma \in G$$

 $\begin{array}{l} L^2G \text{ Hilbert space} \\ L^2G = \left\{ u \colon G \to \mathbb{C} \mid \int_G |u(g)|^2 dg < \infty \right\} \\ \langle u, v \rangle = \int_G \overline{u(g)} v(g) dg \qquad u, v \in L^2G \end{array}$

 $\mathcal{L}(L^2G) = C^* \text{ algebra of all bounded operators } T \colon L^2G \to L^2G$ $C_cG = \{f \colon G \to \mathbb{C} \mid f \text{ is continuous and } f \text{ has compact support} \}$ $C_cG \text{ is an algebra}$ $(\lambda f)g = \lambda(fg) \qquad \lambda \in \mathbb{C} \quad g \in G$ (f+h)g = fg + hg

Multiplication in C_cG is convolution

$$(f*h)g_0 = \int_G f(g)h(g^{-1}g_0)dg \qquad g_0 \in G$$

 $0 \to C_c G \to \mathcal{L}(L^2 G)$ Injection of algebras $f \mapsto T_f$ $T_f(u) = f * u \qquad u \in L^2G$ $(f\ast u)g_0=\int_C f(g)u(g^{-1}g_0)dg \qquad g_0\in G$ $C_r^*G \subset \mathcal{L}(L^2G)$ $C_r^*G = \overline{C_cG} =$ closure of C_cG in the operator norm C_r^*G is a sub C^* algebra of $\mathcal{L}(L^2G)$

A C^* algebra (or a Banach algebra) with unit 1_A . Define abelian groups $K_1A, K_2A, K_3A, ...$ as follows : $\operatorname{GL}(n, A)$ is a topological group. The norm $|| \, ||$ of A topologizes $\operatorname{GL}(n, A)$.

GL(n, A) embeds into GL(n + 1, A).

$$\operatorname{GL}(n, A) \hookrightarrow \operatorname{GL}(n+1, A)$$
$$\begin{bmatrix} a_{11} \dots & a_{1n} \\ \vdots & \vdots \\ a_{n1} \dots & a_{nn} \end{bmatrix} \mapsto \begin{bmatrix} a_{11} \dots & a_{1n} & 0 \\ \vdots & \vdots & \vdots \\ a_{n1} \dots & a_{nn} & 0 \\ 0 & \dots & 0 & 1_A \end{bmatrix}$$

 $\operatorname{GL} A = \lim_{n \to \infty} \operatorname{GL}(n,A) = \bigcup_{n=1}^\infty \operatorname{GL}(n,A)$

$$\operatorname{GL} A = \lim_{n \to \infty} \operatorname{GL}(n, A) = \bigcup_{n=1}^{\infty} \operatorname{GL}(n, A)$$

Give $\operatorname{GL} A$ the direct limit topology.

This is the topology in which a set $U \subset \operatorname{GL} A$ is open if and only if $U \cap \operatorname{GL}(n, A)$ is open in $\operatorname{GL}(n, A)$ for all n = 1, 2, 3, ...

 $A \ C^*$ algebra (or a Banach algebra) with unit 1_A K_1A, K_2A, K_3A, \dots

Definition $K_j A := \pi_{j-1}(\operatorname{GL} A)$ $j = 1, 2, 3, \dots$ $\Omega^2 \operatorname{GL} A \sim \operatorname{GL} A$ Bott Periodicity $K_j A \cong K_{j+2}A$ $j = 0, 1, 2, \dots$ $K_0 A$ $K_1 A$

A C^* algebra (or a Banach algebra) with unit 1_A $K_0A = K_0^{alg}A = \widehat{J(A)}$ A = (A, || ||, *)For K_0A forget || || and *. View A as a ring with unit. Define K_0A as above using idempotent matrices. For K_1A cannot forget || || and *. $K_0A = K_1A$ $A \ C^*$ algebra (or a Banach algebra) with unit 1_A The Bott periodicity isomorphism

$$K_0 A = \widehat{J}(A) \longrightarrow K_2 A = \pi_1 G L A$$

assigns to $\alpha \in P_n(A)$ the loop of $n \times n$ invertible matrices

$$t \mapsto I + (e^{2\pi i t} - 1)\alpha \qquad t \in [0, 1]$$

I =the $n \times n$ identity matrix

A C^* algebra (or a Banach algebra) If A is not unital, adjoin a unit.

