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Introduction

GOAL: Gaining understanding & developing the ability of precise and refined logical thinking.
MOTIVATION: (after JFK’s 1962 speech)

We choose to do mathematics not because it is easy but because it is hard, because it is a challenge
we are willing to accept, one we are unwilling to postpone, because it serves to organize and measure
the best of our energies and skills.

PLAN:

1. Recap basic knowledge of fields and linear algebra
2. Define and explore the concept of an algebra

3. Graphs (quivers) and path algebras

4. Elements of representation theory

5. Leavitt path algebras

1 Rings

1.1 Definition, examples, remarks

Definition 1.1. Let R be a non-empty set equipped with two binary operations R x R 5 R, RxR =
R and two special elements 0, 1 € R. The quintuple (R, +,0,,1) is called a ring iff:

(R1) (R,+,0) is an abelian group, i.e.

Vr,s,t € R: (r+s8)+t =r+(s+t), r+s=s+r, 0+r=r, Vre RIre R:r+r' =0.

(R2) (R,-,1) is a monoid, i.e.

Vrs,t€R:(r-s)-t=r-(s-t), l-r=r=r-1

(R3) The multiplication is distributive over addition, i.e.

Vr,s,steR:(r+s)-t=r-t+s-t, r-(s+t)=r-s+r-t.

We say that the ring R is commutative iff the monoid (R, -, 1) is commutative (r - s = s - 1).



Elementary observations:

1. If there are at least two elements in a ring 12, then 0 # 1. Indeed,
0O-z2=0-z42x—2=0-2+1-2—2=0+1)-z—zx=1-2—ax=2—2=0,
so,if 0 =1,thenx =1-x =02 = 0 and 0 is the only element of R.
2. (=1) - & = —x because
z+(-1)-z=1-24+(-1)-2=(1-1)-2=0-2=0

and the claim follows by the uniqueness of the inverse element.

Examples of rings:

1. The ring of integers (Z, +,0, -, 1). It is a commutative ring. So is every quotient ring
7Z/NZ :=7/Ry, Ry :={(m,n)€Z*|m—n¢e NZ}.

For N = 0, we get Z/0Z = Z, and for N = 1 we obtain Z/7Z = {0}. For N = 24 (or 12), we
get the “clock” ring.

2. If Risaring and X # (), then Map(X, R) is a ring with respect to the pointwise operations
given by
Ve e X:(f+9)(@):=f(x)+g(x), (f 9)(z):=[(z) g(z).

The neutral elements are the constant functions x — 0 and x — 1 for the addition and multi-
plication respectively.

1.2 Convolution multiplication
Let R be a ring and G be a monoid. Define
R[G] :=={a € Map(G, R) | a(g) # 0 only for finitely many g € G}.

The binary operation R[G] x R[G] = R[G] given by

(axB)(g) = Y a(h)B(H)
it

is called the convolution multiplication.

1. Itis well defined, i.e. the sum is finite, and again a map with finite support.



2. The convolution is associative:

(axB)x7)(9) = Y (axB)(z) =D Y a@byrz)= Y  a@)byr()

h,zeG h,ze€G z,yeG z,y,h,z€G

hz=g hz=g zy=h hz=g, xy=h
= Y a@Blynz) = Y, a@Brz)= ) al@) Y ()
= Y a@)(Bx)k) = (ax(Bx7))(9).

z,keG

The neutral element for * is given by

where e is the neutral element of (.
Hence (R[G], *, 0.) is a monoid.

3. The convolution is distributive with respect to the pointwise multiplication, so (R[G], +, 0, *, &.)
is a ring. We call it a monoidal ring. If G is a group, we call it a group ring.

Examples of monoidal rings:

1. For the additive monoid of natural numbers (N, 4, 0), R[N] is the polynomial ring with coeffi-
tiens in R. Elements of R[N] are called polynomials. A key polynomial is given by

(m) = {1 for m=1

0 for m#1"
Compute
2t i=x k. xn onm € N:
v
n times

1 for m=n

" (m) = Z x(my)...z(my,) = {O for m %

It is natural to denote the convolution neutral element J, as z°:

0 1 form =20
xz'(m) = .
0 form #0

Note that Vo € R|N]:



where (r5)(m) := r/3(m) forr € R and € R|N]. Indeed,
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k=0 k=0

The convolution multiplication of polynomials:

() (£e)) - £ $ 5wt ot

k=0 =0 q1+q2=q k=0 [=0
q1,92€N
m n m n
_ k l _ k+1
= E E TES] E (x () (Q2)) = E TESIT (9)
k=0 [=0 q1+q2=q k=0 [=0
q1,92€N
m+n
_ N = k‘ + l _ Z Z rS) ,ZL’k—H (q)
l=N—k
N=0 | k+I=N
0<k<m
0<i<n
m—+n

= Z Z resn—r | =V | (9)

N=0 \ 0<k<m
0<N—k<n

= Z Z resnk | 2 | (q)

N=0 | 0<k, N—n<k,
k<m, k<N

m+n min{m,N}

= Z Z resv—i | 2V | (q).

N=0 \ k=max{0,N—n}

Anexample: R =7, m =2,n=3,r, =k, s; = [>. Then

2 3 5 min{2,N}
(Z k;:Uk) % <Z z%l> =) > kN -k |

=0 N=0 \ k=max{0,N—3}

0-(0—0)x0+2k(1—k)2x+2k(2

k(3 +Zk4 k)2 +Zk5—

(4 +2)z* +(9+8)x +182° = 22 —|—6x + 172% + 182°.

k

+

+MEMMQ’

=2z
Computing directly, we obtain

(z + 22%)(z + 42% + 9°) = 2 + 42® 4+ 92 + 22 + 8z* + 1827
=2 + 62° + 172" + 182°.



Evaluation at » € R is a map
n n
ev,
R|N] 5 E st E spr¥ € R.
k=0 k=0

The polynomial function f,, of a polynomial « € R|N] is the map

Rords fa(r) :=ev,.(a) € R.

2. For the additive group of integers (Z, +, 0), the group ring R[Z)] is the ring of Laurent polynomials
with coefficients in R. A Laurent polynomial o can be written as

a = Z alk)z®,

k=—m

where 27! is defined by

4 1 form= -1
x(m) = :
0 form # —1

Clearly, 7! is the inverse of z:

1 B _1 _J1 form=0
(o7 x ) (m) = ,;ezx (k)m(l)_{o form #0

k+l=m

3. Taking again the monoid (N, +, 0) but replacing R[N] with R[[N]] := Map(N, R), we obtain
the ring of formal power series: Y -, axz”.

2 Fields

Definition 2.1. A non-zero commutative ring whose every non-zero element is invertible is called a
field. The least natural number n such that

I+...+1=0
———

n—times

is called the characteristic of a field. If it does not exist, we say that the characteristic is zero.

Elementary observations:

1. Aring (K,+,0,-,1)isafield <= (K \ {0}, -, 1) is an abelian group.

2. The characteristic of a field is either zero or a prime number. Indeed, suppose the contrary. Then
n = klwithl < k,l < n,soboth k-1and][-1 are non-zero, whence invertible. Therefore,
O=n-1=(kl)-1=(k-1)(l-1),800-(l-1)"(k-1)"! =1, i.e. 0 = 1, which contradicts
(K \ {0},-,1) being a group.



Examples of fields:

1. The field Q of rational numbers (more generally, a field of fractions).

2. The field R of real numbers (more generally, a metric closure of a field, e.g. the field Q, of
p-adic numbers).

3. The field C of complex numbers (more generally, the algebraic closure of a field).
4. Q + /2 Q (more generally, an algebraic extension of a field).
5. Z/pZ, where p is a prime number (more generally, a finite field).

Theorem 2.2. The ring 7./NZ is a field if and only if N is a prime number.

Proof. If N is not a prime number, then N = kl with 1 < k,l < N, so both (k- 1) and (/- 1) are
non-zero and non-invertible. Hence Z/NZ is not a field. Assume now that N is a prime number.
Since Z/NZ is commutative. it suffices to show that

Vike{l,...,.N—1}31le{l,...,N}: kl =1mod N, ie. kl = mN + 1 for some m € N.
Consider a map
fx :Z/NZ — ZJNZ : fr(l-1) = (k-1)(l-1) = (k) - 1.

If fr(I-1) = fi(I'- 1), then kl = kI’ + mN for some m, i.e. k(I —1') = mN for some m. Hence
[ — 1" =m'N for some m' because N is a prime number not dividing k. This means that /-1 =1"-1,
so fy is injective. Now as Z/NZ is finite, it is also surjective. Thus we proved that

Vke{l,...,.N—1}3le{l,...,N}: kl =1mod N, ie. kl = mN + 1 for some m € N.

]

Theorem 2.3. Let K be a finite field. Then the number of elements in K is p", where p is the
characteristic of K and n is a positive integer.

Proof. Note first that K is a vector space of Z/pZ:
ZIpZ x K — K : (n-1,2) — (n-1g)x.

(The map is well-defined because p is the characterstic of K.) Since K is finite, it is finite dimensional
over Z/pZ. As every element of K can be uniquely written as » ., o;e;, where {e;}7, is a basis of
K, there are p" elements in K. O

The 4-element field K4:

As a vector space over Z /27 and as an abelian group, K, = Z /27 x Z/27.. We adopt the notation
0:=(0,0),1:=(1,1),a:=(1,0),b:= (0,1). We need a multiplication table



As both a and b are invertible, the only values for this table are from {1, a,b}. We have ab = 1, as
ab# aandab#b. Hencea=a-1=ala+b)=a*+ab=a*+1,50a®> =a—1= —b=0b. Much
in the same way, b> = a. Thus we obtain:

A quick direct check shows that (K4, -, 1) is a monoid, s.t. (K \ {0}, -, 1) is an abelian group. Much
in the same way, one checks that the distributivity holds. Hence the above table defines a field.

Remarks on fields:

1. For every prime number p and a positive integer n, there exists a unique field K,» with p"-many
elements. If the characteristic of K- is a prime number ¢, then ¢ = p™ for some m € N\ {0}
so ¢ =pand m = n.

