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Introduction

GOAL: Gaining understanding & developing the ability of precise and refined logical thinking.

MOTIVATION: (after JFK’s 1962 speech)

We choose to do mathematics not because it is easy but because it is hard, because it is a challenge
we are willing to accept, one we are unwilling to postpone, because it serves to organize and measure
the best of our energies and skills.

PLAN:

1. Recap basic knowledge of fields and linear algebra

2. Define and explore the concept of an algebra

3. Graphs (quivers) and path algebras

4. Elements of representation theory

5. Leavitt path algebras

1 Rings

1.1 Definition, examples, remarks

Definition 1.1. LetR be a non-empty set equipped with two binary operationsR×R +→ R ,R×R ·→
R and two special elements 0 , 1 ∈ R. The quintuple (R,+, 0, ·, 1) is called a ring iff:

(R1) (R,+, 0) is an abelian group, i.e.

∀ r, s, t ∈ R : (r+s)+t = r+(s+t), r+s = s+r, 0+r = r, ∀ r ∈ R ∃ r′ ∈ R : r+r′ = 0.

(R2) (R, ·, 1) is a monoid, i.e.

∀ r, s, t ∈ R : (r · s) · t = r · (s · t), 1 · r = r = r · 1.

(R3) The multiplication is distributive over addition, i.e.

∀ r, s, t ∈ R : (r + s) · t = r · t+ s · t, r · (s+ t) = r · s+ r · t.

We say that the ring R is commutative iff the monoid (R, ·, 1) is commutative (r · s = s · r).
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Elementary observations:

1. If there are at least two elements in a ring R, then 0 6= 1. Indeed,

0 · x = 0 · x+ x− x = 0 · x+ 1 · x− x = (0 + 1) · x− x = 1 · x− x = x− x = 0,

so, if 0 = 1, then x = 1 · x = 0 · x = 0 and 0 is the only element of R.

2. (−1) · x = −x because

x+ (−1) · x = 1 · x+ (−1) · x = (1− 1) · x = 0 · x = 0

and the claim follows by the uniqueness of the inverse element.

Examples of rings:

1. The ring of integers (Z,+, 0, ·, 1). It is a commutative ring. So is every quotient ring

Z/NZ := Z/RN , RN := {(m,n) ∈ Z2 |m− n ∈ NZ}.

For N = 0, we get Z/0Z = Z, and for N = 1 we obtain Z/Z = {0}. For N = 24 (or 12), we
get the ”clock” ring.

2. If R is a ring and X 6= ∅, then Map(X,R) is a ring with respect to the pointwise operations
given by

∀x ∈ X : (f + g)(x) := f(x) + g(x), (f · g)(x) := f(x) · g(x).

The neutral elements are the constant functions x 7→ 0 and x 7→ 1 for the addition and multi-
plication respectively.

1.2 Convolution multiplication

Let R be a ring and G be a monoid. Define

R[G] := {α ∈Map(G,R) | α(g) 6= 0 only for finitely many g ∈ G}.

The binary operation R[G]×R[G]
∗→ R[G] given by

(α ∗ β)(g) :=
∑
h,h′∈G
h·h′=g

α(h)β(h′)

is called the convolution multiplication.

1. It is well defined, i.e. the sum is finite, and again a map with finite support.
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2. The convolution is associative:

((α ∗ β) ∗ γ)(g) =
∑
h,z∈G
hz=g

(α ∗ β)(h)γ(z) =
∑
h,z∈G
hz=g

∑
x,y∈G
xy=h

α(x)β(y)γ(z) =
∑

x,y,h,z∈G
hz=g, xy=h

α(x)β(y)γ(z)

=
∑

x,y,z∈G
xyz=g

α(x)β(y)γ(z) =
∑

x,y,z,k∈G
xk=g, yz=k

α(x)β(y)γ(z) =
∑
x,k∈G
xk=g

α(x)
∑
y,z∈G
yz=k

β(y)γ(z)

=
∑
x,k∈G
xk=g

α(x)(β ∗ γ)(k) = (α ∗ (β ∗ γ))(g) .

The neutral element for ∗ is given by

δe(g) :=

{
0 for g 6= e

1 for g = e
,

where e is the neutral element of G.

Hence (R[G], ∗, δe) is a monoid.

3. The convolution is distributive with respect to the pointwise multiplication, so (R[G],+, 0, ∗, δe)
is a ring. We call it a monoidal ring. If G is a group, we call it a group ring.

Examples of monoidal rings:

1. For the additive monoid of natural numbers (N,+, 0), R[N] is the polynomial ring with coeffi-
tiens in R. Elements of R[N] are called polynomials. A key polynomial is given by

x(m) :=

{
1 for m = 1

0 for m 6= 1
.

Compute
xn := x ∗ . . . ∗ x︸ ︷︷ ︸

n times
on m ∈ N:

xn(m) =
∑

m1,...,mn∈N
m1+...+mn=m

x(m1) . . . x(mn) =

{
1 for m = n

0 for m 6= n
.

It is natural to denote the convolution neutral element δe as x0:

x0(m) =

{
1 for m = 0

0 for m 6= 0
.

Note that ∀α ∈ R[N]:

α =
n∑
k=0

α(k)xk ,
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where (rβ)(m) := rβ(m) for r ∈ R and β ∈ R[N]. Indeed,(
n∑
k=0

α(k)xk

)
(m) =

n∑
k=0

α(k)xk(m) = α(m).

The convolution multiplication of polynomials:((
m∑
k=0

rkx
k

)
∗

(
n∑
l=0

slx
l

))
(q) =

∑
q1+q2=q
q1,q2∈N

m∑
k=0

n∑
l=0

(
rkx

k(q1)
) (
slx

l(q2)
)

=
m∑
k=0

n∑
l=0

rksl
∑

q1+q2=q
q1,q2∈N

(
xk(q1)xl(q2)

)
=

(
m∑
k=0

n∑
l=0

rkslx
k+l

)
(q)

=

∣∣∣∣ N := k + l
l = N − k

∣∣∣∣ =


m+n∑
N=0


∑
k+l=N
0≤k≤m
0≤l≤n

rksl

xk+l

 (q)

=

m+n∑
N=0

 ∑
0≤k≤m

0≤N−k≤n

rksN−k

xN

 (q)

=

m+n∑
N=0

 ∑
0≤k,N−n≤k,
k≤m, k≤N

rksN−k

xN

 (q)

=

m+n∑
N=0

 min{m,N}∑
k=max{0,N−n}

rksN−k

xN

 (q) .

An example: R = Z, m = 2, n = 3, rk = k, sl = l2. Then(
2∑

k=0

kxk

)
∗

(
3∑
l=0

l2xl

)
=

5∑
N=0

 min{2,N}∑
k=max{0,N−3}

k(N − k)2

xN

=
0∑

k=0

0 · (0− 0)x0 +
1∑

k=0

k(1− k)2x+
2∑

k=0

k(2− k)2x2+

+
2∑

k=0

k(3− k)2x3 +
2∑

k=1

k(4− k)2x4 +
2∑

k=2

k(5− k)2x5

= x2 + (4 + 2)x3 + (9 + 8)x4 + 18x5 = x2 + 6x3 + 17x4 + 18x5 .

Computing directly, we obtain

(x+ 2x2)(x+ 4x2 + 93) = x2 + 4x3 + 9x4 + 2x3 + 8x4 + 18x5

= x2 + 6x3 + 17x4 + 18x5 .
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Evaluation at r ∈ R is a map

R[N] 3
n∑
k=0

skx
k evr7−−→

n∑
k=0

skr
k ∈ R .

The polynomial function fα of a polynomial α ∈ R[N] is the map

R 3 r fα7−→ fα(r) := evr(α) ∈ R .

2. For the additive group of integers (Z,+, 0), the group ringR[Z] is the ring of Laurent polynomials
with coefficients in R. A Laurent polynomial α can be written as

α =
n∑

k=−m

α(k)xk,

where x−1 is defined by

x−1(m) :=

{
1 for m = −1

0 for m 6= −1
.

Clearly, x−1 is the inverse of x:

(
x−1 ∗ x

)
(m) =

∑
k,l∈Z
k+l=m

x−1(k)x(l) =

{
1 for m = 0

0 for m 6= 0
.

3. Taking again the monoid (N,+, 0) but replacing R[N] with R[[N]] := Map(N, R), we obtain
the ring of formal power series:

∑∞
k=0 αkx

k.

2 Fields

Definition 2.1. A non-zero commutative ring whose every non-zero element is invertible is called a
field. The least natural number n such that

1 + . . .+ 1︸ ︷︷ ︸
n−times

= 0

is called the characteristic of a field. If it does not exist, we say that the characteristic is zero.

Elementary observations:

1. A ring (K,+, 0, ·, 1) is a field ⇐⇒ (K \ {0}, ·, 1) is an abelian group.

2. The characteristic of a field is either zero or a prime number. Indeed, suppose the contrary. Then
n = kl with 1 < k, l < n, so both k · 1 and l · 1 are non-zero, whence invertible. Therefore,
0 = n · 1 = (kl) · 1 = (k · 1)(l · 1), so 0 · (l · 1)−1(k · 1)−1 = 1, i.e. 0 = 1, which contradicts
(K \ {0}, ·, 1) being a group.
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Examples of fields:

1. The field Q of rational numbers (more generally, a field of fractions).

2. The field R of real numbers (more generally, a metric closure of a field, e.g. the field Qp of
p-adic numbers).

3. The field C of complex numbers (more generally, the algebraic closure of a field).

4. Q +
√

2Q (more generally, an algebraic extension of a field).

5. Z/pZ, where p is a prime number (more generally, a finite field).

Theorem 2.2. The ring Z/NZ is a field if and only if N is a prime number.

Proof. If N is not a prime number, then N = kl with 1 < k, l < N , so both (k · 1) and (l · 1) are
non-zero and non-invertible. Hence Z/NZ is not a field. Assume now that N is a prime number.
Since Z/NZ is commutative. it suffices to show that

∀ k ∈ {1, . . . , N − 1} ∃ l ∈ {1, . . . , N} : kl = 1 mod N, i.e. kl = mN + 1 for some m ∈ N.

Consider a map

fk : Z/NZ −→ Z/NZ : fk(l · 1) := (k · 1)(l · 1) = (kl) · 1.

If fk(l · 1) = fk(l
′ · 1), then kl = kl′ + mN for some m, i.e. k(l − l′) = mN for some m. Hence

l− l′ = m′N for some m′ because N is a prime number not dividing k. This means that l · 1 = l′ · 1,
so fk is injective. Now as Z/NZ is finite, it is also surjective. Thus we proved that

∀ k ∈ {1, . . . , N − 1} ∃ l ∈ {1, . . . , N} : kl = 1 mod N, i.e. kl = mN + 1 for some m ∈ N.

Theorem 2.3. Let K be a finite field. Then the number of elements in K is pn, where p is the
characteristic of K and n is a positive integer.

Proof. Note first that K is a vector space of Z/pZ:

Z/pZ×K −→ K : (n · 1, x) 7−→ (n · 1K)x .

(The map is well-defined because p is the characterstic ofK.) SinceK is finite, it is finite dimensional
over Z/pZ. As every element of K can be uniquely written as

∑n
i=1 αiei, where {ei}n1 , is a basis of

K, there are pn elements in K.

The 4-element field K4:

As a vector space over Z/2Z and as an abelian group, K4 = Z/2Z×Z/2Z. We adopt the notation
0 := (0, 0), 1 := (1, 1), a := (1, 0), b := (0, 1). We need a multiplication table
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· a b
a
b

.

As both a and b are invertible, the only values for this table are from {1, a, b}. We have ab = 1, as
ab 6= a and ab 6= b. Hence a = a · 1 = a(a+ b) = a2 + ab = a2 + 1, so a2 = a− 1 = −b = b. Much
in the same way, b2 = a. Thus we obtain:

· a b
a b 1
b 1 a

.