 $\begin{array}{ll} 0 \longrightarrow A \longrightarrow \tilde{A} \longrightarrow \mathbb{C} \longrightarrow 0 \\ \\ \text{Define: } K_j A = K_j \tilde{A} & j = 1, 3, 5, \dots \\ K_j A = \text{Kernel}(K_j \tilde{A} \longrightarrow K_j \mathbb{C}) & j = 0, 2, 4, \dots \\ K_j A \cong K_{j+2} A & j = 0, 1, 2, \dots \\ K_0 A & K_1 A \end{array}$

FUNCTORIALITY OF K-THEORY

 $\begin{array}{lll} A,B & C^* \text{ algebras} \\ \varphi:A \longrightarrow B & *\text{- homomorphism} \\ \varphi_*:K_jA \longrightarrow K_jB & j=0,1 \end{array}$

K-theory can be applied to classification problems for C^\ast algebras. See results of G. Elliott and others.

SIX TERM EXACT SEQUENCE

Let

 $0 \longrightarrow I \longrightarrow A \longrightarrow B \longrightarrow 0$

be a short exact sequence of C^* algebras.

Then there is a six-term exact sequence of abelian groups

G topological group locally compact Hausdorff second countable (second countable = topology of G has a countable base) C_r^*G the reduced C^* algebra of G

Problem

$$K_j C_r^* G = ? \quad j = 0, 1$$

Conjecture (P. Baum - A. Connes)

 $\mu: K_j^G(\underline{E}G) \to K_j C_r^* G$ is an isomorphism. j = 0, 1

 $\begin{array}{c} G \text{ compact or } G \text{ abelian} \\ \\ \Downarrow \\ \\ \text{Conjecture true} \end{array}$

Corollaries of BC

Novikov conjecture

Stable Gromov Lawson Rosenberg conjecture (Hanke + Schick)

Idempotent conjecture

Kadison Kaplansky conjecture

Mackey analogy (Higson)

Construction of the discrete series via Dirac induction

(Parthasarathy, Atiyah + Schmid, V. Lafforgue)

Homotopy invariance of ρ -invariants

```
(Keswani, Piazza + Schick)
```

G to	pological group
	locally compact
	Hausdorff
	second countable
	(second countable = The topology of G has a countable
base	.)

Examples

Lie groups $(\pi_0(G) \text{ finite})$ *p*-adic groups adelic groups discrete groups $SL(n, \mathbb{R}) OK \checkmark$ $SL(n, \mathbb{Q}_p) OK \checkmark$ $SL(n, \mathbb{A}) OK \checkmark$ $SL(n, \mathbb{Z})$

<u>Theorem</u> (N. Higson + G. Kasparov)

Let Γ be a discrete (countable) group which is amenable or a-t-menable. Then

$$\mu \colon K_j^{\Gamma}(\underline{E}\Gamma) \to K_j C_r^* \Gamma$$

is an isomorphism. j = 0, 1

Theorem (G. Yu + I. Mineyev, V. Lafforgue)

Let Γ be a discrete (countable) group which is hyperbolic (in Gromov's sense). Then

$$\mu \colon K_j^{\Gamma}(\underline{E}\Gamma) \to K_j C_r^* \Gamma$$

is an isomorphism. j = 0, 1

$SL(3,\mathbb{Z})$??????

 $\Gamma \quad \text{group (not topologized = discrete group)} \\ B\Gamma \quad \begin{cases} \text{triangulable topological space} \\ \text{connected} \\ \pi_1(B\Gamma) = \Gamma \end{cases}$

$$\pi_j(B\Gamma) = 0$$
 for all $j > 1$

Example

 $F_2 = Free \text{ group on two generators}$

Example

 $\mathbb{Z}/2\mathbb{Z}$

$$B(\mathbb{Z}/2\mathbb{Z}) = \mathbb{R}P^{\infty} = \lim_{n \to \infty} \mathbb{R}P^n$$

Algebraic K Theory Λ ring with unit 1_{Λ} $K_0\Lambda$ $\operatorname{GL}\Lambda = \lim_{n \to \infty} \operatorname{GL}(n, \Lambda)$

Definition

 $K_1^{alg}\Lambda = \operatorname{GL}\Lambda/[\operatorname{GL}\Lambda,\operatorname{GL}\Lambda]$

Lemma

```
[\operatorname{GL}\Lambda,\operatorname{GL}\Lambda] is perfect.
```

 $B \operatorname{GL} \Lambda$ $(B \operatorname{GL} \Lambda)_+$ + -construction D. Quillen $B \operatorname{GL} \Lambda \longrightarrow (B \operatorname{GL} \Lambda)_+$

$$\pi_1(B \operatorname{GL} \Lambda)_+ = \operatorname{GL} \Lambda / [\operatorname{GL} \Lambda, \operatorname{GL} \Lambda]$$
$$H_j B \operatorname{GL} \Lambda = H_j(B \operatorname{GL} \Lambda)_+ \quad j = 0, 1, 2, 3, \dots$$