2. The characteristic of every finite field is positive, but not every field of positive characteristic
is finite: the algebraic closure Z/pZ of Z/pZ is infinite. Indeed, a finite field F' cannot be
algebraically closed as the polynomial z° + [[,-(z — &) € F[N] has no root in F'.

3 Algebras

3.1 Definition, examples, remarks

The concept of an algebra unifies the notion of a ring with the notion of a vector space: an algebra is
a vector space with a compatible ring structure.

Definition 3.1. (A, k, -, %) is called an algebra over (the ground field) k iff

(A1) (A, k, ) is a vector space over k,

(As) (A,+,0, %) is a not necessarily unital ring with respect to the abelian group (A, +,0) that is
a part of the vector space structure,

(As) The algebra multiplication A x A = A is bilinear over k:
(azx) * (By) = (aB) - (z *y).

An algebra is called unital iff 31 € A : (A, +,0,%,1) is a ring.



Examples of algebras:

1. Matrix algebras. For any positive integer n and any field &, the set M,, (k) of all n x n matrices
with coefficients in k is a unital algebra over k. The multiplication neutral element is the identity
matrix /,,. The set M. (k) of all finite-size matrices with coefficients in k is a non-unital algebra
over k. Embedding M, (k) into M,, (k) via

M 0
]\/[r—>(0 O)

allows us to think of M (k) as the union |J°7, M, (k). Note that dimy, M, (k) = n? and
dimy, M (k) = 0.

2. Function algebras. For any non-empty space X and a field k, the set Map(X, k) is a unital
algebra over k£ with respect to the pointwise addition and multiplication. The multiplication
neutral element is the constant function z — 1. If the set X is an infinite set, then the set
Map; (X, k) of all finitely supported maps is a non-unital algebra over k.

3. Matrix algebra with coefficients in algebras. If A is a k-algebra and n is a positive integer, then
M,,(A) is a k-algebra. It is unital if A is unital. If A = M,,(k), then M,,(M,,(k)) = My (k).

4. Algebra-valued function algebras. If X is a non-empty set and A is a k-algebra, then Map(X, A)
is a k-algebra w.r.t. the pointwise addition, multiplication and the scalar multiplication. (Note
that for any vector space V, the set Map (X, V) is again a vector space with the pointwise struc-
ture and dimy Map(X, V') = | X|dimy, V) If A is a unital algebra, then Map(X, A) is a unital
algebra.

5. The above two cases might coincide.

M, (Map(X, k)) = Map(X, M, (k)).

6. Convolution algebra. If A is a k-algebra and G is a monoid, then A[G] is a k-algebra. It is
unital if A is unital: 6, € A[G],

1y forg=e
5@(9) = )
0 forg#e

is the multiplication neutral element. In particular, we can take A to be a field k, and G to be a
group. Group algebras k[G] are very important and well studied.

7. Algebras given by generators and relations: k{x) := k[z] (polynomials), k[z]|/(z?) (truncated
polynomials), k(x, y)/{xy — yx) = k[z,y| (polynomials in two variables).

8. Coupling algebras with topology and analysis yields a plethora of fundamental examples of
operator algebras: Banach algebras, C*-algebras, von Neumann algebras.



3.2 Unital vs non-unital algebras

Every non-unital algebra can be unitalized in many ways.

Minimal unitization:

Let A be an algebra over a field k. The minimal unitization A" of A is the vector space A & k
with the following multiplication:

(ADKk)x (Adk) — Ak,

((a, ), (b, B)) — (a,a) * (b, B) := (ab+ ab+ Sa,af).
1. It is associative:

((a, @) * (b, 8)) * (¢, ) = (ab+ ab+ fa, af) * (c,7)
= (abc + abc + Bac + afc + yab + avyb + Pya, afy),

(a,a) * ((b, B) * (¢,7)) = (a,a)  (bc + Be + b, B7)
= (abc + Bac + vyab + fya + abe + afc+ ayb, afy).

2. It extends the multiplication in A: (a,0) * (b,0) = (ab,0).
3. (0, 1) is the multiplication neutral element:

(a,a) % (0,1) = (a0+a0+a-1,a-1) = (a,a),
(0,1) % (a,a0) = (0a+1-a+a0,1-a) = (a,q).

4. If A is already unital, then AT = A & k, where the multiplication on the right-hand-side is
component-wise: (a,a) - (b, 5) = (ab, af3). Indeed,

AT Ak, fla,a) == (a+a-14,a)

is a linear bijection satisfying f(a,a) - f(b,5) = f((a,a) % (b, B)).

Examples of unitization:

1. Let X = {1 |n e N\ {0}}. Define

Co(X) := {f € Map(X,R) | lim f (%) = o}.

Then the minimal unitization Cy(X)™" is
1
O(X) = {f € Map(X,R) | lim f <—) c R}.
n—o0 n

10



Indeed,

F:C(X) = Co(X)*, F(f):= <f — lim f (%) “Ivap(x ), lim f (1»

n— 00 n

is a linear bijection intertwining the multiplication. Note that

Co(X) =2 {f € Map(X U{0},R) ‘ f is continuous and f(0) = 0},
C(X) = {f € Map(X U {0},R) | f is continuous}.

2. Let
A = {f € Map(C, M,,(k)) | f(z) = 0 for some = € C}.

Then
At = {f e Map(C, M, (k)) | f(x) = al, forsome o € k} X AD k.

1 z#=x

Indeed, A is a unital algebra with 14(z) = {0 :
z=ux

3. Let A := z % k[N]. Then AT = k[N]. Indeed,

F:kIN] — A", F(a) := (a - a(0)2°, a(0))

is a linear bijection intertwining the multiplications:

n

Va € k[N] : a — a(0)2° = Za(i)xi —a(0)2? = Z afi)z’

i=0 i=1
n—1

= % (Za(j+ 1)xj> € x x k[N].
=0

(Note that z * k[Z] = k[Z] because « = x x x™1 *x v.)

4 Ideals

Let A be an algebra over a field k, and let I be a vector subspace of A. The subspace [ is called an
ideal of A iff
YVae A,vel: av el and va €]

Elementary remarks:

1. For any algebra A, the subspace I = 0 or I = A is an ideal of A. The zero ideal is called
trivial, and the whole-algebra ideal is called improper Any ideal of A that is not A is called a
proper ideal.

2. Every ideal is an algebra.

11



3. An ideal [ of a unital algebra A is unital if and only if / = A. Indeed, if A = I, then 1 € I,
andthenVae€ A:a-1=a € I.

4. Ideals make sense already for rings: it suffices to replace a vector subspace with an abelian
subgroup.

5. Sometimes one-sided ideals are considered:
Iis aleftideal of Aiff Vae Ajv el av e,
I'is arightideal of Aiff Va € A,v el :va€l.

A fundamental observation:

Let [ be any ideal of an algebra A. Then the quotient vector space A/ is an algebra with respect
to the multiplication inherited form A. Indeed, the induced multiplication

A/l x AT — A/I, ([a],[b]) — [ab]

is well defined because (a+ I)(b+ 1) = ab+ Ib+al + I* C ab+ I. (Associativity and distributivity
are clear.)

Examples of ideals:

1. A is always an ideal of its minimal unitization A™:
(a,a)(b,0) = (ab+ 0a + ab,a0) = (ab+ ab,0) € A,
(a,0)(b,B) = (ab+ Pa + 0b,08) = (ab+ Pa,0) € A.

2. LetY C X,Y # (), and let A be a k-algebra. Then I := {f € Map(X, A) | f(Y) = {0}}isan
ideal of Map(X, A) considered with the pointwise structure:

fY)={0} =VyeY,geMap(X,A): (9f)(y) = 9(y)f(y) = g(y)0 = 0and (fg)(y) = 0.
3. NZis an ideal in Z.

4. I :={M € M, (k)| M;, =0Vi}, n > 1,is aleft (but not right) ideal of M,,(k):

(NM)in =Y NacMya = 0.

k=1

To show that it is not a right ideal, starting from n = 2, take matrices of the form

(? 8)6], <8 é)eMg(k).
(FD)(E)-(1)e

The case of n > 2 is analogous.

Observe that

12



5. For any polynomial o« € k[N], the vector space a * k[N] is an ideal of k[N]|, because k[N] is
a commutative ring.

6. Let k[G] be a group algebra. Then I := {a € k[G] | > ,a(g) = 0} is an ideal of k[G].

Indeed,
dlaxB)g) =D > ampk)=>_ > amphle)= D ah)bhg).
g€G 9€G h,keG g€G hed (g,h)EGXG

hk;:g

Now, the map

GxG— GxQGaG,
(g,h) — (h7'g, h),

is a bijection with the inverse (k, h) — (hk, h). Hence, changing variables form (g, k) to (k, h),
we obtain

Y oampthlg) = > am)Bk) = alh)) Bk) =

(g,h)eGXG (k,h)EGXG heG keG

Much in the same way,

S (Bra)g) =D B(k) D a(h)=0.

geG keG heG

Theorem 4.1. Let k be a field. There are no proper non-zero ideals in M, (k) for any n € N\ {0}.

Proof. Let I # 0 be an ideal of M, (k). Take 0 # M € I. Then there existi,j € {1,...,n} such
that M;; # 0. Next, recall that the set of all elementary matrices (matrix units) Ey;, k,l € {1,...n},
is a linear basis of M, (k). Hence,

Also, for any m € {1,...,n}, we obtain:

EniMEjm =Y MuyEmEuEjm= Y MuEndEwm= Y MgEpnEpm

kle{l,...,n} k,le{l,...,n} ke{l,...,n}
= Z MkzjdzkEmm = MZJEmm
ke{l,...,n}

Now, as k is a field and M,; # 0, we get E,, = (M;;) ' E,iMEj,,,. Consequently, as I is an
ideal, I,, = > " _| Epy € I, 50 I = M, (k). This shows that there are no non-zero proper ideals in
M, (k). O

Corollary 4.2. There are no non-zero proper ideals in any field.

13



S Homomorphisms

5.1 Definition, examples, remarks

A homomorphism between algebraic objects is a map between them preserving their algebraic struc-
ture.