A quick direct check shows that (K4, ·, 1) is a monoid, s.t. (K4 \ {0}, ·, 1) is an abelian group. Much
in the same way, one checks that the distributivity holds. Hence the above table defines a field.

Remarks on fields:

1. For every prime number p and a positive integer n, there exists a unique fieldKpn with pn-many
elements. If the characteristic of Kpn is a prime number q, then qm = pn for some m ∈ N \ {0}
so q = p and m = n.

2. The characteristic of every finite field is positive, but not every field of positive characteristic
is finite: the algebraic closure Z/pZ of Z/pZ is infinite. Indeed, a finite field F cannot be
algebraically closed as the polynomial x0 +

∏
α∈F (x− α) ∈ F [N] has no root in F .

3 Algebras

3.1 Definition, examples, remarks

The concept of an algebra unifies the notion of a ring with the notion of a vector space: an algebra is
a vector space with a compatible ring structure.

Definition 3.1. (A, k, ·, ∗) is called an algebra over (the ground field) k iff

(A1) (A, k, ·) is a vector space over k,

(A2) (A,+, 0, ∗) is a not necessarily unital ring with respect to the abelian group (A,+, 0) that is
a part of the vector space structure,

(A3) The algebra multiplication A× A ∗→ A is bilinear over k:

(αx) ∗ (βy) = (αβ) · (x ∗ y).

An algebra is called unital iff ∃ 1 ∈ A : (A,+, 0, ∗, 1) is a ring.
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Examples of algebras:

1. Matrix algebras. For any positive integer n and any field k, the set Mn(k) of all n × n matrices
with coefficients in k is a unital algebra over k. The multiplication neutral element is the identity
matrix In. The setM∞(k) of all finite-size matrices with coefficients in k is a non-unital algebra
over k. Embedding Mn(k) into Mn+1(k) via

M 7→
(
M 0
0 0

)
allows us to think of M∞(k) as the union

⋃∞
n=1Mn(k). Note that dimkMn(k) = n2 and

dimkM∞(k) =∞.

2. Function algebras. For any non-empty space X and a field k, the set Map(X, k) is a unital
algebra over k with respect to the pointwise addition and multiplication. The multiplication
neutral element is the constant function x 7→ 1. If the set X is an infinite set, then the set
Mapf.s(X, k) of all finitely supported maps is a non-unital algebra over k.

3. Matrix algebra with coefficients in algebras. If A is a k-algebra and n is a positive integer, then
Mn(A) is a k-algebra. It is unital if A is unital. If A = Mm(k), then Mn(Mm(k)) = Mnm(k).

4. Algebra-valued function algebras. IfX is a non-empty set andA is a k-algebra, then Map(X,A)
is a k-algebra w.r.t. the pointwise addition, multiplication and the scalar multiplication. (Note
that for any vector space V , the set Map(X, V ) is again a vector space with the pointwise struc-
ture and dimk Map(X, V ) = |X| dimk V .) If A is a unital algebra, then Map(X,A) is a unital
algebra.

5. The above two cases might coincide.

Mn(Map(X, k)) = Map(X,Mn(k)).

6. Convolution algebra. If A is a k-algebra and G is a monoid, then A[G] is a k-algebra. It is
unital if A is unital: δe ∈ A[G],

δe(g) :=

{
1A for g = e

0 for g 6= e
,

is the multiplication neutral element. In particular, we can take A to be a field k, and G to be a
group. Group algebras k[G] are very important and well studied.

7. Algebras given by generators and relations: k〈x〉 := k[x] (polynomials), k[x]/〈x2〉 (truncated
polynomials), k〈x, y〉/〈xy − yx〉 = k[x, y] (polynomials in two variables).

8. Coupling algebras with topology and analysis yields a plethora of fundamental examples of
operator algebras: Banach algebras, C*-algebras, von Neumann algebras.
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3.2 Unital vs non-unital algebras

Every non-unital algebra can be unitalized in many ways.

Minimal unitization:

Let A be an algebra over a field k. The minimal unitization A+ of A is the vector space A ⊕ k
with the following multiplication:

(A⊕ k)× (A⊕ k)
∗−→ A⊕ k ,

((a, α), (b, β)) 7−→ (a, α) ∗ (b, β) := (ab+ αb+ βa, αβ) .

1. It is associative:

((a, α) ∗ (b, β)) ∗ (c, γ) = (ab+ αb+ βa, αβ) ∗ (c, γ)

= (abc+ αbc+ βac+ αβc+ γab+ αγb+ βγa, αβγ),

(a, α) ∗ ((b, β) ∗ (c, γ)) = (a, α) ∗ (bc+ βc+ γb, βγ)

= (abc+ βac+ γab+ βγa+ αbc+ αβc+ αγb, αβγ).

2. It extends the multiplication in A: (a, 0) ∗ (b, 0) = (ab, 0).

3. (0, 1) is the multiplication neutral element:

(a, α) ∗ (0, 1) = (a0 + α0 + a · 1, α · 1) = (a, α),

(0, 1) ∗ (a, α) = (0a+ 1 · a+ α0, 1 · α) = (a, α).

4. If A is already unital, then A+ ∼= A ⊕ k, where the multiplication on the right-hand-side is
component-wise: (a, α) · (b, β) = (ab, αβ). Indeed,

A+ f→ A⊕ k, f(a, α) := (a+ α · 1A, α)

is a linear bijection satisfying f(a, α) · f(b, β) = f((a, α) ∗ (b, β)).

Examples of unitization:

1. Let X =
{

1
n
| n ∈ N \ {0}

}
. Define

C0(X) :=

{
f ∈ Map(X,R)

∣∣ lim
n→∞

f

(
1

n

)
= 0

}
.

Then the minimal unitization C0(X)+ is

C(X) :=

{
f ∈ Map(X,R)

∣∣ lim
n→∞

f

(
1

n

)
∈ R

}
.
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Indeed,

F : C(X)→ C0(X)+, F (f) :=

(
f − lim

n→∞
f

(
1

n

)
· 1Map(X,R) , lim

n→∞
f

(
1

n

))
is a linear bijection intertwining the multiplication. Note that

C0(X) ∼= {f ∈ Map(X ∪ {0},R)
∣∣ f is continuous and f(0) = 0},

C(X) ∼= {f ∈ Map(X ∪ {0},R)
∣∣ f is continuous}.

2. Let
A := {f ∈ Map(C,Mn(k))

∣∣ f(x) = 0 for some x ∈ C} .

Then
A+ ∼= {f ∈ Map(C,Mn(k)) | f(x) = αIn for some α ∈ k} ∼= A⊕ k.

Indeed, A is a unital algebra with 1A(z) =

{
1 z 6= x

0 z = x
.

3. Let A := x ∗ k[N]. Then A+ ∼= k[N]. Indeed,

F : k[N] −→ A+, F (α) := (α− α(0)x0, α(0))

is a linear bijection intertwining the multiplications:

∀α ∈ k[N] : α− α(0)x0 =
n∑
i=0

α(i)xi − α(0)x0 =
n∑
i=1

α(i)xi

= x ∗

(
n−1∑
j=0

α(j + 1)xj

)
∈ x ∗ k[N] .

(Note that x ∗ k[Z] = k[Z] because α = x ∗ x−1 ∗ α .)

4 Ideals

Let A be an algebra over a field k, and let I be a vector subspace of A. The subspace I is called an
ideal of A iff

∀ a ∈ A, v ∈ I : av ∈ I and va ∈ I

Elementary remarks:

1. For any algebra A, the subspace I = 0 or I = A is an ideal of A. The zero ideal is called
trivial, and the whole-algebra ideal is called improper Any ideal of A that is not A is called a
proper ideal.

2. Every ideal is an algebra.
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3. An ideal I of a unital algebra A is unital if and only if I = A. Indeed, if A = I , then 1 ∈ I ,
and then ∀ a ∈ A: a · 1 = a ∈ I .

4. Ideals make sense already for rings: it suffices to replace a vector subspace with an abelian
subgroup.

5. Sometimes one-sided ideals are considered:

I is a left ideal of A iff ∀ a ∈ A, v ∈ I : av ∈ I ,

I is a right ideal of A iff ∀ a ∈ A, v ∈ I : va ∈ I .

A fundamental observation:

Let I be any ideal of an algebra A. Then the quotient vector space A/I is an algebra with respect
to the multiplication inherited form A. Indeed, the induced multiplication

A/I × A/I −→ A/I, ([a], [b]) 7−→ [ab]

is well defined because (a+ I)(b+ I) = ab+ Ib+aI + I2 ⊆ ab+ I . (Associativity and distributivity
are clear.)

Examples of ideals:

1. A is always an ideal of its minimal unitization A+:

(a, α)(b, 0) = (ab+ 0a+ αb, α0) = (ab+ αb, 0) ∈ A,
(a, 0)(b, β) = (ab+ βa+ 0b, 0β) = (ab+ βa, 0) ∈ A.

2. Let Y ⊆ X , Y 6= ∅, and let A be a k-algebra. Then I := {f ∈ Map(X,A) | f(Y ) = {0}} is an
ideal of Map(X,A) considered with the pointwise structure:

f(Y ) = {0} ⇒ ∀ y ∈ Y, g ∈ Map(X,A) : (gf)(y) = g(y)f(y) = g(y)0 = 0 and (fg)(y) = 0.

3. NZ is an ideal in Z.

4. I := {M ∈Mn(k) |Min = 0 ∀ i}, n > 1, is a left (but not right) ideal of Mn(k):

(NM)in =
n∑
k=1

NikMkn = 0.

To show that it is not a right ideal, starting from n = 2, take matrices of the form(
0 0
1 0

)
∈ I,

(
0 1
0 0

)
∈M2(k).

Observe that (
0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
/∈ I.

The case of n > 2 is analogous.
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5. For any polynomial α ∈ k[N], the vector space α ∗ k[N] is an ideal of k[N], because k[N] is
a commutative ring.

6. Let k[G] be a group algebra. Then I := {α ∈ k[G] |
∑

g∈G α(g) = 0} is an ideal of k[G].
Indeed,∑

g∈G

(α ∗ β)(g) =
∑
g∈G

∑
h,k∈G
hk=g

α(h)β(k) =
∑
g∈G

∑
h∈G

α(h)β(h−1g) =
∑

(g,h)∈G×G

α(h)β(h−1g).

Now, the map

G×G −→ G×G,
(g, h) 7−→ (h−1g, h),

is a bijection with the inverse (k, h) 7→ (hk, h). Hence, changing variables form (g, h) to (k, h),
we obtain ∑

(g,h)∈G×G

α(h)β(h−1g) =
∑

(k,h)∈G×G

α(h)β(k) =
∑
h∈G

α(h)
∑
k∈G

β(k) = 0.

Much in the same way, ∑
g∈G

(β ∗ α)(g) =
∑
k∈G

β(k)
∑
h∈G

α(h) = 0.

Theorem 4.1. Let k be a field. There are no proper non-zero ideals in Mn(k) for any n ∈ N \ {0}.

Proof. Let I 6= 0 be an ideal of Mn(k). Take 0 6= M ∈ I . Then there exist i, j ∈ {1, . . . , n} such
that Mij 6= 0. Next, recall that the set of all elementary matrices (matrix units) Ekl, k, l ∈ {1, . . . n},
is a linear basis of Mn(k). Hence,

M =
∑

k,l∈{1,...,n}

MklEkl .

Also, for any m ∈ {1, . . . , n}, we obtain:

EmiMEjm =
∑

k,l∈{1,...,n}

MklEmiEklEjm =
∑

k,l∈{1,...,n}

MklEmiδljEkm =
∑

k∈{1,...,n}

MkjEmiEkm

=
∑

k∈{1,...,n}

MkjδikEmm = MijEmm.

Now, as k is a field and Mij 6= 0, we get Emm = (Mij)
−1EmiMEjm. Consequently, as I is an

ideal, In =
∑n

m=1Emm ∈ I , so I = Mn(k). This shows that there are no non-zero proper ideals in
Mn(k).