Definition

$$K_j^{alg}\Lambda = \pi_j (B\operatorname{GL}\Lambda)_+ \qquad j = 1, 2, 3, \dots$$

Extend to the case when Λ does not have a unit

$$\begin{split} 0 &\to \Lambda \to \widetilde{\Lambda} \to \mathbb{Z} \to 0 \\ K_j^{alg}\Lambda &= \mathsf{Kernel}\left(K_j^{alg}\widetilde{\Lambda} \to K_j^{alg}\mathbb{Z}\right) \end{split}$$

Lichtenbaum Conjecture: Special Case

Conjecture

Let F be a totally real algebraic number field. Then for $n=2,4,6,\ldots$ $\zeta_F(1-n)=\pm\frac{|K_{2n-2}(\mathcal{O}_F)|}{|K_{2n-1}(\mathcal{O}_F)|}$

up to powers of 2.

Let F be an algebraic number field (F is a finite extension of \mathbb{Q}) \mathcal{O}_F denotes the ring of integers in F

Lichtenbaum Conjecture For $n\geqq 2$

$$\zeta_F(1-n) = \pm \frac{|K_{2n-2}(\mathcal{O}_F)|}{|K_{2n-1}(\mathcal{O}_F)_{tors}|} \cdot R_n^B(F)$$

up to powers of 2.

K theory for C^* algebras $A C^*$ algebra trivial move = stabilizing A

$$M_n(A) \hookrightarrow M_{n+1}(A)$$

$$\begin{bmatrix} a_{11} \dots a_{1n} \\ \vdots & \vdots \\ a_{n1} \dots a_{nn} \end{bmatrix} \mapsto \begin{bmatrix} a_{11} \dots a_{1n} & 0 \\ \vdots & \vdots & \vdots \\ a_{n1} \dots & a_{nn} & 0 \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

This is a one-to-one ∗-homomorphism ∴ This is norm preserving

$$M_{\infty}(A) = \lim_{\rightarrow} M_n(A)$$
$$= \left\{ \begin{vmatrix} a_{11}a_{12} & \dots \\ a_{21}a_{22} & \dots \\ \vdots & \vdots \end{vmatrix} \text{ Almost all } a_{ij} = 0 \right\}$$

$$\begin{split} \dot{A} &= \overline{M_{\infty}(A)} \\ \dot{A} \text{ is the stabilization of } A \\ K_j(\dot{A}) &= K_j(A) \qquad j = 0,1 \end{split}$$

Karoubi Conjecture

Let A be a C^{\ast} algebra, then

$$K_j(\dot{A}) = K_j^{alg}(\dot{A})$$
 $C^*\text{-algebra}\;K$ theory $\begin{tabular}{c|c|c|} Algebraic K-theory \end{tabular}$

The Karoubi conjecture was proved by A. Suslin and M. Wodzicki

Theorem (A. Suslin and M. Wodzicki)

Let A be a C^* algebra. Then

$$K_j \dot{A} = K_j^{alg} \dot{A} \qquad j = 0, 1, 2, 3, \dots$$

 \dot{A} is the stabilization of A.

This theorem is the unity of K-theory. It says that C^* algebra K-theory is a pleasant subdiscipline of algebraic K-theory in which Bott periodicity is valid and certain basic examples are easy to calculate.

Example

Let H be a separable (but not finite dimensional) Hilbert space. i.e. H has a countable (but not finite) orthonormal basis

$$\dot{\mathbb{C}} = \mathcal{K} \subset \mathcal{L}(H)$$

 $\mathcal{K} =$ The compact operators on H

$$K_j \mathbb{C} = K_j \dot{\mathbb{C}}$$
 C^* algebra K theory

$$K_j^{alg}(\dot{\mathbb{C}}) = \left\{ \begin{array}{ll} \mathbb{Z} & j \text{ even} \\ 0 & j \text{ odd} \end{array} \right\}$$

algebraic K theory

$$\begin{pmatrix} \mathsf{Commutative} \\ C^* \text{ algebras} \end{pmatrix} \sim \begin{pmatrix} \mathsf{Locally \ compact \ Hausdorff} \\ \mathsf{topological \ spaces} \end{pmatrix}^{op}$$

$$\begin{split} C_0(X) & \leftrightarrow X \\ C_0(X) &:= \{ \alpha \colon X^+ \to \mathbb{C} \mid \alpha \text{ is continuous and } \alpha(p_\infty) = 0 \} \\ X^+ &= X \cup \{ p_\infty \} \text{ is the one point compactification of } X \end{split}$$

$$f: X^+ \to Y^+$$

$$f(p_{\infty}) = q_{\infty}$$

$$C_0(X) \leftarrow C_0(Y)$$

$$\alpha \circ f \leftrightarrow \alpha \in C_0(Y)$$