Definition 5.1. A map M Ly N is called a homomorphism of

e monoids iff M and N are monoids, and

Vmy,mg € M i f(mamsa) = f(m1)f(ma),  f(em) = en-
Here ey and ey are the neutral elements of M and N respectively.

o groups iff M and N are groups, and

le,mg eEM: f(mlmQ) = f(ml)f(m2>

e rings (or fields) iff M and N are rings (or fields), and f is a homomorphism of both their
additive groups and multiplicative monoids.

e unital algebras iff M and N are unital algebras and f is a linear ring homomorphism.

e algebras iff M and N are algebras, and f is linear map satisfying
le,mg e M: f(mlmg) = f(ml)f(mg)

Definition 5.2. A homomorphism f (in all the above cases) is called

e a monomorphism iff f is injective,

e an epimorphism iff f is surjective,

e an isomorphism iff f is bijective.

Warning: This is a simple-minded set-theoretical approach to these concepts. A general categori-
cal approach is more subtle, and these terms might have a different meaning:

1. An isomorphism is a morphism f with the two-sided inverse: there exists a morphism g, s.t.
fog=idand g o f = id. In topology, a morphism is a continuous map. But a continuous
bijection need not be invertible as the inverse of a continuous bijection need not be continuous

0,1) 2B 51: ¢ 2™,

14



2.

A map X Ly s surjective if and only if g; o f = g 0 f = g1 = go. Therefore, one says
that a morphism f is an epimorphism iff for morphisms ¢; and g, the above implication holds.
Consider as morphisms homomorphisms of rings. Then the standard inclusion Z EN Qisa
ring homomorphism with the property that, for any ring homomorphisms g, g, : Q — R the
implication g; o f = g2 o f = g1 = go holds despite f not being surjective. Indeed, for any
ring homomorphism g : Q — R

g (g) =pg(q™") =pg(q)™" = plgg(1)) ",

so it is completely determined by its value on 1 € Q, which is f(1).

. Amap X Lyis injective if and only if f o g = f 0 go = g1 = ¢o. Therefore, a morphism is

called a monomorphism iff for morphisms g; and g, the above implication holds.

Elementary remarks:

1.

Homomoprhisms with the same domain and target are called endomorphisms. Bijective endo-
morphisms are called automorphisms.

. If M J» N is a homomorphism of monoids and 3m~" € M, then f(m™1) = f(m)~!. Indeed,

ey = flem) = f(mmfl) = f(m)f(mfl)

Much in the same way ey = f(m™") f(m), so f(m™!) is the unique two-sided inverse.

G L Hisa homomorphism of groups, then

en = flea)flec)™ = flecea) flea)™ = flea)f(ea)flea)™ = fleq).
In our context, the inverse of a bijective homomorphis is a homomorphism:
F ay) = @)U W) = U @) W) = @) f ().
Much in the same way we prove it for 4+ and the same for scalar multiplication.
IfA i> B is an algebra homomorphism, then
ar LBt fH(a0) = (f(a).0)

is a homomorphism of unital algebras. The multiplication and the linearity are obviously pre-
served, and f(0,1) = (0, 1) follows from f(0) = 0 (a homomorphism of groups automatically
preserves the neutral element).

A homomorphism of fields is always injective. Indeed, suppose the contrary. Let k L K bea
homomorphism of fields with f(x) = f(2') for x # 2’. Then f(zx — ') = 0. Butz — 2’ # 0,
so it is invertible. Hence

L=f(z—a)a—2)")=fla—2a)f((z—2)") =0 f((z —2")7") =0,

which is impossible in a field.
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5.2 Homomorphisms from convolution rings

Recall that the evaluation of a polynomial at » € R is a map
R|N] > Z st Z st € R.
k=0 k=0
A polynomial function f,, of a polynomial o € R[N] is the map
Rors fa(r) :=ev.(a) € R.

Consider now the map
RIN] 3 a5 f, € Map(R, R).

Properties of f:

1. If R is commutative, then f is a homomorphism of rings, where Map(R, R) is a ring with

respect to the pointwise structure. Indeed, for any r € R,

fars(r) = eve(a + B) = evi(a) + evi(B) = fa(r) + f5(r) = (fa + f5)(r).

Also,Vr € R :

farp(r) =ev,(a* ) = ev, ((Z a(k:)a:k> * (Z ﬁ(l)xl>>

k=0
m—+n min{m,N}

=ev, [ Y > a(k)B(N —k)

N=0 \ k=max{0,N—n}

|
2
N
=
=

|
N

3

N=0 \ k=max{0,N—n}

_ (Za@)rk) (Z B(l)rl> = FuPfolr) = (uds) ).

k=0

2. If R # 0 is finite, then f is not injective because R[N] is infinite and Map(R, R) is finite.

3. A zerodivisorisr € Rsuchthat 3s € R\ {0}: rs = 0 or s = 0. For instance, in Z/67Z the
element 2 is a zero divisor because 3 # 0 and 2 - 3 = 0. Also, 1 # ¢ = ¢? € R, then ¢ is a zero

divisor because 1 — ¢ # 0 and (1 — e)e = e — €2

= e — e = 0. In particular, 0 is a (trivial) zero

divisor. A commutative ring whose only zero divisor is 0 is called an integral domain. If R is
an infinite integral domain (e.g. R = Z, Q, R, C), then f is a monomorphism of rings.

4. In general, we cannot replace R[N| by R[[N]]| as the domain of f. However, with the help of

analysis, we can consider a restricted version of f. For instance,

R[N]] 3 a +—— f, € Map((—74,Ta), R).
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Here r,, is the radius of convergence of «. For

a:;%x”, ﬁ:;x”, fyzz_%(n—i—l)”x”,

the radii of convergence are r, = oo, 73 = 1, r, = 0.

5.3 Substructures

Definition 5.3. A submonoid, subgroup, subring, subfield, (unital) subalgebra of a monoid, group,
field, (unital) algebra, respectively, is a subset N with the properties

e the binary operation(s) restrict to it: N X N — N;
o N contains the neutral element(s);

o with the inherited (restricted) structures, N is a monoid, group, ring, field, (unital) algebra,
respectively.

Elementary remarks:

1. A subsomething of a subsomething of something is a subsomething of something.

2. Z1is not a subfield of QQ because the third property fails despite the first two being true.

Proposition 5.4. Let M L N bea homomorphism of monoids, groups, rings, (unital) algebras,
respectively. Then f(M) is a submonoid, subgroup, subring, (unital) subalgebra of N, respectively.

Proof. 1. f(M) is a submonoid of N because ey = f(ens) and f(mq)f(mz) = f(mims).
2. f(M) is a subgroup of N because f(g)~' = f(g™1).

3. f(M) is a subring of N because it is an abelian subgroup by 2 and a submonoid by 1, and the
distributivity laws hold for f (M) as it is a subset of N.

4. f(M) is a (unital) subalgebra of NV because it is a vector subspace and a (unital) subring of NV,
and the bilinearity of the multiplication in f (M) holds because it holds in N.

[
Examples:

1. Every ideal [ of an algebra A is a subalgebra of A.
2. Qis a subfield of R and R is a subfield of C.
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3. SL,(C) is a subgroup of GL,(C).
4. Vn € N : nNis a submonoid of N.

Definition 5.5. Let H be a subgroup of G. It is called normal iff
VgeG: gH=Hg

(for any h € H there is h' € H such that gh = I'g). In other words, gHg™' = H forall g € G.

5.4 Kernels

Definition 5.6. Ler M 5 N be a homomorphism of monoids. Then the kernel of f is

ker f:={m e M| f(m)=en}.

Elementary remarks:

1. For any homomorphism M s N of monoids, the kernel of f is a submonoid of M. Indeed,

v,y€kerf = flry) = f(z)f(y) =0,

so zy € ker f. Also, the neutral element e,; of M is in ker f. Furthermore, if f is a homomor-
phisms of groups, x € ker f and e is the neutral element of /V, then

f@™) = fla)™ =€y =en,
so 27! € ker f. Hence ker f is a subgroup.

2. A homomorphism M Iy N of groups is injective if and only if ker f = {e,;}, where e, is the
neutral element of M. Indeed, if ker f # {eys}, then f is not injective. Vice versa, suppose
that f is not injective. Then there exist g, h € G such that g # h and f(g) = f(h). Denote the
neutral element of N by ey. It follows that ex = f(g)f(h)™' = f(g9)f(h™') = f(gh™'), so
gh™' € ker f and gh™! # e);. Hence ker f # {eyr}.

3. If f is a homomorphism of rings or algebras, then ker f := {m € M | f(m) = 0} is a subgroup
or a vector subspace of M that is also an ideal of M:

so zy, yx € ker f.

Theorem 5.7. If G L Hisa group homomorphism, then ker f is a normal subgroup of G, and the
induced map G/ ker f > [g] — f(g9) € f(G) is a group isomorphism.

Lemma 5.8. If K is any subgroup of G, then gh~! € K defines an equivalence relation.
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Proof. We check the reflexivity, symmetry, and transitivity of the relation:

gg ' =eqe K, gh'cK=(gh)y'=hg'ecK,

(gh* € K and hk™' € H) = gh'hk ' =gk ' € K.
Here eq stands for the neutral element of G. [
Lemma 5.9. If N is a normal subgroup of G, then G/N := {[g] | g € G}, where h € [g] iff gh™" € N,
is a group.

Proof. The induced multiplication
G/N x G/N — G/N = ([g], [n]) — [gh],
is well defined:
ni,ne € N, g=nik, h=mnsl = gh=niknsl = ninjkl,

where n, € N, and the last step holds by the by normality of . It is immediate that the induced
multiplication is associative, enjoys the neutral element, and has any element invertible. [

Lemma 5.10. The kernel ker f is a normal subgroup.