Corollary 4.2. There are no non-zero proper ideals in any field.
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5 Homomorphisms

5.1 Definition, examples, remarks

A homomorphism between algebraic objects is a map between them preserving their algebraic struc-
ture.

Definition 5.1. A map M
f→ N is called a homomorphism of

• monoids iff M and N are monoids, and

∀m1,m2 ∈M : f(m1m2) = f(m1)f(m2), f(eM) = eN .

Here eM and eN are the neutral elements of M and N respectively.

• groups iff M and N are groups, and

∀m1,m2 ∈M : f(m1m2) = f(m1)f(m2).

• rings (or fields) iff M and N are rings (or fields), and f is a homomorphism of both their
additive groups and multiplicative monoids.

• unital algebras iff M and N are unital algebras and f is a linear ring homomorphism.

• algebras iff M and N are algebras, and f is linear map satisfying

∀m1,m2 ∈M : f(m1m2) = f(m1)f(m2).

Definition 5.2. A homomorphism f (in all the above cases) is called

• a monomorphism iff f is injective,

• an epimorphism iff f is surjective,

• an isomorphism iff f is bijective.

Warning: This is a simple-minded set-theoretical approach to these concepts. A general categori-
cal approach is more subtle, and these terms might have a different meaning:

1. An isomorphism is a morphism f with the two-sided inverse: there exists a morphism g, s.t.
f ◦ g = id and g ◦ f = id. In topology, a morphism is a continuous map. But a continuous
bijection need not be invertible as the inverse of a continuous bijection need not be continuous

[0, 1)
exp−→ S1 : t 7−→ e2πit.
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2. A map X
f→ Y is surjective if and only if g1 ◦ f = g2 ◦ f ⇒ g1 = g2. Therefore, one says

that a morphism f is an epimorphism iff for morphisms g1 and g2 the above implication holds.
Consider as morphisms homomorphisms of rings. Then the standard inclusion Z f→ Q is a
ring homomorphism with the property that, for any ring homomorphisms g1, g2 : Q → R the
implication g1 ◦ f = g2 ◦ f ⇒ g1 = g2 holds despite f not being surjective. Indeed, for any
ring homomorphism g : Q→ R

g

(
p

q

)
= pg(q−1) = pg(q)−1 = p(qg(1))−1,

so it is completely determined by its value on 1 ∈ Q, which is f(1).

3. A map X
f→ Y is injective if and only if f ◦ g1 = f ◦ g2 ⇒ g1 = g2. Therefore, a morphism is

called a monomorphism iff for morphisms g1 and g2 the above implication holds.

Elementary remarks:

1. Homomoprhisms with the same domain and target are called endomorphisms. Bijective endo-
morphisms are called automorphisms.

2. If M
f→ N is a homomorphism of monoids and ∃m−1 ∈M , then f(m−1) = f(m)−1. Indeed,

eN = f(eM) = f(mm−1) = f(m)f(m−1).

Much in the same way eN = f(m−1)f(m), so f(m−1) is the unique two-sided inverse.

3. If G
f→ H is a homomorphism of groups, then

eH = f(eG)f(eG)−1 = f(eGeG)f(eG)−1 = f(eG)f(eG)f(eG)−1 = f(eG).

4. In our context, the inverse of a bijective homomorphis is a homomorphism:

f−1(xy) = f−1(f(f−1(x))f(f−1(y))) = f−1(f(f−1(x)f−1(y))) = f−1(x)f−1(y).

Much in the same way we prove it for + and the same for scalar multiplication.

5. If A
f→ B is an algebra homomorphism, then

A+ f+−→ B+, f+(a, α) := (f(a), α)

is a homomorphism of unital algebras. The multiplication and the linearity are obviously pre-
served, and f(0, 1) = (0, 1) follows from f(0) = 0 (a homomorphism of groups automatically
preserves the neutral element).

6. A homomorphism of fields is always injective. Indeed, suppose the contrary. Let k
f→ k′ be a

homomorphism of fields with f(x) = f(x′) for x 6= x′. Then f(x − x′) = 0. But x − x′ 6= 0,
so it is invertible. Hence

1 = f((x− x′)(x− x′)−1) = f(x− x′)f((x− x′)−1) = 0 · f((x− x′)−1) = 0,

which is impossible in a field.
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5.2 Homomorphisms from convolution rings

Recall that the evaluation of a polynomial at r ∈ R is a map

R[N] 3
n∑
k=0

skx
k evr7−→

n∑
k=0

skr
k ∈ R.

A polynomial function fα of a polynomial α ∈ R[N] is the map

R 3 r fα7−→ fα(r) := evr(α) ∈ R.

Consider now the map
R[N] 3 α f7−→ fα ∈ Map(R,R).

Properties of f :

1. If R is commutative, then f is a homomorphism of rings, where Map(R,R) is a ring with
respect to the pointwise structure. Indeed, for any r ∈ R,

fα+β(r) = evr(α + β) = evr(α) + evr(β) = fα(r) + fβ(r) = (fα + fβ)(r).

Also, ∀r ∈ R :

fα∗β(r) = evr(α ∗ β) = evr

((
m∑
k=0

α(k)xk

)
∗

(
n∑
l=0

β(l)xl

))

= evr

m+n∑
N=0

 min{m,N}∑
k=max{0,N−n}

α(k)β(N − k)

xN


=

m+n∑
N=0

 min{m,N}∑
k=max{0,N−n}

α(k)β(N − k)

 rN

=

(
m∑
k=0

α(k)rk

)(
n∑
l=0

β(l)rl

)
= fα(r)fβ(r) = (fαfβ)(r).

2. If R 6= 0 is finite, then f is not injective because R[N] is infinite and Map(R,R) is finite.

3. A zero divisor is r ∈ R such that ∃ s ∈ R \ {0}: rs = 0 or sr = 0. For instance, in Z/6Z the
element 2 is a zero divisor because 3 6= 0 and 2 · 3 = 0. Also, 1 6= e = e2 ∈ R, then e is a zero
divisor because 1− e 6= 0 and (1− e)e = e− e2 = e− e = 0. In particular, 0 is a (trivial) zero
divisor. A commutative ring whose only zero divisor is 0 is called an integral domain. If R is
an infinite integral domain (e.g. R = Z,Q,R,C), then f is a monomorphism of rings.

4. In general, we cannot replace R[N] by R[[N]] as the domain of f . However, with the help of
analysis, we can consider a restricted version of f . For instance,

R[[N]] 3 α 7−→ fα ∈ Map((−rα, rα),R).
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Here rα is the radius of convergence of α. For

α =
∞∑
n=0

1

n!
xn , β =

∞∑
n=0

xn , γ =
∞∑
n=0

(n+ 1)nxn ,

the radii of convergence are rα =∞, rβ = 1, rγ = 0.

5.3 Substructures

Definition 5.3. A submonoid, subgroup, subring, subfield, (unital) subalgebra of a monoid, group,
field, (unital) algebra, respectively, is a subset N with the properties

• the binary operation(s) restrict to it: N ×N → N ;

• N contains the neutral element(s);

• with the inherited (restricted) structures, N is a monoid, group, ring, field, (unital) algebra,
respectively.

Elementary remarks:

1. A subsomething of a subsomething of something is a subsomething of something.

2. Z is not a subfield of Q because the third property fails despite the first two being true.

Proposition 5.4. Let M
f→ N be a homomorphism of monoids, groups, rings, (unital) algebras,

respectively. Then f(M) is a submonoid, subgroup, subring, (unital) subalgebra of N , respectively.

Proof. 1. f(M) is a submonoid of N because eN = f(eM) and f(m1)f(m2) = f(m1m2).

2. f(M) is a subgroup of N because f(g)−1 = f(g−1).

3. f(M) is a subring of N because it is an abelian subgroup by 2 and a submonoid by 1, and the
distributivity laws hold for f(M) as it is a subset of N .

4. f(M) is a (unital) subalgebra of N because it is a vector subspace and a (unital) subring of N ,
and the bilinearity of the multiplication in f(M) holds because it holds in N .

Examples:

1. Every ideal I of an algebra A is a subalgebra of A.

2. Q is a subfield of R and R is a subfield of C.
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3. SLn(C) is a subgroup of GLn(C).

4. ∀n ∈ N : nN is a submonoid of N.

Definition 5.5. Let H be a subgroup of G. It is called normal iff

∀ g ∈ G : gH = Hg

(for any h ∈ H there is h′ ∈ H such that gh = h′g). In other words, gHg−1 = H for all g ∈ G.

5.4 Kernels

Definition 5.6. Let M
f→ N be a homomorphism of monoids. Then the kernel of f is

ker f := {m ∈M | f(m) = eN}.

Elementary remarks:

1. For any homomorphism M
f→ N of monoids, the kernel of f is a submonoid of M . Indeed,

x, y ∈ ker f ⇒ f(xy) = f(x)f(y) = 0,

so xy ∈ ker f . Also, the neutral element eM of M is in ker f . Furthermore, if f is a homomor-
phisms of groups, x ∈ ker f and eN is the neutral element of N , then

f(x−1) = f(x)−1 = e−1
N = eN ,

so x−1 ∈ ker f . Hence ker f is a subgroup.

2. A homomorphism M
f→ N of groups is injective if and only if ker f = {eM}, where eM is the

neutral element of M . Indeed, if ker f 6= {eM}, then f is not injective. Vice versa, suppose
that f is not injective. Then there exist g, h ∈ G such that g 6= h and f(g) = f(h). Denote the
neutral element of N by eN . It follows that eN = f(g)f(h)−1 = f(g)f(h−1) = f(gh−1), so
gh−1 ∈ ker f and gh−1 6= eM . Hence ker f 6= {eM}.

3. If f is a homomorphism of rings or algebras, then ker f := {m ∈M | f(m) = 0} is a subgroup
or a vector subspace of M that is also an ideal of M :

∀x ∈ ker f, y ∈M : f(xy) = f(x)f(y) = 0f(y) = 0,

f(yx) = f(y)f(x) = f(y)0 = 0,

so xy, yx ∈ ker f .

Theorem 5.7. If G
f→ H is a group homomorphism, then ker f is a normal subgroup of G, and the

induced map G/ ker f 3 [g] 7→ f(g) ∈ f(G) is a group isomorphism.

Lemma 5.8. If K is any subgroup of G, then gh−1 ∈ K defines an equivalence relation.
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Proof. We check the reflexivity, symmetry, and transitivity of the relation:

gg−1 = eG ∈ K, gh−1 ∈ K ⇒ (gh−1)−1 = hg−1 ∈ K,
(gh−1 ∈ K and hk−1 ∈ H)⇒ gh−1hk−1 = gk−1 ∈ K.

Here eG stands for the neutral element of G.

Lemma 5.9. IfN is a normal subgroup ofG, thenG/N := {[g] | g ∈ G}, where h ∈ [g] iff gh−1 ∈ N ,
is a group.

Proof. The induced multiplication

G/N ×G/N −→ G/N : ([g], [h]) 7−→ [gh],

is well defined:

n1, n2 ∈ N, g = n1k, h = n2l ⇒ gh = n1kn2l = n1n
′
2kl,

where n′2 ∈ N , and the last step holds by the by normality of N . It is immediate that the induced
multiplication is associative, enjoys the neutral element, and has any element invertible.

Lemma 5.10. The kernel ker f is a normal subgroup.

Proof. If x ∈ ker f and eH is the neutral element of H , then, for any g ∈ G,

f(gxg−1) = f(g)f(x)f(g)−1 = f(g)eHf(g)−1 = f(g)f(g)−1 = eH ,

so g ker fg−1 ⊆ ker f . The equality g ker fg−1 = ker f follows from the fact x = gg−1xgg−1 and
g−1xg = g−1x(g−1)−1 ∈ ker f .

Proof. (of Theorem 5.7) We already know that G/ ker f and f(G) are groups. Note now that the
induced map

G/ ker f
f̄−→ f(G), f̄([g]) := f(g),

is well defined: if x ∈ ker f , then

f(xg) = f(x)f(g) = eHf(g) = f(g).