Proof. If © € ker f and ey is the neutral element of H, then, for any g € G,

flozg™) = f(9)f(@)f(9)"" = f(@enf(9)™" = f(9)f(9)™" = en,

so gker fg=! C ker f. The equality gker fg~* = ker f follows from the fact x = gg 'xgg~' and
g 'rg =g tw(g7!)! € ker f. O

Proof. (of Theorem 5.7) We already know that G/ ker f and f(G) are groups. Note now that the
induced map

G/ker f 15 £(@). F(lg) = f9).
is well defined: if = € ker f, then
f(zg) = f(x)f(g9) = enf(9) = f(9)-

It is also a group homomorphism because

F(lglln]) = f([gh]) = f(gh) = fg)f(h) = F(lg]) f([]).
Next, f is injective because ker f = {[eg]}:
flg) =en = flo)=en <= gekerf < geg €kerf < [g] = [ec].

Finally, by the definition of the image of a map, all maps are surjective onto their images, and
f(G/ker f) = f(G), so f is an isomorphism of groups. ]

5.5 Preimages

Definition 5.11. Let X i> Y be a map, and let B C Y. Then the preimage of B underY is

fYB):={recX]|f(x)e B}
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Elementary remarks:

1. If f is a bijection, then the preimage under f is the image under its inverse:
fle) € B <= w=f"'(f(z)) € f[7(B).

2. ML Nisa homomorphism of monoids, groups, rings, (unital) algebras, respectively, and
L is a submonoid, subgroup, subring, (unital) subalgebra, respectively, of N, then f~!(L) is a
submonoid, subgroup, subring, (unital) subalgebra, respetively, of M.

3. If M i> N is homomorphism of monoids, then ker f = f _1(6N), where ey is the neutral
element of V.

4. Let A L Bbea homomorphism of algebras, and let I be an ideal of B. Then f~(I) is an
ideal of A:

VeeAyef(I): flzy) =fla)fly) €1,
flyz) = f(y)f(z) € I.

However, the image of an ideal need not be an ideal. Indeed, consider a non-unital algebra
homomorphism M,, (k) EN M, +1(k) given by
M 0
M — ( 0 0 ) .

Then M, (k) is an ideal of M, (k), and f(M,(k)) is a proper non-zero subalgebra of M, (k),
so it cannot be an ideal of M,, (k) as M,,,1(k) has no proper non-zero ideals.

Examples:

. Let AL Bbea homomorphism of algebras, and A™ s B* its minimal unitization. Then B
is an ideal of BT, and (f7)™'(B) = A:

fH(a,0) = (f(a),a) € B <= a=0.

2. Let X 5 Y be a map, and let Map(X, k) and Map(Y, k) be k-algebras with the pointwise

structure. Then Map(Y, k) N Map(X, k), F*(g) := g o F, is an algebra homomorphism
(called the pullback of F'). Furthermore, let ) # A C X. Then

Ly = {f € Map(X, k) | f(A) = 0}
is an ideal of Map (X, k), and
(F)M(Ls) = Ir(a) := {g € Map(Y, k) | g(F(4)) = 0}.
Indeed,
ge (F) L) <= F'(g) € s <= (goF)(A) =0 <= g(F(4)) =0 < g€ Ir(a.

3. Consider the group homomorphism Z EN Z, f(x) := 2z, and the subgroup 3Z. Then f~!(3Z) =
3Z because 2z € 37 <= z € 3.
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5.6 Cokernels

If H is a subgroup of G, then we can always consider the quotient G/H. However, to make G/H
a group, we need H to be a normal subgroup. To ensure that it is so, let us assume that GG is abelian.
Then all its subgroups are normal: gHg ! = gg 'H = eH = H.

Definition 5.12. Let M 5 N be a homomorphism of abelian groups. The cokernel of f is the abelian
group

cokerf := N/f(M)|.

Elementary remarks:

1. A homomorphism M 7y N of abelian groups is surjective if and only if coker f = 0:

cokerf =0 <= Vne N:[n|=[0] <= Vne N:n-0=n¢€ f(M) < f is surjective.

2. UM L Nisa homomorphism of vector spaces, rings, (unital) algebras, respectively, then
coker f is defined with respect to the additive group structure. In the case of vector spaces

or (unital) algebras, cokerf is a vector space. However, in the case of rings, coker f is only

an abelian group. Indeed, Z > m EN (m,m) € Z @ 7Z is a homomorphism of rings, but

there is no induced multiplication on coker f: [(m,n)][(m/,n")] := [(mm/, nn')] but [(m,n)] =
[((m,n) + (k, k)] and [(m/,n")] = [(m’,n") + (I, 1)], so we should have

[(mm/,nn)] = [(m + k,n+ k)(m' + 1,0’ +1)]
[(mm/ + km' +ml+ kl,nn’ +nl + kn' + kl)]
[(mm + k(m' —n'),nn’ +1(n —m))].

Hence [(k(m' —n'),l(m —n))] = 0,i.e. k(m'—n')
is clearly false fork =l =m=n=1and m' =3, n

I(m—n)Vk,l,m,nm' n €Z,which
= 2.

~

3. Consider the linear map
2 f 2
C*a(z,y) = (x+y,—z—y) eC

Then coker f = C via
cokerf 3 [(a,b)] % a+b € C.

Indeed, g is well defined:
9([(a,0) + (m, —m)]) = a+m +b—m = a+b=g([a,0)]).
Furthermore, g is linear (because it is induced by a linear map), surjective and injective:

9([(a, D)) =0 <= a+b=0 < (a,b) = (a,—a) <= [(a,b)] =0.
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5.7 Exact sequences

Definition 5.13. A sequence of homomorphisms

n fn
s My, I M T M

of abelian groups is called exact iff

VneZ: fo(M,)=Xker fn.

A short exact sequence is an exact sequence of the form:

\0—>M—>N—>L—>0.\

Elementary remarks:

1. If (f,)nez is an exact sequence, then

VneZ: fopaofn=0.
2. A sequence

o 0 - K i> M is exact <= f is injective,
o ML L5 0isexact « f is surjective,
o 0 ML N 0isexact <= f is bijective.
3. Every exact sequence can be factored to short exact sequences:

0——ker f, M, —I% £ (M) ——0

Jn
0 ——=ker fry1 — M, 11 - fo1(Myy1) —=0.
Here f;, stands for the corestriction of fy,: fr(z) := f(z) for all z € M.

4.0 = K % M 5 N is an exact sequence, then the corestriction K % ker f is an isomor-

phism:
0 K—9% py—7F N
XJ
g(K) =ker f

5. 1M 5 N % L — 0is an exact sequence, then the induced map coker f 2 N is an isomor-
phism:

M / N g L 0

N/ f(M) = coker f
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Indeed, it is well defined because, V. m € M : f(m) € ker g, so

g([n+ f(m)]) = g(n) + g(f(m)) = g(n) = g([n]),
it is surjective because ¢ is surjective, and it is injective because

g([n])) =0 <= ¢g(n) =0 <= neckerg= f(M) < [n]=0.
6. If0 - K — M — N — 0 is a short exact sequence of vector spaces, and dim M < oo, then
dim M = dim K + dim N.

7. If I is an ideal of a k-algebra A, then 0 — [ — A — A/I — 0 is a short exact sequence. For

instance,
0— {f € C(S?) | f(zo) =0} — C(5*) 8 C — 0.

8. The sequence 0 - H — H & G — G — 0 is clearly a short exact sequence. A different type
of a short exact sequence is the sequence

0 —nZ —7Z—7Z/nZ—0.

Definition 5.14. A short exact sequence 0 — K — M — N — 0 is called split iff there exists
a homomorphism s : N — M such that f o s = id.

Theorem 5.15. Let 0 — K % M 5 N — 0 be an exact sequence of abelian groups. Then the
following are equivalent:

1. There exists a homomorphism sy : N — M such that f o sy = id,
2. There exists a homomorphism s, : M — K such that s, o0 g = id,
3. There exists a subgroup M' C M such that M = ker f & M’ = g(K) & M'.

Theorem 5.16. A short exact sequence 0 — K — M — N — 0 of vector spaces and linear maps
always splits.

Counterexample: The short exact sequence

0—=nZ—Z—Z/nZ—0

does not split for any n € N\ {0, 1}.

6 Graphs (quivers)

Definition 6.1. A graph is a quadruple E := (E°, E', s,t), where:
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o EUis the set of vertices,

o Elis the set of edges (arrows),
o E' 5 EVis the source map assigning to each edge its beginning,

o 'L EVisthe target (range) map assigning to each edge its end.

For instance, consider the following graph

g
o vs
Here
s(e) = vy, t(e) = v,

Elementary remarks:

1. The maps s and ¢ need not be injective nor surjective.

2. If both E° and E! are empty, we call F the empty graph. The set E' might always be empty,
but £° must not be empty if £ is not empty: every edge must have its beginning and its end.

3. E° and E' might be infinite (usually, at most countable).

6.1 Paths

Definition 6.2. Let E' be a graph. A finite path in E is a finite tuple p,, := (e1,...,e,) of edges
satisfying

t(er) = s(ez), t(es) =s(e3), ..., tle,—1)=s(ey).
The beginning s(p,) of p is s(e1) and the end t(p,,) of p,, is t(ey). If s(pn) = t(pn), we call p, a loop.
An infinite path is a sequence (e;);cn of edges satisfying

VieN: t(e) = s(eir1)-

Definition 6.3. The length of a path is the size of the tuple. Every edge is a path of length 1. Vertices
are considered as finite paths of length 0. The length of an infinite path is infinity.
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Elementary remarks:

1. The space FP(F) of all finite paths in £ (vertices included) might be infinite even if F is a finite
graph (both E° and E! are finite):

e

9

(%

E'={v}, E'={e}, FP(E)={ve (ece)(eee),...}.

2. Examples of infinite paths:

Q winding around infinitely many times,
""" marching off to infinity,

or a combination of the above cases.
Theorem 6.4. Let E be a finite graph. Then FP(E) is finite if and only if there are no loops in E.
Proof. If there is a loop in £, then we have paths of arbitrary length, so there are infinitely many of

them:

er, (e, ea), ..., (e1,...,en), (e1,...,en,€1), etc.

Vice versa, if there are no loops, then edges in any path (ej, es, .. ., e,,) cannot repeat themselves:
€; = €; =7 = j
Indeed, suppose the contrary: e; = e; for ¢ < j. Then
s(ei) = s(e;) = tej1),
so the path p;; := (e;,...,e;_1) is a loop:
s(pij) = s(e:) = t(ej—1) = t(pyj),
which contradicts our assumption of not having loops.

Therefore, the length of the longest possible path in £ is at most the number NV of all edges. This
yields the finite decomposition

FP(E) = FPy(E) UFP,(E) U... UFPy(E),

where FP,(F) is the space of all paths in E of length k. Furthermore, the sets FPy(F) = E° and
FP,(E) = E" are finite by assumption. To construct a path of length k, first we must choose k
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different edges from the set of N edges. We can do it in (],X ) many ways. Then we can order these £
edges into a path in at most k! different ways, so there are at most

/()=

Summarizing, FP(E) is a finite union of finite sets, so it is finite. N

many paths of length k.

The estimate of the number of paths of length & used in the above proof is far from optimal. Our
goal now is to find the optimal estimate, i.e. the estimate for which there exists a graph having exactly
as many paths as allowed by the estimate.

Definition 6.5. Let E be a graph, and let p,, := (e1, ..., e,) be a finite path of length at least one. A
subpath qi, of p,, is a path (e;,e;11, ..., €i1y), wherei € {1,... . n}tandk € {0,...,n—i}. If (éx)nen
is an infinite path, then any (k + 1)-tuple (e;, ..., e.x), forany i € N, k € NU {oc}, is a subpath
of (en)nen. Every source and every target of each edge of a path (finite or infinite) is viewed as a
subpath of length zero.

Theorem 6.6. Let I/ be any graph. If there exists a path p (finite or infinite) whose edges can be
rearranged (permuted) into a path, then there exists a loop in E.

Proof. Let S be a subset of N containing at least two elements, and let o : S — S be a bijection
that is not the idenity. Since o # Id, there exist the smallest j € S such that o(j) # j. As o is
bijective, o(j) > j. Indeed, if j is the smallest element of S, we are done. If there is i < j, then
o(j) # o(i) =14, s0 0(j) > j. Furthermore, 0~1(j) # j. If 071(j) < 7, then we get a contradiction:
j=o0(c7'(3)) = 07(j) < j. Therefore, also o~ 1(j) > j.

Next, let p := (eq, ..., €p,...) or p := (eq,...,e,). Thenlet S := Nor S := {1, ...,n}, respectively.
Suppose now that p, := (€,(1), -+, €s(n); ---) OF Po = (€q(1), ---, €x(ny) 18 again a path for a bijection o
as above. Then (e;, ..., e,-1(;)) is a subpath of p, so (e,(;), ..., ¢;) is a subpath of p,. Combining the
latter path with the path (e;, ej11, ..., €x(j)—1, €o(j)), We obtain a loop:

(eg(j), ceey 6]', 6j+1, Ce 760(]')71)'
Note that, if o(j) = j + 1, then the path (e, (;), ..., €;) = (€j11, ..., €;) is already a loop. O

Corollary 6.7. If E is a graph with N edges and no loops, then there are at most (]Z ) different paths
of length 1 < k < N.

Proof. No loops in E implies that edges cannot repeat themselves in any path, so one needs to choose
k different edges from N edges. By the above proposition, there is at most one way these £ different
edges can form a path of length £. 0

In any graph with NV > 1 edges, there are exactly (]f ) = N paths of length one, i.e. edges. There
is a graph
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with /V edges and no loops with exactly (J]\V[) = 1 path of length N. However, there is no graph with
3 edges and no loops and (3) = 3 different paths of length 2:

@

€1 €9 €3

2

€1 €9
€3
NV
€1 €2
€3
N
€1 €2
X._>
L ]
€1 €9

There are at most 2 different paths of lenght 2.

Proposition 6.8. Let E be a graph with N > 2 edges and no loops. Then there are at most two
different paths of length N — 1.

Proof. A path of length £ must be of the form

——0 o o o *——e

€1 €k
so, if we have at least one path of length N — 1, our graph must be of the form

€1 EN-1

and ey attached somewhere. The only attachment possibilities increasing the number of paths of
length N — 1 are:
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>0 ¢ O— 0

EN €1 EN-1

X
® .. o— e

€1 EN-1

€1 EN-1

—0 e O—0—0

€1 EN—-1 €N

In each of the above cases, we have exactly two different paths of length N — 1. [

Lemma 6.9. Let E be a graph with N > 2 edges and no loops. Assume that N > k > N — k. Then
there are at most 2% different paths of length k in E and the bound is optimal.

Proof. One can always construct a graph with a path p; of length k. Then there remain precisely
N — k many edges that can be used to construct more paths. Call the set of all these edges F''. Any
path of length k is composed out of  edges in F'* and k — [ edges from the path p;. For instance:

Qe—l). . 7’6—]>\;- .Tk).
Any such a path is uniquely determined by the choice of [ edges from F'! because there is always
only one way in which edges from the path p; can connect disconnected subpaths composed from
edges in ' and edges in a path cannot be rearranged. This gives at most (N ;k) possibilities for

having paths of length k& with [ edges from F'. As [ can vary from 0 to N — k, there are at most

;igk (Nl_k) = 2NV=F different paths of length k. The bound is optimal because the graph
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€k+1

EN
Q. PRI Qo e O—m—0
€1 €;

€k

has exactly 2V~* edges of length k. O

Theorem 6.10. Let E be a graph with N > 2 edges and no loops, and let 1 < k < N =: nk +r,
0 <r <k —1. Then there are at most

PN = (n+4 1)

different paths of length k and the bound is optimal.

Remark 6.11. Fork > N — k, wehave N = 1 -k + (N — k), so Py (k) = 2V=F . 1k=(N=k) — oN—k
Also,if k = N —k,then N = 2-k +0, so Py(k) = 3°-2¥ = 2V=*_Hence the preceding proposition
proves the theorem for k > N — k.

Proof. Our first step is to transform the graph E into a graph E; with the same amount of edges but
with all vertices on its longest path p;. We need to show that we can always do this without introducing
loops or decreasing the amount of different paths of length k. Clearly, we can first remove all vertices
in EY that are not in s(E') U ¢t(E'). This way we end up with finitely many vertices. Furthermore,
we identify unrelated vertices. In any graph, we call a pair of vertices unrelated iff there is no path
between them. If our graph admits a pair of unrelated vertices, then we can choose such a pair and
identify the vertices. We repeat the procedure until there are no unrelated vertices. We call the thus
obtained graph F;.

Lemma 6.12. E; is a graph with N edges, no loops and all vertices on its longest path p,:

€1 €; €]

It admits at least as many different paths of length k as E.

Proof. If identifying two vertices v; and v, introduces a loop, then breaking them apart destroys the
loop. Hence the identified v; and v, are on the loop, so there was a path from v, to vy or the other way
around, which means that v; and vy were not unrelated. It follows that identifying unrelated vertices
introduces no loops. Next, suppose that all vertices are related but that there is a vertex v that is not
on the path p;:
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The path gy must go from s(e;) to 7 as otherwise p; would not be the longest path. Furthermore, the
fact that p; is of maximal length forces adjacent paths to have the same orientation. Hence all these
paths, like gy, must end in v. However, ¢; ending in v contradicts the maximality of the length of p;.
Finally, £; has obviously at least as many paths of length > 1 as E because identifying vertices can
only increase the number of such paths. ]

We can assume that the length of p; is [ > k as otherwise there are no paths of length k. Our next
step is to transform F into a graph F5 will all edges that start in s(e;) ending in ¢(e;):

€1 €2 €3 €]

If we have an edge starting in s(e;) but ending in #(e;), ¢ > 1, then we shift the beginning of such an
edge to s(e;). As there are no edges ending in s(e;), we do not loose any paths this way. Now we
transform F, into E5 by shifting the beginnings of edges from s(ez) to t(e;), j > 2, to s(es):

Y N
€1 €2 €3 €]

This time possibly we loose the paths of length & that started in s(e;) and involved the just shifted
edges, we possibly gain paths of length £ that start in s(ey) and involve the shifted edges. Let a;
denote the number of edges starting at s(e;). Then, if the shifted edges are the first of x different paths
of length k£ — 1, we loose a; - x paths of length k but gain a, - = paths of length k. To ensure that we
gain at least as much as we loose, we transform F5 to F, by switching places of the edges from s(e;)
to t(ey) with the edges from s(ey) to t(ez), if a3 > ay:

— N e s e s
€9 €1 €3 €]

As the number of paths of length k£ beginning with a shifted edge is unchanged, and the number
of paths of length k£ with a shifted edge as the second edge is not decreased, the number of paths of
length £ involving a shifted edge does not decrease. Now we have to make sure that transforming F»
to F; we did not decrease the number of all paths of length £ not involving the shifted edges.

If £ = 1, we are done because in any graph F with N edges we have Py (1) = N. If k > 2, then
any path of length £ in F, that does not involve any shifted edge and that starts in s(e;) must involve
edges from s(e;p) to t(e;) and from s(esy) to t(ey), so the number of paths of length k& not involving
the shifted edges and starting at the leftmost vertex is the same in Es as in F; even if a; > as and
we made the switch: ajasy = asayy, where y is the number of paths of length £ — 2 not involving
the shifted edges and starting at s(e3). (In the case [ = k = 2, we take y = 1.) Next, concerning the
number of paths of length £ starting at the second vertex from the left and not involving the shifted
edges, it does not decrease when moving from F; to F4 as we have at least as many edges going from
the second to the third vertex and exactly as many paths not involving the shifted edges starting at the
third vertex in Fs as in F,. Finally, the number of paths of length % not involving the shifted edges
and starting at the third or further vertex is unaffected when going from Ej to Fy.
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We can continue this F»- F5- F4 procedure until we obtain a graph £}, whose all edges emitted from
first k& vertices end in the consecutive vertex and with the number of edges satisfying the inequalities
a1 < ag < ... < a:

> 30 .. N ; % ... —— e

7 7 7

(a1) (az) (ag) €k+1 €

Indeed, take m < k and apply the Es-Fs-FE, procedure to the graph F}, defined as Fj, but with k&
replaced by m. Assume that a; < ay,41 < a;41 for some j. Then we move the beginning of any edge
starting at the (m + 1) vertex and ending at the (m + 3) vertex or further to the (m + 2) vertex. Next,
we implement the swap of edges:

m+1) =G+, G+D=G+2), ... , me(m+1),
and obtain:
1 >2 >3---j ]j_l ]>+2 > ..m—’_l b e e e
(al) (CL2) (aj) (am+1> (aj—H) (am) Em+1 €]

If the shifted edges were the first edges of = paths of length £ — 1, z5 of length k — 2, ..., and x,,, 1
of length k — (m + 1), respectively, then by shifting the edges we lost

L:=an,r1+ am_1amxa+ ...+ a1...0,%m
paths of length £, but, due to the re-ordering procedure, we gained

G:=anx) + ap_10y,Ta + ...+ Qi1 - AT + Q1011 - - - QT jr1

+ . Q2 A1 Qg - AT T Q102 - G 1G] - - - G T g1 -

The first m — j terms of L are the same as in (G, the next j terms of L are the same as in G, the next
j terms in L are no bigger then they are in GG, and the last term in G does not appear in L. Thus,
applying the Es-Es-FE, procedure, we did not decrease the amount of paths of length & involving the
shifted edges.