It is also a group homomorphism because

f̄([g][h]) = f̄([gh]) = f(gh) = f(g)f(h) = f̄([g])f̄([h]).

Next, f̄ is injective because ker f̄ = {[eG]}:

f̄([g]) = eH ⇐⇒ f(g) = eH ⇐⇒ g ∈ ker f ⇐⇒ ge−1
G ∈ ker f ⇐⇒ [g] = [eG].

Finally, by the definition of the image of a map, all maps are surjective onto their images, and
f̄(G/ ker f) = f(G), so f̄ is an isomorphism of groups.

5.5 Preimages

Definition 5.11. Let X
f→ Y be a map, and let B ⊆ Y . Then the preimage of B under Y is

f−1(B) := {x ∈ X | f(x) ∈ B} .
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Elementary remarks:

1. If f is a bijection, then the preimage under f is the image under its inverse:

f(x) ∈ B ⇐⇒ x = f−1(f(x)) ∈ f−1(B).

2. If M
f→ N is a homomorphism of monoids, groups, rings, (unital) algebras, respectively, and

L is a submonoid, subgroup, subring, (unital) subalgebra, respectively, of N , then f−1(L) is a
submonoid, subgroup, subring, (unital) subalgebra, respetively, of M .

3. If M
f→ N is homomorphism of monoids, then ker f = f−1(eN), where eN is the neutral

element of N .

4. Let A
f→ B be a homomorphism of algebras, and let I be an ideal of B. Then f−1(I) is an

ideal of A:

∀x ∈ A, y ∈ f−1(I) : f(xy) = f(x)f(y) ∈ I,
f(yx) = f(y)f(x) ∈ I.

However, the image of an ideal need not be an ideal. Indeed, consider a non-unital algebra
homomorphism Mn(k)

f→Mn+1(k) given by

M 7−→
(
M 0
0 0

)
.

Then Mn(k) is an ideal of Mn(k), and f(Mn(k)) is a proper non-zero subalgebra of Mn+1(k),
so it cannot be an ideal of Mn+1(k) as Mn+1(k) has no proper non-zero ideals.

Examples:

1. Let A
f→ B be a homomorphism of algebras, and A+ f+→ B+ its minimal unitization. Then B

is an ideal of B+, and (f+)−1(B) = A:

f+(a, α) = (f(a), α) ∈ B ⇐⇒ α = 0.

2. Let X F→ Y be a map, and let Map(X, k) and Map(Y, k) be k-algebras with the pointwise
structure. Then Map(Y, k)

F ∗→ Map(X, k), F ∗(g) := g ◦ F , is an algebra homomorphism
(called the pullback of F ). Furthermore, let ∅ 6= A ⊆ X . Then

IA := {f ∈ Map(X, k) | f(A) = 0}

is an ideal of Map(X, k), and

(F ∗)−1(IA) = IF (A) := {g ∈ Map(Y, k) | g(F (A)) = 0}.

Indeed,

g ∈ (F ∗)−1(IA) ⇐⇒ F ∗(g) ∈ IA ⇐⇒ (g◦F )(A) = 0 ⇐⇒ g(F (A)) = 0 ⇐⇒ g ∈ IF (A).

3. Consider the group homomorphism Z f→ Z, f(x) := 2x, and the subgroup 3Z. Then f−1(3Z) =
3Z because 2x ∈ 3Z ⇐⇒ x ∈ 3Z.
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5.6 Cokernels

If H is a subgroup of G, then we can always consider the quotient G/H . However, to make G/H
a group, we need H to be a normal subgroup. To ensure that it is so, let us assume that G is abelian.
Then all its subgroups are normal: gHg−1 = gg−1H = eH = H .

Definition 5.12. LetM
f→ N be a homomorphism of abelian groups. The cokernel of f is the abelian

group
cokerf := N/f(M) .

Elementary remarks:

1. A homomorphism M
f→ N of abelian groups is surjective if and only if cokerf = 0:

cokerf = 0 ⇐⇒ ∀n ∈ N : [n] = [0] ⇐⇒ ∀n ∈ N : n−0 = n ∈ f(M) ⇐⇒ f is surjective.

2. If M
f→ N is a homomorphism of vector spaces, rings, (unital) algebras, respectively, then

cokerf is defined with respect to the additive group structure. In the case of vector spaces
or (unital) algebras, cokerf is a vector space. However, in the case of rings, cokerf is only
an abelian group. Indeed, Z 3 m

f7→ (m,m) ∈ Z ⊕ Z is a homomorphism of rings, but
there is no induced multiplication on cokerf : [(m,n)][(m′, n′)] := [(mm′, nn′)] but [(m,n)] =
[(m,n) + (k, k)] and [(m′, n′)] = [(m′, n′) + (l, l)], so we should have

[(mm′, nn′)] = [(m+ k, n+ k)(m′ + l, n′ + l)]

= [(mm′ + km′ +ml + kl, nn′ + nl + kn′ + kl)]

= [(mm′ + k(m′ − n′), nn′ + l(n−m))].

Hence [(k(m′− n′), l(m− n))] = 0, i.e. k(m′− n′) = l(m− n) ∀ k, l,m, n,m′, n′ ∈ Z, which
is clearly false for k = l = m = n = 1 and m′ = 3, n′ = 2.

3. Consider the linear map

C2 3 (x, y)
f7→ (x+ y,−x− y) ∈ C2.

Then cokerf ∼= C via
cokerf 3 [(a, b)]

g7→ a+ b ∈ C.

Indeed, g is well defined:

g([(a, b) + (m,−m)]) = a+m+ b−m = a+ b = g([a, b)]).

Furthermore, g is linear (because it is induced by a linear map), surjective and injective:

g([(a, b)]) = 0 ⇐⇒ a+ b = 0 ⇐⇒ (a, b) = (a,−a) ⇐⇒ [(a, b)] = 0.
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5.7 Exact sequences

Definition 5.13. A sequence of homomorphisms

. . . −→Mn
fn−→Mn+1

fn+1−→Mn+2 −→ . . .

of abelian groups is called exact iff

∀n ∈ Z : fn(Mn) = ker fn+1 .

A short exact sequence is an exact sequence of the form:

0 −→M −→ N −→ L −→ 0 .

Elementary remarks:

1. If (fn)n∈Z is an exact sequence, then

∀n ∈ Z : fn+1 ◦ fn = 0 .

2. A sequence

• 0→ K
f→M is exact ⇐⇒ f is injective,

• M f→ L→ 0 is exact ⇐⇒ f is surjective,

• 0→M
f→ N → 0 is exact ⇐⇒ f is bijective.

3. Every exact sequence can be factored to short exact sequences:

0 // ker fn //Mn
f̃n // fn(Mn) // 0

0 // ker fn+1
//Mn+1

f̃n+1 // fn+1(Mn+1) // 0 .

Here f̃k stands for the corestriction of fk: f̃k(x) := fk(x) for all x ∈Mk.

4. If 0 → K
g→ M

f→ N is an exact sequence, then the corestriction K
g̃→ ker f is an isomor-

phism:

0 // K
g //

g̃

&&

M
f // N

g(K) = ker f
?�

OO .

5. If M
f→ N

g→ L → 0 is an exact sequence, then the induced map cokerf
ḡ→ N is an isomor-

phism:

M
f // N

g //

��

L // 0

N/f(M) = cokerf

ḡ

77 .
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Indeed, it is well defined because, ∀ m ∈M : f(m) ∈ ker g, so

ḡ([n+ f(m)]) = g(n) + g(f(m)) = g(n) = ḡ([n]),

it is surjective because g is surjective, and it is injective because

ḡ([n]) = 0 ⇐⇒ g(n) = 0 ⇐⇒ n ∈ ker g = f(M) ⇐⇒ [n] = 0.

6. If 0 → K → M → N → 0 is a short exact sequence of vector spaces, and dimM < ∞, then
dimM = dimK + dimN .

7. If I is an ideal of a k-algebra A, then 0 → I → A → A/I → 0 is a short exact sequence. For
instance,

0 −→ {f ∈ C(S2) | f(x0) = 0} −→ C(S2)
evx0−→ C −→ 0 .

8. The sequence 0 → H → H ⊕ G → G → 0 is clearly a short exact sequence. A different type
of a short exact sequence is the sequence

0 −→ nZ −→ Z −→ Z/nZ −→ 0 .

Definition 5.14. A short exact sequence 0 → K → M → N → 0 is called split iff there exists
a homomorphism s : N →M such that f ◦ s = id.

Theorem 5.15. Let 0 → K
g→ M

f→ N → 0 be an exact sequence of abelian groups. Then the
following are equivalent:

1. There exists a homomorphism sf : N →M such that f ◦ sf = id ,

2. There exists a homomorphism sg : M → K such that sg ◦ g = id ,

3. There exists a subgroup M ′ ⊆M such that M = ker f ⊕M ′ = g(K)⊕M ′.

Theorem 5.16. A short exact sequence 0 → K → M → N → 0 of vector spaces and linear maps
always splits.

Counterexample: The short exact sequence

0→ nZ→ Z→ Z/nZ→ 0

does not split for any n ∈ N \ {0, 1}.

6 Graphs (quivers)

Definition 6.1. A graph is a quadruple E := (E0, E1, s, t), where:
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• E0 is the set of vertices,

• E1 is the set of edges (arrows),

• E1 s→ E0 is the source map assigning to each edge its beginning,

• E1 t→ E0 is the target (range) map assigning to each edge its end.

For instance, consider the following graph

v1

v2 v3

g

e f

.

Here

s(e) = v1, t(e) = v2,

s(f) = v1, t(f) = v3,

s(g) = v1, t(g) = v1.

Elementary remarks:

1. The maps s and t need not be injective nor surjective.

2. If both E0 and E1 are empty, we call E the empty graph. The set E1 might always be empty,
but E0 must not be empty if E1 is not empty: every edge must have its beginning and its end.

3. E0 and E1 might be infinite (usually, at most countable).

6.1 Paths

Definition 6.2. Let E be a graph. A finite path in E is a finite tuple pn := (e1, . . . , en) of edges
satisfying

t(e1) = s(e2), t(e2) = s(e3), . . . , t(en−1) = s(en).

The beginning s(pn) of pn is s(e1) and the end t(pn) of pn is t(en). If s(pn) = t(pn), we call pn a loop.
An infinite path is a sequence (ei)i∈N of edges satisfying

∀ i ∈ N : t(ei) = s(ei+1).

Definition 6.3. The length of a path is the size of the tuple. Every edge is a path of length 1. Vertices
are considered as finite paths of length 0. The length of an infinite path is infinity.
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Elementary remarks:

1. The space FP(E) of all finite paths in E (vertices included) might be infinite even if E is a finite
graph (both E0 and E1 are finite):

v

e

E0 = {v}, E1 = {e}, FP(E) = {v, e, (e, e), (e, e, e), . . .}.

2. Examples of infinite paths:

winding around infinitely many times,

...... marching off to infinity,

or a combination of the above cases.

Theorem 6.4. Let E be a finite graph. Then FP(E) is finite if and only if there are no loops in E.

Proof. If there is a loop in E, then we have paths of arbitrary length, so there are infinitely many of
them:

e1, (e1, e2), . . . , (e1, . . . , en), (e1, . . . , en, e1), etc.

Vice versa, if there are no loops, then edges in any path (e1, e2, . . . , en) cannot repeat themselves:

ei = ej ⇒ i = j.

Indeed, suppose the contrary: ei = ej for i < j. Then

s(ei) = s(ej) = t(ej−1),

so the path pij := (ei, . . . , ej−1) is a loop:

s(pij) = s(ei) = t(ej−1) = t(pij),

which contradicts our assumption of not having loops.

Therefore, the length of the longest possible path in E is at most the number N of all edges. This
yields the finite decomposition

FP(E) = FP0(E) ∪ FP1(E) ∪ . . . ∪ FPN(E),

where FPk(E) is the space of all paths in E of length k. Furthermore, the sets FP0(E) = E0 and
FP1(E) = E1 are finite by assumption. To construct a path of length k, first we must choose k
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different edges from the set of N edges. We can do it in
(
N
k

)
many ways. Then we can order these k

edges into a path in at most k! different ways, so there are at most

k!