Concerning the paths of length k£ not involving the shifted edges, the re-arrangement procedure
does not change the amount of paths starting at the first vertex, does not decrease the amount of paths
starting at the vertices 2, ..., m, and does not change the amount of paths starting at m + 1 or further.

We cannot apply the Es-E3-FE, procedure any further because, if a; > a1, swaping the edges
starting at the first vertex with the edges starting at the (k + 1) vertex will decrease the amount of
paths of length £ beginning at the first vertex:

1G9 . ..0 > Q4109 ... A .

Now we need to make a move decreasing the number of vertices. We identify the first vertex with
the (k + 1) vertex and shift all edges from the first vertex to the second vertex to become edges from
the (K + 1) to (k + 2) vertex:
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—e ... 0—)@- e, ———e
(a2) (@) (a,)

We call the thus obtained new graph G;.

Let GG be a graph with finitely many totaly ordered (by paths) vertices, and N edges. Denote by
PY (G, m) the number of paths in G of length k& > 1 that start at the m vertex. Furthermore, let y,,
denote the number of all paths in F}, of length 1 < m < k starting at the (k + 1) vertex. Then there

are
I—k+1

> PY(F,m)

m=1

many paths of length k in F}, and -
> BY(Giym)
m=1
many paths of length & in G;. For the first sum, we have
P,ﬁV(Fk,l):al...ak, P,iv(Fk,2):a2...aky1, AU

PY(Fy, k) = ayyp-1, PN(Fi,k+1) = y.

For the second sum, we have
P,ﬁV(Gl,l):ag...ak(aleyl), P,iV(Gl,2)Zag...akygzPéV(Fk,B), ,

PN (G, k —1) > apyp—1 = P (Fy, k), PY(G, k) >y, = PY(Fy, k+1).

Consequently,
I—k+1 I—k+1
S BY.(Fom) =BG+ Y PN (Fm)
m=1 m=3
k+1 I—k+1
= PN(G, 1)+ Y PN (F,m)+ Y PN(Fim)
m=3 m=k+2
k l—k+1
= PM(GL )+ Y PN(Fem+1)+ Y PY(GLm—1)
m=2 m=k-+2

-k
= PN (G, 1)+ ) PY(Fem+1)+ > PN(G,m)

m=2 m=k+1
k -k
<PY(GL, 1)+ ) PY(G,m)+ > PN(Gi,m)
m=2 m=k-+1
-k
= PéV(Gl, m)

Thus there are at least as many paths of length % in G, as there are in Fy,. If [ = k + 1, we have the
desired thick path:
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S S S S
7 7 oo 7 L4

(az) (a3) (ar) (a1 +w1)

Otherwise we repeat the Fs-Fs-F)-G; procedure decreasing the amount of vertices by one but not
decreasing the amount of paths of legth &.

All this shows that we can always transform our graph into a graph with totally ordered (k + 1)
vertices that are on a path of length k& without changing the amount N of all edges and without
decreasing the number of paths of length £. In such a graph, if there are still edges that begin and end
not in consecutive vertices, they do not contribute to paths of length k, so we can re-attach them so
that they begin and end in consecutive vertices.

Now, the final step is to prove that given a thick path ¢ with differences between numbers of edges
bigger than one, we can evenly re-distribute the edges increasing the number of paths of length k to
the bound Py (k).

If there are any two indices ¢ # j such that b, — b; > 1, then we define

by forn #1i,j
b, :=<b,—1 forn=i1

b,+1 forn=)

and compute

I
-
&
_|_
—
s
=
|
&
|
=
Vv
—
&

n=1 ek {i.5} n=1

We can repeat this procedure until there is no pair of indices ¢ # j with the property b; — b; — 1. Thus
we arrive at a graph with s pairs of consecutive vertices joined by (b+ 1) and (k — s) pairs joined by
b edges. Hence

sb+ 1)+ (k—s)b=s+kb=N.

Therefore, if 0 < s < k,thens =randb =n. If s = k,r = 0and n = b + 1. The number of all
paths of length £ is
(b+ 1) = (n+1)n " =P

An example:

We take a graph ¥ with NV = 16 edges, and ask about the number of all 3-paths.
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W @ o @
~_ 7
PIS(E,) = 43,1 =6,
W @6 @
M PIS(E5) = 47,1 = 6,
2 @ 6 2)

PIS(E,) = 59,1 =6.

Applying again the Fs-FE3-F, procedure, yields:

3) (3) (4) (2)

S S S
7 7 I‘§ %

Next, repeating the F'-G-procedure, we obtain G4:
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3) 4 @) (2

S S S
7 4 7

PIS(Gy) = 116, = 4.

We still need to apply the Es-Fs-Ey-F-G procedure to obtain G's:

ye—3e  PI(G3) =128,1 = 3.

The final equal-distribution procedure provides us with an optimal graph M maximizing the num-
ber of k-paths and reaching the bound:

sy PIS(M) =150, = 3.

It agrees with the theorem: N =nk +r,16 =5-3 + 1,

P =(5+1)'5"" =655 =150.

6.2 Adjacency matrices

Definition 6.13. Let E be a finite graph. The adjaceny matrix A(E) of the graph E is the square
matrix whose entries are labelled by the pairs of vertices and each (v, w)-entry equals the number of
edges that start at v and end at w.

Examples:

1. Consider graph E:

Then,

2. Consider graph E:

Then,



3. Consider graph E:

Then,

4. Consider graph E:

Then,

In a finite graph E with N edges, consider all paths of length k starting at a vertex v and ending
at a vertex w. If ky + ko = k and k1, ke € N\ {0}, then each path p with s(p) = v and t(p) = w
decomposes into a path p; of length k; with s(p;) = v, t(p1) = u, and a path p, of length ks with
s(p2) = u, t(p2) = w. Hence the number Ny (v, w) of all k-paths from v to w equals

Ny(v,w) = Z Ny, (v, 1) Ny, (u, w).

S

Thus we have shown:

Proposition 6.14. Let E be a finite graph, and let A;(F) be a generalized adjacency matrix whose
entries count the number of all l-paths between vertices. Then, ¥ ki, ko € N\ {0}:

Ak1+k2 (E) = Akl (E)AkQ (E)
Corollary 6.15. Vn € N\ {0} : A,(E) = A(E)".
Proof. The statement holds for n = 1, and taking k; = n and k; = 1 in Proposition 6.14 proves the
inductive step. 0

Corollary 6.16. A finite graph E has no loops if and only if its adjacency matrix is nilpotent.

Proof. The finite graph E has no loops <= F P(F) is finite. The latter is equivalent to the existence
of a longest path. Indeed, if there is no longest path, then there are paths of all lengths, so F'P(F) is
infinite. Vice versa, if F'P(F) is infinite, then there is a loop, so there is no longest path.

Next, if the length of a longest path is [, then A(E)"*! = 0, so A(E) is nilpotent. Vice versa, if
A(FE) is nilpotent, then there exists n such that A(E)"” = 0. Hence there are no paths of length > n,
so there exists a longest path. [
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Corollary 6.17. The number of all k-paths is given by FP.(E) = Y7, o (A(E))

vw”

Examples:

1. Consider graph E':

Q.

1 2

Then,

e

0 0

so there are 2% 4 281 = 3. 2*=! many k-paths in E.

2. Consider graph E:

—

e =[y o <o 3]

so there are no paths longer than 1.

Then,

3. Consider graph £:

Then,

so there are 2¥ 4 1 many k-paths in E.

4. Consider graph E:

Then,

so there are 6 paths of length 2.
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Note that there finitely many graphs with NV edges and whose all vertices emit or receive at least
one edge. Indeed, for any such graph F, E° = {1,2,...,m}, m < 2N, E' = {1,2,...,N},
s C E'xE° t C E'x E°, so the number of all such graphs is limited by 2V -2V™.2Vm — N .92Nm+1

Corollary 6.18. Let Ex denote the set of all graphs with N edges, no loops, and whose all vertices
emit or receive at least one edge. Then, ¥V k € {1,... N}

max AE)") v =(n+1)n"",
pe) 2 ()

where N =: nk +r withr € {0,1,...,k—1}.
Next, observe that, if A(F) € M, (N), then it is the adjacency matrix of the graph E(A) with

E(A) ={1,...,n}and E(A)! = E;;, where E;; is the set of A;;-many edges from i to j.
For instance, for n = 3, we have

i,j€E0

A vertex i of the graph E'(A) emits or receives at least one edge if and only if

zn:Aik + A > 0.

k=1

Note also that A(E(M)) = M and E(A(G)) = G. Therefore, as no loops in £ means that A(F) is
nilpotent, we can reformulate the foregoing corollary as follows:

Corollary 6.19. Let

Ay = A€ U M(N) | satisfying 1,2, 3 below
kEN\{0}

1. A is nilpotent (E has no loops),
2. >, Aij =N (FE has N edges),

all 7,7

3. Vi)Y Ajj+ Aj > 0(each vertex of E emits or receives).
all j
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Then, ¥V k € {1,...,N}:

p 3 0, s

all 4,5
where N =: nk +r withr € {0,1,... k—1}.