(
N

k

)
=

N !

(N − k)!

many paths of length k.

Summarizing, FP(E) is a finite union of finite sets, so it is finite.

The estimate of the number of paths of length k used in the above proof is far from optimal. Our
goal now is to find the optimal estimate, i.e. the estimate for which there exists a graph having exactly
as many paths as allowed by the estimate.

Definition 6.5. Let E be a graph, and let pn := (e1, . . . , en) be a finite path of length at least one. A
subpath qk of pn is a path (ei, ei+1, . . . , ei+k), where i ∈ {1, . . . , n} and k ∈ {0, . . . , n−i}. If (en)n∈N
is an infinite path, then any (k + 1)-tuple (ei, . . . , ei+k), for any i ∈ N, k ∈ N ∪ {∞}, is a subpath
of (en)n∈N . Every source and every target of each edge of a path (finite or infinite) is viewed as a
subpath of length zero.

Theorem 6.6. Let E be any graph. If there exists a path p (finite or infinite) whose edges can be
rearranged (permuted) into a path, then there exists a loop in E.

Proof. Let S be a subset of N containing at least two elements, and let σ : S → S be a bijection
that is not the idenity. Since σ 6= Id, there exist the smallest j ∈ S such that σ(j) 6= j. As σ is
bijective, σ(j) > j. Indeed, if j is the smallest element of S, we are done. If there is i < j, then
σ(j) 6= σ(i) = i, so σ(j) > j. Furthermore, σ−1(j) 6= j. If σ−1(j) < j, then we get a contradiction:
j = σ(σ−1(j)) = σ−1(j) < j. Therefore, also σ−1(j) > j.

Next, let p := (e1, ..., en, ...) or p := (e1, ..., en). Then let S := N or S := {1, ..., n}, respectively.
Suppose now that pσ := (eσ(1), ..., eσ(n), ...) or pσ := (eσ(1), ..., eσ(n)) is again a path for a bijection σ
as above. Then (ej, . . . , eσ−1(j)) is a subpath of p, so (eσ(j), ..., ej) is a subpath of pσ. Combining the
latter path with the path (ej, ej+1, . . . , eσ(j)−1, eσ(j)), we obtain a loop:

(eσ(j), ..., ej, ej+1, . . . , eσ(j)−1).

Note that, if σ(j) = j + 1, then the path (eσ(j), ..., ej) = (ej+1, ..., ej) is already a loop.

Corollary 6.7. If E is a graph with N edges and no loops, then there are at most
(
N
k

)
different paths

of length 1 ≤ k ≤ N .

Proof. No loops in E implies that edges cannot repeat themselves in any path, so one needs to choose
k different edges from N edges. By the above proposition, there is at most one way these k different
edges can form a path of length k.

In any graph with N ≥ 1 edges, there are exactly
(
N
1

)
= N paths of length one, i.e. edges. There

is a graph
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. . .
e1 eN

with N edges and no loops with exactly
(
N
N

)
= 1 path of length N . However, there is no graph with

3 edges and no loops and
(

3
2

)
= 3 different paths of length 2:

e1 e2 e3

e1 e2

e3

e1 e2

e3

e1 e2

e3

e1 e2

e3

e3 e1 e2

There are at most 2 different paths of lenght 2.

Proposition 6.8. Let E be a graph with N ≥ 2 edges and no loops. Then there are at most two
different paths of length N − 1.

Proof. A path of length k must be of the form

. . .
e1 ek

so, if we have at least one path of length N − 1, our graph must be of the form

. . .
e1 eN−1

and eN attached somewhere. The only attachment possibilities increasing the number of paths of
length N − 1 are:
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. . .
eN e1 eN−1

. . .

eN

e1 eN−1

. . .
eN

e1 eN−1

. . . . . .
e1

eN

ej eN−1

. . . . . .
e1

eN

ej eN−1

. . .

eN

e1 eN−1

. . .
e1 eN−1 eN

In each of the above cases, we have exactly two different paths of length N − 1.

Lemma 6.9. Let E be a graph with N ≥ 2 edges and no loops. Assume that N ≥ k ≥ N − k. Then
there are at most 2N−k different paths of length k in E and the bound is optimal.

Proof. One can always construct a graph with a path p1 of length k. Then there remain precisely
N − k many edges that can be used to construct more paths. Call the set of all these edges F 1. Any
path of length k is composed out of l edges in F 1 and k − l edges from the path p1. For instance:

. . . . . .

. . .
. . .

e1 ej ek

Any such a path is uniquely determined by the choice of l edges from F 1 because there is always
only one way in which edges from the path p1 can connect disconnected subpaths composed from
edges in F 1 and edges in a path cannot be rearranged. This gives at most

(
N−k
l

)
possibilities for

having paths of length k with l edges from F 1. As l can vary from 0 to N − k, there are at most∑N−k
l=0

(
N−k
l

)
= 2N−k different paths of length k. The bound is optimal because the graph
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. . . . . .
e1

ek+1 eN

ej ek

has exactly 2N−k edges of length k.

Theorem 6.10. Let E be a graph with N ≥ 2 edges and no loops, and let 1 ≤ k ≤ N =: nk + r,
0 ≤ r ≤ k − 1. Then there are at most

PN
k := (n+ 1)rnk−r

different paths of length k and the bound is optimal.

Remark 6.11. For k > N − k, we have N = 1 · k + (N − k), so PN(k) = 2N−k · 1k−(N−k) = 2N−k.
Also, if k = N − k, then N = 2 · k+ 0, so PN(k) = 30 · 2k = 2N−k. Hence the preceding proposition
proves the theorem for k ≥ N − k.

Proof. Our first step is to transform the graph E into a graph E1 with the same amount of edges but
with all vertices on its longest path p1. We need to show that we can always do this without introducing
loops or decreasing the amount of different paths of length k. Clearly, we can first remove all vertices
in E0 that are not in s(E1) ∪ t(E1). This way we end up with finitely many vertices. Furthermore,
we identify unrelated vertices. In any graph, we call a pair of vertices unrelated iff there is no path
between them. If our graph admits a pair of unrelated vertices, then we can choose such a pair and
identify the vertices. We repeat the procedure until there are no unrelated vertices. We call the thus
obtained graph E1.

Lemma 6.12. E1 is a graph with N edges, no loops and all vertices on its longest path p1:

. . . . . .
e1 ej el

It admits at least as many different paths of length k as E.

Proof. If identifying two vertices v1 and v2 introduces a loop, then breaking them apart destroys the
loop. Hence the identified v1 and v2 are on the loop, so there was a path from v1 to v2 or the other way
around, which means that v1 and v2 were not unrelated. It follows that identifying unrelated vertices
introduces no loops. Next, suppose that all vertices are related but that there is a vertex v that is not
on the path p1:

. . . . . .

v

e1 ej el

q0

q1

qj−1 qj

ql−1

ql
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The path q0 must go from s(e1) to r as otherwise p1 would not be the longest path. Furthermore, the
fact that p1 is of maximal length forces adjacent paths to have the same orientation. Hence all these
paths, like q0, must end in v. However, ql ending in v contradicts the maximality of the length of p1.
Finally, E1 has obviously at least as many paths of length ≥ 1 as E because identifying vertices can
only increase the number of such paths.

We can assume that the length of p1 is l ≥ k as otherwise there are no paths of length k. Our next
step is to transform E1 into a graph E2 will all edges that start in s(e1) ending in t(e1):

. . .
e1 e2 e3 el

If we have an edge starting in s(e1) but ending in t(ei), i > 1, then we shift the beginning of such an
edge to s(ei). As there are no edges ending in s(e1), we do not loose any paths this way. Now we
transform E2 into E3 by shifting the beginnings of edges from s(e2) to t(ej), j > 2, to s(e3):

. . .
e1 e2 e3 el

This time possibly we loose the paths of length k that started in s(e1) and involved the just shifted
edges, we possibly gain paths of length k that start in s(e2) and involve the shifted edges. Let ai
denote the number of edges starting at s(ei). Then, if the shifted edges are the first of x different paths
of length k − 1, we loose a1 · x paths of length k but gain a2 · x paths of length k. To ensure that we
gain at least as much as we loose, we transform E3 to E4 by switching places of the edges from s(e1)
to t(e1) with the edges from s(e2) to t(e2), if a1 > a2:

. . .
e1e2 e3 el

As the number of paths of length k beginning with a shifted edge is unchanged, and the number
of paths of length k with a shifted edge as the second edge is not decreased, the number of paths of
length k involving a shifted edge does not decrease. Now we have to make sure that transforming E2

to E4 we did not decrease the number of all paths of length k not involving the shifted edges.

If k = 1, we are done because in any graph E with N edges we have PN(1) = N . If k ≥ 2, then
any path of length k in E2 that does not involve any shifted edge and that starts in s(e1) must involve
edges from s(e1) to t(e1) and from s(e2) to t(e2), so the number of paths of length k not involving
the shifted edges and starting at the leftmost vertex is the same in E2 as in E4 even if a1 > a2 and
we made the switch: a1a2y = a2a1y, where y is the number of paths of length k − 2 not involving
the shifted edges and starting at s(e3). (In the case l = k = 2, we take y = 1.) Next, concerning the
number of paths of length k starting at the second vertex from the left and not involving the shifted
edges, it does not decrease when moving from E2 to E4 as we have at least as many edges going from
the second to the third vertex and exactly as many paths not involving the shifted edges starting at the
third vertex in E2 as in E4. Finally, the number of paths of length k not involving the shifted edges
and starting at the third or further vertex is unaffected when going from E2 to E4.
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We can continue thisE2-E3-E4 procedure until we obtain a graph Fk whose all edges emitted from
first k vertices end in the consecutive vertex and with the number of edges satisfying the inequalities
a1 ≤ a2 ≤ . . . ≤ ak:

. . . . . .
(a1) (a2) ek+1(ak)

el

Indeed, take m < k and apply the E2-E3-E4 procedure to the graph Fm defined as Fk but with k
replaced by m. Assume that aj ≤ am+1 ≤ aj+1 for some j. Then we move the beginning of any edge
starting at the (m+ 1) vertex and ending at the (m+ 3) vertex or further to the (m+ 2) vertex. Next,
we implement the swap of edges:

(m+ 1) 7→ (j + 1), (j + 1) 7→ (j + 2), . . . , m 7→ (m+ 1),

and obtain:

1 2 3
. . .

j j + 1 j + 2
. . .
m+ 1

. . .
(a1) (a2) (aj) (am+1) (aj+1) (am) em+1 el

If the shifted edges were the first edges of x1 paths of length k − 1, x2 of length k − 2, . . . , and xm+1

of length k − (m+ 1), respectively, then by shifting the edges we lost

L := amx1 + am−1amx2 + . . .+ a1 . . . amxm

paths of length k, but, due to the re-ordering procedure, we gained

G : = amx1 + am−1amx2 + . . .+ aj+1 . . . amxm−j + am+1aj+1 . . . amxm−j+1

+ . . . a2 . . . am+1aj+1 . . . amxm + a1a2 . . . am+1aj+1 . . . amxm+1.

The first m− j terms of L are the same as in G, the next j terms of L are the same as in G, the next
j terms in L are no bigger then they are in G, and the last term in G does not appear in L. Thus,
applying the E2-E3-E4 procedure, we did not decrease the amount of paths of length k involving the
shifted edges.

Concerning the paths of length k not involving the shifted edges, the re-arrangement procedure
does not change the amount of paths starting at the first vertex, does not decrease the amount of paths
starting at the vertices 2, . . . , m, and does not change the amount of paths starting at m+ 1 or further.

We cannot apply the E2-E3-E4 procedure any further because, if a1 > ak+1, swaping the edges
starting at the first vertex with the edges starting at the (k + 1) vertex will decrease the amount of
paths of length k beginning at the first vertex:

a1a2 . . . ak > ak+1a2 . . . ak .

Now we need to make a move decreasing the number of vertices. We identify the first vertex with
the (k + 1) vertex and shift all edges from the first vertex to the second vertex to become edges from
the (k + 1) to (k + 2) vertex:
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. . . . . .
(a2) (ak)

el
(a1)

We call the thus obtained new graph Gl.

Let G be a graph with finitely many totaly ordered (by paths) vertices, and N edges. Denote by
PN
k (G,m) the number of paths in G of length k > 1 that start at the m vertex. Furthermore, let ym

denote the number of all paths in Fk of length 1 ≤ m ≤ k starting at the (k + 1) vertex. Then there
are

l−k+1∑
m=1

PN
k (Fk,m)

many paths of length k in Fk and
l−k∑
m=1

PN
k (Gl,m)

many paths of length k in Gl. For the first sum, we have

PN
k (Fk, 1) = a1 . . . ak, PN

k (Fk, 2) = a2 . . . aky1, . . . ,

PN
k (Fk, k) = akyk−1, PN

k (Fk, k + 1) = yk .

For the second sum, we have

PN
k (Gl, 1) = a2 . . . ak(a1 + y1), PN

k (Gl, 2) ≥ a3 . . . aky2 = PN
k (Fk, 3), . . . ,

PN
k (Gl, k − 1) ≥ akyk−1 = PN

k (Fk, k), PN
k (Gl, k) ≥ yk = PN

k (Fk, k + 1).

Consequently,

l−k+1∑
m=1

PN
k , (Fk,m) = PN

k (Gl, 1) +
l−k+1∑
m=3

PN
k (Fk,m)

= PN
k (Gl, 1) +

k+1∑
m=3

PN
k (Fk,m) +

l−k+1∑
m=k+2

PN
k (Fk,m)

= PN
k (Gl, 1) +

k∑
m=2

PN
k (Fk,m+ 1) +

l−k+1∑
m=k+2

PN
k (Gl,m− 1)

= PN
k (Gl, 1) +

∑
m=2

PN
k (Fk,m+ 1) +

l−k∑
m=k+1

PN
k (Gl,m)

≤ PN
k (Gl, 1) +

k∑
m=2

PN
k (Gl,m) +

l−k∑
m=k+1

PN
k (Gl,m)

=
l−k∑
m=1

PN
k (Gl,m).

Thus there are at least as many paths of length k in Gl as there are in Fk. If l = k + 1, we have the
desired thick path:
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. . .
(a2) (a3) (ak) (a1 + y1)

Otherwise we repeat the E2-E3-Fk-Gl procedure decreasing the amount of vertices by one but not
decreasing the amount of paths of legth k.

All this shows that we can always transform our graph into a graph with totally ordered (k + 1)
vertices that are on a path of length k without changing the amount N of all edges and without
decreasing the number of paths of length k. In such a graph, if there are still edges that begin and end
not in consecutive vertices, they do not contribute to paths of length k, so we can re-attach them so
that they begin and end in consecutive vertices.

Now, the final step is to prove that given a thick path c with differences between numbers of edges
bigger than one, we can evenly re-distribute the edges increasing the number of paths of length k to
the bound PN(k).

If there are any two indices i 6= j such that bi − bj > 1, then we define

b′n :=


bn for n 6= i, j

bn − 1 for n = i

bn + 1 for n = j

and compute

k∏
n=1

b′n =

 ∏
n∈{1,...,k}\{i,j}

bn

 (bi − 1)(bj + 1)

=

 ∏
n∈{1,...,k}\{i,j}

bn

 (bibj + bi − bj − 1)

=
k∏

n=1

bn +

 ∏
1,...,k\{i,j}

bn

 (bi − bj − 1) >
k∏

n=1

bn .

We can repeat this procedure until there is no pair of indices i 6= j with the property bi− bj − 1. Thus
we arrive at a graph with s pairs of consecutive vertices joined by (b+ 1) and (k − s) pairs joined by
b edges. Hence

s(b+ 1) + (k − s)b = s+ kb = N.

Therefore, if 0 ≤ s ≤ k, then s = r and b = n. If s = k, r = 0 and n = b + 1. The number of all
paths of length k is

(b+ 1)sbk−s = (n+ 1)rnk−r = PN
k .

An example:

We take a graph E with N = 16 edges, and ask about the number of all 3-paths.
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P 16
3 (E) = 6, l = 3,

P 16
3 (E1) = 31, l = 6,

(4) (2) (2) (2)

P 16
3 (E2) = 43, l = 6,

(4) (2) (3) (2)

P 16
3 (E3) = 47, l = 6,

(2) (4) (3) (2)

P 16
3 (E4) = 59, l = 6.

Now, we repeat the E2-E3-E4 procedure to obtain F3:

(2) (3) (4) (2)

P 16
3 (F3) = 62, l = 6,

(3) (4) (3) (2)

P 16
3 (G5) = 90, l = 5.

Applying again the E2-E3-E4 procedure, yields:

(3) (3) (4) (2)

Next, repeating the F -G-procedure, we obtain G4:
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(3) (4) (4) (2)

P 16
3 (G4) = 116, l = 4.

We still need to apply the E2-E3-E4-F -G procedure to obtain G3:

(4) (4) (8)
P 16

3 (G3) = 128, l = 3.

The final equal-distribution procedure provides us with an optimal graph M maximizing the num-
ber of k-paths and reaching the bound:

(5) (5) (6)
P 16

3 (M) = 150, l = 3.

It agrees with the theorem: N = nk + r, 16 = 5 · 3 + 1,

P 16
3 = (5 + 1)153−1 = 6 · 5 · 5 = 150.

6.2 Adjacency matrices

Definition 6.13. Let E be a finite graph. The adjaceny matrix A(E) of the graph E is the square
matrix whose entries are labelled by the pairs of vertices and each (v, w)-entry equals the number of
edges that start at v and end at w.

Examples:

1. Consider graph E:

1 2

Then,

A(E) =

[
2 1
0 0

]
.

2. Consider graph E:

1 2

Then,

A(E) =

[
0 3
0 0

]
.
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3. Consider graph E:

1 2

Then,

A(E) =

[
2 0
0 1

]
.

4. Consider graph E:

1 2 3

Then,

A(E) =

0 3 0
0 0 2
0 0 0

 .
In a finite graph E with N edges, consider all paths of length k starting at a vertex v and ending

at a vertex w. If k1 + k2 = k and k1, k2 ∈ N \ {0}, then each path p with s(p) = v and t(p) = w
decomposes into a path p1 of length k1 with s(p1) = v, t(p1) = u, and a path p2 of length k2 with
s(p2) = u, t(p2) = w. Hence the number Nk(v, w) of all k-paths from v to w equals

Nk(v, w) =
∑
u∈E0

Nk1(v, u)Nk2(u,w).

Thus we have shown:

Proposition 6.14. Let E be a finite graph, and let Al(E) be a generalized adjacency matrix whose
entries count the number of all l-paths between vertices. Then, ∀ k1, k2 ∈ N \ {0}:

Ak1+k2(E) = Ak1(E)Ak2(E).

Corollary 6.15. ∀ n ∈ N \ {0} : An(E) = A(E)n.

Proof. The statement holds for n = 1, and taking k1 = n and k2 = 1 in Proposition 6.14 proves the
inductive step.

Corollary 6.16. A finite graph E has no loops if and only if its adjacency matrix is nilpotent.

Proof. The finite graphE has no loops ⇐⇒ FP (E) is finite. The latter is equivalent to the existence
of a longest path. Indeed, if there is no longest path, then there are paths of all lengths, so FP (E) is
infinite. Vice versa, if FP (E) is infinite, then there is a loop, so there is no longest path.

Next, if the length of a longest path is l, then A(E)l+1 = 0, so A(E) is nilpotent. Vice versa, if
A(E) is nilpotent, then there exists n such that A(E)n = 0. Hence there are no paths of length ≥ n,
so there exists a longest path.
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Corollary 6.17. The number of all k-paths is given by FPk(E) =
∑

v,w∈E0

(
A(E)k

)
vw

.

Examples:

1. Consider graph E:

1 2

Then,

A(E)k =

[
2k 2k−1

0 0

]
,

so there are 2k + 2k−1 = 3 · 2k−1 many k-paths in E.

2. Consider graph E:

1 2

Then,

A(E)2 =

[
0 3
0 0

]2

=

[
0 0
0 0

]
,

so there are no paths longer than 1.

3. Consider graph E:

1 2

Then,

A(E)k =

[
2k 0
0 1

]
,

so there are 2k + 1 many k-paths in E.

4. Consider graph E:

1 2 3

Then,

A(E)2 =

0 3 0
0 0 2
0 0 0

2

=

0 0 6
0 0 0
0 0 0

 ,
so there are 6 paths of length 2.
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Note that there finitely many graphs with N edges and whose all vertices emit or receive at least
one edge. Indeed, for any such graph E, E0 = {1, 2, . . . ,m}, m ≤ 2N , E1 = {1, 2, . . . , N},
s ⊆ E1×E0, t ⊆ E1×E0, so the number of all such graphs is limited by 2N ·2Nm·2Nm = N ·22Nm+1.

Corollary 6.18. Let EN denote the set of all graphs with N edges, no loops, and whose all vertices
emit or receive at least one edge. Then, ∀ k ∈ {1, . . . , N}

max
E∈En

 ∑
v,w∈E0

(
A(E)k

)
vw

 = (n+ 1)rnk−r,

where N =: nk + r with r ∈ {0, 1, . . . , k − 1}.

Next, observe that, if A(E) ∈ Mn(N), then it is the adjacency matrix of the graph E(A) with
E(A)0 = {1, . . . , n} and E(A)1 =

⋃
i,j∈E0 Eij , where Eij is the set of Aij-many edges from i to j.

For instance, for n = 3, we have

1

32

A11

A13
A31

A12

A33

A32

A21

A23A22

A vertex i of the graph E(A) emits or receives at least one edge if and only if

n∑
k=1

Aik + Aki > 0.

Note also that A(E(M)) = M and E(A(G)) = G. Therefore, as no loops in E means that A(E) is
nilpotent, we can reformulate the foregoing corollary as follows:

Corollary 6.19. Let

AN :=

A ∈ ⋃
k∈N\{0}

Mk(N) | satisfying 1, 2, 3 below

 .

1. A is nilpotent (E has no loops),

2.
∑

all i,j

Aij = N (E has N edges),

3. ∀ i :
∑
all j

Aij + Aji > 0 (each vertex of E emits or receives).
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Then, ∀ k ∈ {1, . . . , N}:

max
A∈An

{∑
all i,j

(
Ak
)
ij

}
= (n+ 1)rnk−r,

where N =: nk + r with r ∈ {0, 1, . . . , k − 1}.

Conjecture 6.20. Let N be a non-negative real number, and let

AN :=

A ∈ ⋃
k∈N\{0}

Mk(R≥0) | satisfying 1, 2, 3 above

 .

Then, ∀ k ∈ {1, . . . , [N ]}:

sup
A∈AN

{∑
all i,j

(
Ak
)
ij

}
=

(
N

k

)k
.

Here [N ] stands for the integer part of N .

6.3 The structure of graphs

Definition 6.21. Let E be a graph. An undirected finite path in E is a finite sequence of edges
(e1, . . . , en) satisfying at least one of the 4 equalities:

1. s(ei) = s(ei+1),
ei ei+1

2. s(ei) = t(ei+1),
ei ei+1

3. t(ei) = s(ei+1),
ei ei+1

4. t(ei) = t(ei+1).
ei ei+1

for all i ∈ {1, . . . , n− 1}.

An undirected infinite path in E is an infinite sequence (e1, . . . , en, . . .) satisfying at least one of
the above 4 equalities for all i ∈ N \ {0}.

Definition 6.22. We say that a finite graph is connected E is connected iff for any pair of vertices
(v, w), v 6= w, there exists an undirected finite path p = (e1, . . . , en) between v and w: (s(e1) = v or
t(e1) = v) and (t(en) = w or s(en) = w).