Conjecture 6.20. Let N be a non-negative real number, and let

Av:=q A€ U M (Rx) | satisfying 1,2, 3 above
keN\{0}

Az - (5)

Here [N] stands for the integer part of N.

Then, ¥ k € {1,...,[N]}:

6.3 The structure of graphs

Definition 6.21. Let E be a graph. An undirected finite path in E is a finite sequence of edges

(e1,...,ey,) satisfying at least one of the 4 equalities:
1. os(er) = s(ein), e O
2. s(e;) = tleinr), e WE,
3 t(e) = s(eipr), oL,
4. t(e;) = t(eir) G

forallie {1,...,n—1}.

An undirected infinite path in E is an infinite sequence (e1, .. ., e,,...) satisfying at least one of
the above 4 equalities for all i € N\ {0}.

Definition 6.22. We say that a finite graph is connected E is connected iff for any pair of vertices
(v, w), v # w, there exists an undirected finite path p = (ey, . .., e,) between v and w: (s(e1) = v or
t(e1) = v) and (t(e,) = w or s(e,) = w).

Definition 6.23. A vertex v in a graph E is called a sink iff s~ (v) = .

Proposition 6.24. If E is a graph with finitely many edges, no loops, and exactly one sink, then E is
connected.
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Proof. Denote the sink by vg. If it is the only vertex of F, then E is connected. If there is v; # vy,
then there exists a path from v; to vy. Indeed, as vy is the unique sink, v; emits an edge e;. Consider
any path p, := (e1,...,e,), €.8. p1 = e1. If s(p,) # wvo, then, sd vy is the unique sink, s(p,,) emits
en+1 yielding the path p, 1 := (e1,. .., €,, €,11) which is longer than p,,. Hence, if no path starting at
vy terminates at vy, we can have paths of arbitrary lengths, which is impossible because £ has finitely
many edges and no loops. Therefore, there is a path from v, to vg. Now, take any pair of distinct
vertices in E. If one of them is v, then they are connected by a path. If w; # v, wy # vy, W1 # wa,
then there is a path ¢; := (f1, ..., fx) from w; to vy and a path g5 := (g4, - . ., g;) from wy to vy. They

combine into the undirected path (f1, ..., fx, g, ..., g1) from w; to ws, so F is connected.
S fe g G
Wl o————e «+- o——ec——0 - oc—o W9
Vo

O]
Question: What is the maximal number of all finite paths in a graph with N edges, no loops, and
exactly one sink?
Definition 6.25. Let E be a graph. A subset H C E° is called hereditary iff any finite edge starting

atv € H ends atw € H.

Note that in the above definition one can replace the word “edge” by the word “path”. Indeed, if H is
path-hereditary, then it is, in particular edge-hereditary. Also, if H is not path hereditary, then there
exists a path starting in / and ending outside of /. Such a path must contain an edge starting at H
and ending outside of H, so it is also not edge-hereditary. This proves the equivalence of these two
definitions.

Examples:

1. In any graph E, () and E° are hereditary.

2. Consider a graph F:

Vi

VoW
Then, {w} is hereditary and {v} is not hereditary.

Definition 6.26. Let E = (E°, E' s,t) be a graph. F = (F°, F! sp,tr) is a subgraph of E iff
FOC E° F' C E', and

Vee F': sple)=s(e) € FY, tr(e) =t(e) € F°.
Proposition 6.27. Let E = (E° E' s,t) be a graph, and let H C E°. Set F° := E°\ H and

F':= E'\t"'(H). Then the formulas sr(e) = s(e), tr(e) = t(e), forany e € F, define a subgraph
of E if and only if H is hereditary.
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Proof. Note first that, if e € F' := E'\ t7'(H), then tr(e) = t(e) € E°\ H =: F°. Hence,
t: B — E° always restricts-corestricts to tp : F'* — F°,

Assume now that H is hereditary. Then, if e € E' and s(e) € H, we have t(e) € H. Hence
ec F':=E'"\t'(H) < tle)¢ H=s(e)¢ H < s(e) € F*:=E"\ H.

Therefore, s : E' — EP restricts-corestricts to sz : F'* — FY. Vice versa, assume that s restricts-
corestricts to sy. Then

tle)g H < ec F' = s(e) € F* < s(e) ¢ H,
so s(e) € H=t(e) € H,i.e. H is hereditary. O
Definition 6.28. Let I be a graph. A subset H C EV is called saturated iff

Ave E°\H: 0<|s*(v)] < ocandt(s (v)) C H.
Examples:

1. In any graph FE, () and E" are saturated.

2. Consider a graph E:

Vi

) w
Then all subsetes of EY are saturated.

3. Consider a graph E:

*—e

VoW
Then {w} is not saturated but it is hereditary.
4. Consider a graph E:
~— (OO) —e

(% w

Then {w} is both saturated and hereditary.

6.4 Homomorphisms of graphs

Definition 6.29. A homomorphism froma graph E := (E°, E' s, tg)toagraph F := (F°, F sp,tr)
is a pair of maps

(f°E° = F" f':E' - FY)

satisfying the conditions:
spofl=flosg, tro fl=flotg.
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Examples:

0 1
1. Inclusions of subgraphs £° ‘f—> FO, Et Q Fleg.:

e e
9 s
» R v 1w

fo(v) =, fle) =e, or

fo(v) =, fo(w) =w, fl(ei) =¢ or

g 0

3. A combination of both, e.g.

FP)y=v, fllw)=wi, file)=Fflle)=u [f(f)=h.

From the graph-algebra point of view, of particular interest are injective graph homomorphisms
(f°, f1) : E — F (both f° and f! injective) satisfying certain conditions.

Definition 6.30. We call an injective homomorphism of graphs (f°, f1) : E — F an admissible

inclusion iff it satisfies the following conditions:
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1. F°\ f°(E") is hereditary and saturated,

2. fHEY) =tp (f(E).

Examples:
1.
€ (&
9 s
v - v w

FO\ f9(E°) = {w} is hereditary and saturated. Also, f*({e}) = {e} and
tp (f/(E) = t5' ({v}) = {e}.

e
e
g1 Nl 92
s
v w N wq Wa

P)y=v, flw)y=w, [fle)=e [(9)=a.
FO\ fO9(E®) = {w,} is hereditary and saturated. Also, f'({e,g}) = {e, 9.} and

tp (f(EY) =t ({v,wi}) = {e, g}

Counterexamples:
1.
€ (&
9 o
v — v w

Po)=v, flle)=e.
FO\ fO9(E°) = {v,w} \ {v} = {w} is saturated but not hereditary. Also,

tp (f(EY) =t ({v}) = {e, g} # {e} = F1(E").

fo(v) =0, fo(w) = w, f1<€) =e€1.
FO\ fo(E°) = {v,w} \ {v,w} = 0 is hereditary and saturated. But

t7 (fU(E%) = F' = {e1,e2} # {er} = fH(E").
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The intersection of graphs:

Let I and G be graphs. Assume that sy and ¢y agree, respectively, with sg and tg on F' N G
Then we can define the intersection graph

FNG:=(F'NG°, F' NG, 50, tn),
where s, tn : F'NGY — FON GO,
Ve F'NG': sp(e) =sale) = sp(e), tale) =tale) = tr(e).

F N G is, clearly, a subgraph of both F' and G. We say that the intersection is admissible iff both
inclusions F'N G — F and F N G — G are admissible inclusions.

Examples:
1.
e e e
00 Q. Q
FAGQ = w1 v N v 92 wo _ v

F'NG® = {v}, F'nG'={e}, snle) =tn(e)=n.
The intersection is admissible because:
(a) The subset F°\ (F°NG°) = {v,w;,} \ {v} = {w,} is hereditary and saturated in F’, and
the subset GO\ (F° N G°) = {v,wy} \ {v} = {ws} is hereditary saturated in G;
(b) tm (F'°NG°) =t '({v}) = {e} = FI NG and t ;' (FO N G°) = t5' ({v}) = F1 NG

{xi}ieN {yi}iEN

*’—O L E— ]

FnGg = v.on v wy . w

is admissible becase:
(@ FO\ (F°NG°) = {wy,v} \ {v} = {w,} is hereditary and saturated in F’, and
GO\ (F'NG°) = {ws, v} \ {v} = {ws}

is hereditary and saturated in G;
) t7 (F'NGY) =t ({v}) =0 =t ({v}) =tz (FON G and F' N G = .

Counterexamples:
1.
€1 €2
FnGg = W U q vow 0
is not admissible because F° \ (F° N G°) = {wy,v} \ {v} = {w;} is not saturated. (It is
hereditary.)
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——e “——o °

FnG = " Y o v o=

is not admissible because F° \ (F° N G°) = {wy,v} \ {v} = {w} is not hereditary. (It is
saturated.)

3.
€1 €2 es
e M — e
FNG = v €2 w N €3 _ v w

is not admissible because
(1 (FO N Q) =t ({v,w}) = {e1, e} # {e2} = F' NG

However, both F°\ (F°NG°) and G°\ (F°NG?) are empty, so they are hereditary and saturated.

The union of graphs:

Let F' and G be graphs. Again, assume that sy and tr agree, respectively, with s¢ and ts on
F!' N G'. Then we can define the union graph

FUG = (FOUGO,Fl UGl,Su,tu),
where s, t, : F* UG = FOU GO,

fi F!

Ve FlUG': s, = se(v) forwe ,
sg(z) forz e G!

tp(z) forz e F!

Vee FrUGH: t,= .
! U {tc(l') forz € G!

Note that F' and G are subgraphs of F'UG. We say that the union is admissible iff both the inclusions
F— FUGand G — F UG are admissible.

Lemma 6.31. Let F and G be graphs whose source and target maps agree, respectively on F* N G,
Then, if the intersection graph F N G is admissible, so is the union graph F' U G.

Proof. 1. (FPUGY \ F° = G°\ F* = G°\ (F' N GY). Since F NG < G is admissible,
G°\ (F° N GY) is hereditary and saturated in G.

We need to show that G°\ (F°NGY) is hereditary and saturated in F'UG. To this end, consider
p:=(e1,...,e,) € FP(FUQ) such that s (p) € G°\ (F°NGY). Then sy (p) = sy(e1) & F°,
soe; ¢ F', whence e; € G, s0 s,(e1) = sg(er). As GO\ (F° N GY) is hereditary in G,
sule) = tu(er) = taler) € GO\ (F° N GY). Repeating this reasoning for all {e;}",, we
conclude that t,(p) = tu(e,) = tg(e,) € GO\ (FONGY), so G\ (F° N GP) is hereditary in
FUG.
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Next, to establish that G°\ (F°NGY) is saturated in F' UG, we consider all elements in £ UG
that emit an edge. Note first that any edge ending at a vertex in G° \ (F° N G°) must begin at a
vertex in G, so we only need to consider vertices in £ N GY:

Also, if v is a sink in G but not in F' U G, it emits an edge ending at a vertex outside of
GO\ (F°NGY), so we can disregard it. Furthermore, since s;' ({v}) C s5'({v}), the finiteness
of s5'({v}) implies the finiteness of s'({v}). Hence we only need to consider vertices in
F° N GO that are no sinks in G, that are finite emitters in (G, and that emit all their edges to
G\ (F° N GY). For all such vertices, we have

{tue) | e € 5 ({vh)} = {tele) | e € s ({v})}

because t,,(e) € G\ (F” N G°) implies that e € G*. Finally, such vertices do not exist by the
saturation property of G° \ (FY N G°) in G, so G°\ (F" N GY) is saturated in F' U G.

A symmetric argument proves that F° \ (F° N GY) is hereditary and staurated in F' U G.
2. First, taking an advantage of the admissibility of (F' N G) C G, we compute
O (FONF = (GI\ F) Nt (F'NGY) = (G\F)N(F NG =0.

Therefore, as F' C t;'(F?), we conclude that F* = ¢;'(F°). Much in the same way, one
shows that ¢! (G°) = G.

O]

Remark: The opposite implication:
FF—FUG+ G isadmissible = F <+ FNG < G isadmissible,

1s not true:

{l’z‘}z‘eN e

L) ® *—e

F = w1 v G - v W2

FNG=({v},0,0,0), FUG = ({wy,v,wa}, {zi}ien U {e}, su, tu).

Let us check first that /' — F' U G is admissible. The set
(FOUG)\ F* =G\ (F'NG°%) = {v, w2} \ {v} = {w,}

is hereditary in ' U GG because ws is a sink in F' U G. It is also saturated in ' U GG because w; is a
sink in ' U G and v is an infinite emitter in F' U G.
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Next,
t5H(F?) = t5 ({v,un}) = {@i}ien = F*.
Hence F' — F' U G is admissible. For the inclusion G — F' U G, consider the set

(FOUG)\ G = FO\ (F°NG%) = {w,v} \ {v} = {w}.

It is hereditary in F' U G because w; is a sink in F' U G. It is also saturated in ' U G beacuse ws is a
sink in /' U G. Finally,

t51(G7) =t ({v,wa}) = {e} = G,

Thus we have shown that the union /' U (G is admissible. On the other hand, the intersection /' N G is
not admissible because the set G° \ (F° N GY) = {w,} is not saturated in G-

vé{w} and {tg(r) |z € sg'({v}h} = {wa}.

Elementary observations:

1. The properties of being hereditary and saturated are not preserved by the inclusion of graphs:

/

6 .L)QL).
(a) v I.U v w w'
F C G
{w} is hereditary in F' but not in G.
e .L/).i).
(b) (% 1:} w' v w
F C G

{v} is saturated in ' but not in G.

However, both properties are preserved by special inclusions F' C F U G for the special set
FO\ (F N GY) because there are no edges like this:

2. Restriction of graphs to subgraphs does not preserve the saturation property even in the special
case of 0\ (F' NG in FF C F U G. However, it always preserves the property of being
hereditary: if H C F°, F' C @G, is not hereditary in F', it is not hereditary in G. Indeed, if there
is a path starting at v € H and ending at w € F"\ H, then it is also a path starting at v € H
and ending at w € G° \ H.
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Extended graph:

Let E = (E°, E', sg, tz) be a graph. The extended graph £ := (E°, E', sp,tz) of the graph E
is defined as follows

E'=E" E':=FE'U(EY, (EY :={'|ecE'Y},
Vec E': sple) :=sp(e), tgple):=tg(e),

Ve e (BN . sple’) :=tgle), tple’):=spe).

Thus E is a subgraph of F.

Examples:

7 Graph algebras

7.1 Path algebras

Let V' be any vector space over a field k. To endow 1/ with an algebra structure, we have to define
the multiplication map V' x V % V, which is a bilinear map satisfying some conditions. Any such
a map is uniquely determined by its value on pairs of basis elements (e;, e;), and any assignment
(€i,e;) — v;; € V defines a bilinear map from V' x V to V. Now, let E be any graph, and F'P(E)
the set of all its finite paths. Consider the vector space

kE :={f € Map(FP(E), k) | f(p) # 0 for finitely many p € FP(FE)},

where the addition and scalar multiplication are pointwise. Then the set of functions {x,}pcrp(r)

given by
(q) = 1 forp=gq
Xpl) = 0 otherwise

is a linear basis of kE. Indeed, let {q, . . ., g, } be the support of f € kFE. Then

f = Z f(qi)XQi
=1
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because, V p € FP(E):

<Z f<qi)X(Ii> (p) = Z J(4)xq(p)

_ )0 itp ¢ {q ..., q:}
flq;) ifp=gq;forie{l,... ,n}

Hence {x,},crp(m) spans kE.

To see the linear independence, take any finite subset {x,,, ..., Xp..} € {Xp}pcrr(E), and suppose
that > " aixp, = 0. ThenV j € {1,...,m}

0= (Z O‘zX;u) Z QiXp: (D) = @ .

Thus we have shown that {,},crp(z) is a basis of kE. Now we will use {xp}pcrp(p) to define a
bilinear map:

Xpg 1T t(p) = s(q) ‘

m:kE x kE — kE, m(Xps Xq) = .
0 otherwise

Proposition 7.1. The bilinear map m : kE x kE — kE defines an algebra structure on kE.

Proof. To check the associativity of m it suffices to verify it on basis elements:

_ (Xp«p Xz) ift(p) = s(q)
{mxe Xo): Xe) = if t(p) # s(q)
qum if t(¢) = s(x) and t(p) = s(q)
= if t(q) # s(z) and t(p) = s(q) ,
if t(p) # s(q)

m(xp.m(x x>>={m Y ar) )
e X (@)

Hence m(m(xp, Xq): Xo) = M(Xp, m(Xq, X)) for any p, ¢,z € FP(E). (The distributivity fol-
lows from the bilinearity of m.) [

Definition 7.2. Let E be a graph. The above constructed algebra (kE, +,0,m) is called the path algebra
of E.
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Elementary facts:

The path algebra k£ FE of a graph F is

1. finite dimensional <= F is finite and acyclic (no loops),
2. unital <= E° is finite,

3. commutative <=> E' = () or each edge is a loop starting/ending at a different vertex.

7.2 Leavitt path algebras
Definition 7.3. Let A be a k-algebra and S a subset of A. The ideal generated by S is the set of all

finite sums
g TiSilYi ,

i€l

where s; € S and x; ,y; € Aforalli € F.

Definition 7.4. Let E be a graph and k be a field. The Leavitt path algebra Li(F) of E is the path
algebra kE of the extended graph E divided by the ideal generated by the following elements:

1. {Xe*Xf - 5eth(e) | eaf € El}’

2. {Y ees10) XeXer — Xo |V € B, 0 < |s71(v)] < o0},
Examples:

1. Matrix algebras:

E= U1t Un Li(E) = M, (k)
0
M
Mn(k/’) SM+— S Mn+1(k>
0 ... 0
(arbitrary size finite matrices).
2. Laurent polynomial algebra: £ = Q Li(E) = k[Z].

€n

3. Leavitt algebras: F = @ Li(E) = Lg(1,n)

(Qiy XeXer = Li(1,n)™ = Li(1,n) as modules.)
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./
L E= T L) 2 M = M)
(Laurent polynomials with matrix coefficients or matrices over Laurent polynomials.)

Lemma 7.5. Let E — F' be an admissible inclusion of row-finite (no infinite emitters) graphs and k
be a field. Then the formulas

. EO
Xo — N fve :
0 ifveFO\ E°

. El
Xe — 4V fee :
0 ifee F'\ E'

o . * El *
oy A Xer U E (E") 7
0 ife" e (F)"\(BY)
define a homomorphism L, (F) = Li(E) of algebras yielding the short exact sequence

_— )
0 — [(FO\ B°) "R Ry T Lu(E) — 0,

where I(F° \ E°) is the ideal of Ly(E) generated by F° \ E°.
Corollary 7.6.
Li(E) = Ly(F)/I(F°\ E°)

Remark 7.7. If A L Bisa surjective homomorphism of algebras and A is unital, then B is also
unital and f(14) = 1p. Indeed, ¥ b € B:

fAa)b = f(1a)f(a) = fla) =b,  bf(1a) = fla)f(14) = f(a) =b.

Definition 7.8. Let A LN JPEER Ay be homomorphisms of algebras. The pullback algebra

P(f1, f2) of f1and fy is

P(fi, f2) ={(z,y) € A ® Az | fi(z) = fo(y)} .

Here Ay @ As is viewed as an algebra with componentwise multiplication. P(fi, f2) is a subalgebra
of A1 ® A, because fi and fy are algebra homomorphisms.

Theorem 7.9. Let F'| and F; be row-finite graphs whose intersection Fy N Fy is admissible, and let k
be a field. Furthermore, let

Li(F) =5 Ly(Fy N Fy) & Ly(F)

and
Li(F) &~ L(FLUF) 22 Liy(F)

be the canonical surjections of the preceding lemma. Then the map
Lk(Fl U FQ) > T — (pl(x),pg(x)) S Lk(Fl) ) Lk<F2)

corestricts to an isomorphism Ly(Fy U Fy) — P(m, ms) of algebras.
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