Definition 6.23. A vertex v in a graph E is called a sink iff s−1(v) = ∅.

Proposition 6.24. If E is a graph with finitely many edges, no loops, and exactly one sink, then E is
connected.
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Proof. Denote the sink by v0. If it is the only vertex of E, then E is connected. If there is v1 6= v0,
then there exists a path from v1 to v0. Indeed, as v0 is the unique sink, v1 emits an edge e1. Consider
any path pn := (e1, . . . , en), e.g. p1 = e1. If s(pn) 6= v0, then, sd v0 is the unique sink, s(pn) emits
en+1 yielding the path pn+1 := (e1, . . . , en, en+1) which is longer than pn. Hence, if no path starting at
v1 terminates at v0, we can have paths of arbitrary lengths, which is impossible because E has finitely
many edges and no loops. Therefore, there is a path from v1 to v0. Now, take any pair of distinct
vertices in E. If one of them is v0, then they are connected by a path. If w1 6= v0, w2 6= v0, w1 6= w2,
then there is a path q1 := (f1, . . . , fk) from w1 to v0 and a path q2 := (g1, . . . , gl) from w2 to v0. They
combine into the undirected path (f1, . . . , fk, gl, . . . , g1) from w1 to w2, so E is connected.

w1 . . .
v0

. . . w2

f1 fk gl g1

Question: What is the maximal number of all finite paths in a graph with N edges, no loops, and
exactly one sink?

Definition 6.25. Let E be a graph. A subset H ⊆ E0 is called hereditary iff any finite edge starting
at v ∈ H ends at w ∈ H .

Note that in the above definition one can replace the word “edge” by the word “path”. Indeed, if H is
path-hereditary, then it is, in particular edge-hereditary. Also, if H is not path hereditary, then there
exists a path starting in H and ending outside of H . Such a path must contain an edge starting at H
and ending outside of H , so it is also not edge-hereditary. This proves the equivalence of these two
definitions.

Examples:

1. In any graph E, ∅ and E0 are hereditary.

2. Consider a graph E:

v w

Then, {w} is hereditary and {v} is not hereditary.

Definition 6.26. Let E = (E0, E1, s, t) be a graph. F = (F 0, F 1, sF , tF ) is a subgraph of E iff
F 0 ⊆ E0, F 1 ⊆ E1, and

∀ e ∈ F 1 : sF (e) = s(e) ∈ F 0, tF (e) = t(e) ∈ F 0.

Proposition 6.27. Let E = (E0, E1, s, t) be a graph, and let H ⊆ E0. Set F 0 := E0 \ H and
F 1 := E1 \ t−1(H). Then the formulas sF (e) = s(e), tF (e) = t(e), for any e ∈ F 1, define a subgraph
of E if and only if H is hereditary.
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Proof. Note first that, if e ∈ F 1 := E1 \ t−1(H), then tF (e) = t(e) ∈ E0 \ H =: F 0. Hence,
t : E1 → E0 always restricts-corestricts to tF : F 1 → F 0.

Assume now that H is hereditary. Then, if e ∈ E1 and s(e) ∈ H , we have t(e) ∈ H . Hence

e ∈ F 1 := E1 \ t−1(H) ⇐⇒ t(e) 6∈ H ⇒ s(e) 6∈ H ⇐⇒ s(e) ∈ F 0 := E0 \H.

Therefore, s : E1 → E0 restricts-corestricts to sF : F 1 → F 0. Vice versa, assume that s restricts-
corestricts to sF . Then

t(e) 6∈ H ⇐⇒ e ∈ F 1 ⇒ s(e) ∈ F 0 ⇐⇒ s(e) 6∈ H,

so s(e) ∈ H ⇒ t(e) ∈ H , i.e. H is hereditary.

Definition 6.28. Let E be a graph. A subset H ⊆ E0 is called saturated iff

6 ∃ v ∈ E0 \H : 0 < |s−1(v)| <∞ and t(s−1(v)) ⊆ H.

Examples:

1. In any graph E, ∅ and E0 are saturated.

2. Consider a graph E:

v w

Then all subsetes of E0 are saturated.

3. Consider a graph E:
v w

Then {w} is not saturated but it is hereditary.

4. Consider a graph E:

v
(∞)

w

Then {w} is both saturated and hereditary.

6.4 Homomorphisms of graphs

Definition 6.29. A homomorphism from a graphE := (E0, E1, sE, tE) to a graphF := (F 0, F 1, sF , tF )
is a pair of maps

(f 0 : E0 → F 0, f 1 : E1 → F 1)

satisfying the conditions:

sF ◦ f 1 = f 0 ◦ sE , tF ◦ f 1 = f 0 ◦ tE .
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Examples:

1. Inclusions of subgraphs E0 f0

↪→ F 0, E1 f1

↪→ F 1, e.g.:

v

e

(f0,f1)−→ v w

e

g

f 0(v) = v, f 1(e) = e, or

v w

e

−→ v w

n-edges

f 0(v) = v, f 0(w) = w, f 1(e) = e1 .

2. Collapsing edges between the same vertices to one edge, e.g.

v w

∞
−→ v w

e

f 0(v) = v, f 0(w) = w, f 1(ei) = e, or

v

e

f

−→ v

u

f 1(e) = f 1(f) = u, f 0(v) = v.

3. A combination of both, e.g.

v w

e1

e2

f

−→

v

w1 w2

u

f1 f2

f 0(v) = v, f 0(w) = w1 , f 1(e1) = f 1(e2) = u, f 1(f) = f1 .

From the graph-algebra point of view, of particular interest are injective graph homomorphisms
(f 0, f 1) : E → F (both f 0 and f 1 injective) satisfying certain conditions.

Definition 6.30. We call an injective homomorphism of graphs (f 0, f 1) : E → F an admissible
inclusion iff it satisfies the following conditions:
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1. F 0 \ f 0(E0) is hereditary and saturated,

2. f 1(E1) = t−1
F (f 0(E0)).

Examples:

1.

v

e

−→ v w

e

g

F 0 \ f 0(E0) = {w} is hereditary and saturated. Also, f 1({e}) = {e} and

t−1
F (f 0(E0)) = t−1

F ({v}) = {e}.

2.

v w

e

g

−→

v

w1 w2

e

g1 g2

f 0(v) = v, f 0(w) = w1 , f 1(e) = e, f 1(g) = g1 .

F 0 \ f 0(E0) = {w2} is hereditary and saturated. Also, f 1({e, g}) = {e, g1} and

t−1
F (f 0(E0)) = t−1

F ({v, w1}) = {e, g1}.

Counterexamples:

1.

v

e

−→ v w

e

g

f 0(v) = v, f 1(e) = e.

F 0 \ f 0(E0) = {v, w} \ {v} = {w} is saturated but not hereditary. Also,

t−1
F (f 0(E0)) = t−1

F ({v}) = {e, g} 6= {e} = f 1(E1).

2.

v w

e

−→
v we2

e1

f 0(v) = v, f 0(w) = w, f 1(e) = e1 .

F 0 \ f 0(E0) = {v, w} \ {v, w} = ∅ is hereditary and saturated. But

t−1
F (f 0(E0)) = F 1 = {e1, e2} 6= {e1} = f 1(E1).
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The intersection of graphs:

Let F and G be graphs. Assume that sF and tF agree, respectively, with sG and tG on F 1 ∩ G1.
Then we can define the intersection graph

F ∩G := (F 0 ∩G0, F 1 ∩G1, s∩, t∩),

where s∩, t∩ : F 1 ∩G1 → F 0 ∩G0,

∀ e ∈ F 1 ∩G1 : s∩(e) = sG(e) = sF (e), t∩(e) = tG(e) = tF (e).

F ∩ G is, clearly, a subgraph of both F and G. We say that the intersection is admissible iff both
inclusions F ∩G ↪→ F and F ∩G ↪→ G are admissible inclusions.

Examples:

1.

F ∩G = vw1

e

g1

∩ v w2

e

g2 = v

e

F 0 ∩G0 = {v}, F 1 ∩G1 = {e}, s∩(e) = t∩(e) = v.

The intersection is admissible because:

(a) The subset F 0 \ (F 0 ∩G0) = {v, w1} \ {v} = {w1} is hereditary and saturated in F , and
the subset G0 \ (F 0 ∩G0) = {v, w2} \ {v} = {w2} is hereditary saturated in G;

(b) t−1
F (F 0 ∩G0) = t−1

F ({v}) = {e} = F 1 ∩G1 and t−1
G (F 0 ∩G0) = t−1

G ({v}) = F 1 ∩G1.

2.

F ∩G = w1 v

{xi}i∈N

∩ v w2

{yi}i∈N

= v

is admissible becase:

(a) F 0 \ (F 0 ∩G0) = {w1, v} \ {v} = {w1} is hereditary and saturated in F , and

G0 \ (F 0 ∩G0) = {w2, v} \ {v} = {w2}

is hereditary and saturated in G;

(b) t−1
F (F 0 ∩G0) = t−1

F ({v}) = ∅ = t−1
G ({v}) = t−1

G (F 0 ∩G0) and F 1 ∩G1 = ∅.

Counterexamples:

1.

F ∩G = w1 v

e1

∩ v w2

e2

= v

is not admissible because F 0 \ (F 0 ∩ G0) = {w1, v} \ {v} = {w1} is not saturated. (It is
hereditary.)
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2.

F ∩G = w1 v

e1

∩ v w2

e2

= v

is not admissible because F 0 \ (F 0 ∩ G0) = {w1, v} \ {v} = {w1} is not hereditary. (It is
saturated.)

3.

F ∩G = v w

e1

e2 ∩
v we3

e2

= v w

e2

is not admissible because

t−1
F (F 0 ∩G0) = t−1

F ({v, w}) = {e1, e2} 6= {e2} = F 1 ∩G1.

However, both F 0\(F 0∩G0) andG0\(F 0∩G0) are empty, so they are hereditary and saturated.

The union of graphs:

Let F and G be graphs. Again, assume that sF and tF agree, respectively, with sG and tG on
F 1 ∩G1. Then we can define the union graph

F ∪G := (F 0 ∪G0, F 1 ∪G1, s∪, t∪),

where s∪, t∪ : F 1 ∪G1 → F 0 ∪G0,

∀ x ∈ F 1 ∪G1 : s∪ =

{
sF (x) for x ∈ F 1

sG(x) for x ∈ G1
,

∀ x ∈ F 1 ∪G1 : t∪ =

{
tF (x) for x ∈ F 1

tG(x) for x ∈ G1
.

Note that F and G are subgraphs of F ∪G. We say that the union is admissible iff both the inclusions
F ↪→ F ∪G and G ↪→ F ∪G are admissible.

Lemma 6.31. Let F and G be graphs whose source and target maps agree, respectively on F 1 ∩G1.
Then, if the intersection graph F ∩G is admissible, so is the union graph F ∪G.

Proof. 1. (F 0 ∪ G0) \ F 0 = G0 \ F 0 = G0 \ (F 0 ∩ G0). Since F ∩ G ↪→ G is admissible,
G0 \ (F 0 ∩G0) is hereditary and saturated in G.

We need to show that G0 \ (F 0∩G0) is hereditary and saturated in F ∪G. To this end, consider
p := (e1, . . . , en) ∈ FP (F ∪G) such that s∪(p) ∈ G0 \ (F 0∩G0). Then s∪(p) = s∪(e1) /∈ F 0,
so e1 /∈ F 1, whence e1 ∈ G1, so s∪(e1) = sG(e1). As G0 \ (F 0 ∩ G0) is hereditary in G,
s∪(e2) = t∪(e1) = tG(e1) ∈ G0 \ (F 0 ∩ G0). Repeating this reasoning for all {ei}ni=2, we
conclude that t∪(p) = t∪(en) = tG(en) ∈ G0 \ (F 0 ∩ G0), so G0 \ (F 0 ∩ G0) is hereditary in
F ∪G.
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Next, to establish that G0 \ (F 0∩G0) is saturated in F ∪G, we consider all elements in F 0∪G0

that emit an edge. Note first that any edge ending at a vertex in G0 \ (F 0 ∩G0) must begin at a
vertex in G0, so we only need to consider vertices in F 0 ∩G0:

F 0 ∩G0

F 0 \G0 G0 \ F 0

Also, if v is a sink in G but not in F ∪ G, it emits an edge ending at a vertex outside of
G0 \ (F 0∩G0), so we can disregard it. Furthermore, since s−1

G ({v}) ⊆ s−1
∪ ({v}), the finiteness

of s−1
∪ ({v}) implies the finiteness of s−1

G ({v}). Hence we only need to consider vertices in
F 0 ∩ G0 that are no sinks in G, that are finite emitters in G, and that emit all their edges to
G0 \ (F 0 ∩G0). For all such vertices, we have

{t∪(e) | e ∈ s−1
∪ ({v})} = {tG(e) | e ∈ s−1

G ({v})}

because t∪(e) ∈ G0 \ (F 0 ∩G0) implies that e ∈ G1. Finally, such vertices do not exist by the
saturation property of G0 \ (F 0 ∩G0) in G, so G0 \ (F 0 ∩G0) is saturated in F ∪G.

A symmetric argument proves that F 0 \ (F 0 ∩G0) is hereditary and staurated in F ∪G.

2. First, taking an advantage of the admissibility of (F ∩G) ⊆ G, we compute

t−1
∪ (F 0) \ F 1 = (G1 \ F 1) ∩ t−1

G (F 0 ∩G0) = (G1 \ F 1) ∩ (F 1 ∩G1) = ∅.

Therefore, as F 1 ⊆ t−1
∪ (F 0), we conclude that F 1 = t−1

∪ (F 0). Much in the same way, one
shows that t−1

∪ (G0) = G1.

Remark: The opposite implication:

F ↪→ F ∪G←↩ G is admissible ⇒ F ←↩ F ∩G ↪→ G is admissible,

is not true:

F := w1 v

{xi}i∈N

G := v w2

e

F ∩G = ({v}, ∅, ∅, ∅), F ∪G = ({w1, v, w2}, {xi}i∈N ∪ {e}, s∪, t∪).

Let us check first that F ↪→ F ∪G is admissible. The set

(F 0 ∪G0) \ F 0 = G0 \ (F 0 ∩G0) = {v, w2} \ {v} = {w2}

is hereditary in F ∪ G because w2 is a sink in F ∪ G. It is also saturated in F ∪ G because w1 is a
sink in F ∪G and v is an infinite emitter in F ∪G.

46



Next,
t−1
∪ (F 0) = t−1

∪ ({v, w1}) = {xi}i∈N = F 1.

Hence F ↪→ F ∪G is admissible. For the inclusion G ↪→ F ∪G, consider the set

(F 0 ∪G0) \G0 = F 0 \ (F 0 ∩G0) = {w1, v} \ {v} = {w1}.

It is hereditary in F ∪G because w1 is a sink in F ∪G. It is also saturated in F ∪G beacuse w2 is a
sink in F ∪G. Finally,

t−1
∪ (G0) = t−1

∪ ({v, w2}) = {e} = G1.

Thus we have shown that the union F ∪G is admissible. On the other hand, the intersection F ∩G is
not admissible because the set G0 \ (F 0 ∩G0) = {w2} is not saturated in G:

v /∈ {w2} and {tG(x) | x ∈ s−1
G ({v})} = {w2}.

Elementary observations:

1. The properties of being hereditary and saturated are not preserved by the inclusion of graphs:

(a) v w

e
v w w′
e e′

F ⊆ G

{w} is hereditary in F but not in G.

(b) v w

e

w′ v w

e′ e

F ⊆ G

{v} is saturated in F but not in G.

However, both properties are preserved by special inclusions F ⊆ F ∪ G for the special set
F 0 \ (F 0 ∩G0) because there are no edges like this:

F G

2. Restriction of graphs to subgraphs does not preserve the saturation property even in the special
case of F 0 \ (F 0 ∩ G0) in F ⊆ F ∪ G. However, it always preserves the property of being
hereditary: if H ⊆ F 0, F ⊆ G, is not hereditary in F , it is not hereditary in G. Indeed, if there
is a path starting at v ∈ H and ending at w ∈ F 0 \ H , then it is also a path starting at v ∈ H
and ending at w ∈ G0 \H .
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Extended graph:

Let E = (E0, E1, sE, tE) be a graph. The extended graph Ē := (Ē0, Ē1, sĒ, tĒ) of the graph E
is defined as follows

Ē0 := E0, Ē1 := E1 t (E1)∗, (E1)∗ := {e∗ | e ∈ E1},

∀ e ∈ E1 : sĒ(e) := sE(e), tĒ(e) := tE(e),

∀ e∗ ∈ (E1)∗ : sĒ(e∗) := tE(e), tĒ(e∗) := sE(e).

Thus E is a subgraph of Ē.

Examples:

1. E = Ē =

2. E = Ē =

3. E = Ē =

7 Graph algebras

7.1 Path algebras

Let V be any vector space over a field k. To endow V with an algebra structure, we have to define
the multiplication map V × V m7→ V , which is a bilinear map satisfying some conditions. Any such
a map is uniquely determined by its value on pairs of basis elements (ei, ej), and any assignment
(ei, ej) 7→ vij ∈ V defines a bilinear map from V × V to V . Now, let E be any graph, and FP (E)
the set of all its finite paths. Consider the vector space

kE := {f ∈ Map(FP (E), k) | f(p) 6= 0 for finitely many p ∈ FP (E)},

where the addition and scalar multiplication are pointwise. Then the set of functions {χp}p∈FP (E)

given by

χp(q) =

{
1 for p = q

0 otherwise

is a linear basis of kE. Indeed, let {q1, . . . , qn} be the support of f ∈ kE. Then

f =
n∑
i=1

f(qi)χqi
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because, ∀ p ∈ FP (E):(
n∑
i=1

f(qi)χqi

)
(p) =

n∑
i=1

f(qi)χqi(p)

=

{
0 if p /∈ {q1, . . . , qn}
f(qi) if p = qi for i ∈ {1, . . . , n}

= f(p).

Hence {χp}p∈FP (E) spans kE.

To see the linear independence, take any finite subset {χp1 , . . . , χpm} ⊆ {χp}p∈FP (E), and suppose
that

∑m
i=1 αiχpi = 0. Then ∀ j ∈ {1, . . . ,m}

0 =

(
m∑
i=1

αiχpi

)
(pj) =

m∑
i=1

αiχpi(pj) = αj .

Thus we have shown that {χp}p∈FP (E) is a basis of kE. Now we will use {χp}p∈FP (E) to define a
bilinear map:

m : kE × kE −→ kE, m(χp, χq) :=

{
χpq if t(p) = s(q)

0 otherwise
.

Proposition 7.1. The bilinear map m : kE × kE → kE defines an algebra structure on kE.

Proof. To check the associativity of m it suffices to verify it on basis elements:

m(m(χp, χq), χx) =

{
m(χpq, χx) if t(p) = s(q)

0 if t(p) 6= s(q)

=


χpqx if t(q) = s(x) and t(p) = s(q)

0 if t(q) 6= s(x) and t(p) = s(q)

0 if t(p) 6= s(q)

,

m(χp,m(χq, χx)) =

{
m(χp, χqx) if t(q) = s(x)

0 if t(q) 6= s(x)

=


χpqx if t(p) = s(q) and t(q) = s(x)

0 if t(p) 6= s(q) and t(q) = s(x)

0 if t(q) 6= s(x)

.

Hence m(m(χp, χq), χx) = m(χp,m(χq, χx)) for any p, q, x ∈ FP (E). (The distributivity fol-
lows from the bilinearity of m.)

Definition 7.2. LetE be a graph. The above constructed algebra (kE,+, 0,m) is called the path algebra
of E.
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Elementary facts:

The path algebra kE of a graph E is

1. finite dimensional ⇐⇒ E is finite and acyclic (no loops),

2. unital ⇐⇒ E0 is finite,

3. commutative ⇐⇒ E1 = ∅ or each edge is a loop starting/ending at a different vertex.

7.2 Leavitt path algebras

Definition 7.3. Let A be a k-algebra and S a subset of A. The ideal generated by S is the set of all
finite sums ∑

i∈F

xisiyi ,

where si ∈ S and xi , yi ∈ A for all i ∈ F .

Definition 7.4. Let E be a graph and k be a field. The Leavitt path algebra Lk(E) of E is the path
algebra kĒ of the extended graph Ē divided by the ideal generated by the following elements:

1. {χe∗χf − δefχt(e) | e, f ∈ E1},

2. {
∑

e∈s−1(v) χeχe∗ − χv | v ∈ E0, 0 < |s−1(v)| <∞}.

Examples:

1. Matrix algebras:

E = v1 v2

. . .
vn Lk(E) = Mn(k)

E =
. . . . . .

Lk(E) = M∞(k) =
⋃
n∈N\{0}Mn(k)

Mn(k) 3M 7−→

 M
0
...

0 . . . 0

 ∈Mn+1(k)

(arbitrary size finite matrices).

2. Laurent polynomial algebra: E = Lk(E) = k[Z].

3. Leavitt algebras: E =

...
e1

en

Lk(E) = Lk(1, n)

(
∑n

i=1 χeiχe∗i ⇒ Lk(1, n)n ∼= Lk(1, n) as modules.)
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4. E =

. . .
...
... Lk(E) ∼= Mn(k)[Z] ∼= Mn(k[Z])

(Laurent polynomials with matrix coefficients or matrices over Laurent polynomials.)

Lemma 7.5. Let E ↪→ F be an admissible inclusion of row-finite (no infinite emitters) graphs and k
be a field. Then the formulas

χv 7−→

{
χv if v ∈ E0

0 if v ∈ F 0 \ E0
,

χe 7−→

{
χe if e ∈ E1

0 if e ∈ F 1 \ E1
,

χe∗ 7−→

{
χe∗ if e∗ ∈ (E1)∗

0 if e∗ ∈ (F 1)∗ \ (E1)∗
,

define a homomorphism Lk(F )
π→ Lk(E) of algebras yielding the short exact sequence

0 −→ I(F 0 \ E0)
inclusion map−→ Lk(F )

π−→ Lk(E) −→ 0,

where I(F 0 \ E0) is the ideal of Lk(E) generated by F 0 \ E0.

Corollary 7.6.
Lk(E) ∼= Lk(F )/I(F 0 \ E0)

Remark 7.7. If A
f→ B is a surjective homomorphism of algebras and A is unital, then B is also

unital and f(1A) = 1B. Indeed, ∀ b ∈ B:

f(1A)b = f(1A)f(a) = f(a) = b, bf(1A) = f(a)f(1A) = f(a) = b.

Definition 7.8. Let A1
f1−→ B

f2←− A2 be homomorphisms of algebras. The pullback algebra
P (f1, f2) of f1 and f2 is

P (f1, f2) := {(x, y) ∈ A1 ⊕ A2 | f1(x) = f2(y)} .

Here A1 ⊕ A2 is viewed as an algebra with componentwise multiplication. P (f1, f2) is a subalgebra
of A1 ⊕ A2 because f1 and f2 are algebra homomorphisms.

Theorem 7.9. Let F1 and F2 be row-finite graphs whose intersection F1 ∩F2 is admissible, and let k
be a field. Furthermore, let

Lk(F1)
π1−→ Lk(F1 ∩ F2)

π2←− Lk(F2)

and
Lk(F1)

p1←− Lk(F1 ∪ F2)
p2−→ Lk(F2)

be the canonical surjections of the preceding lemma. Then the map

Lk(F1 ∪ F2) 3 x 7−→ (p1(x), p2(x)) ∈ Lk(F1)⊕ Lk(F2)

corestricts to an isomorphism Lk(F1 ∪ F2)→ P (π1, π2) of algebras.
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