
MIDTERM 4000

Problem 1 Let R be a ring and (G, ·, e) be a monoid. For any g ∈ G, let δg be an
element of the monoidal ring R[G] defined by

δg(h) :=

{
1 for h = g,

0 for h 6= g.

Prove that δe is the neutral element for the convolution multiplication in R[G].

Solution: Let α ∈ R[G]. Then

(α ∗ δe)(g) =
∑

h, k∈G
hk=g

α(h)δe(k) =
∑
h∈G
h=g

α(h) = α(g) for all g ∈ G,

(δe ∗ α)(g) =
∑

h, k∈G
hk=g

δe(h)α(k) =
∑
k∈G
k=g

α(k) = α(g) for all g ∈ G.
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Problem 2 Show that a field K has characteristic zero if and only if it contains a subfield
isomorphic with the field Q of rational numbers.

Solution: If K has characteristic 0, then ∀ q ∈ N \ {0} : q · 1K 6= 0, so there is
(q · 1K)−1 ∈ K. Consequently, ∀ p ∈ Z : p · (q · 1K)−1 ∈ K. Denote the set
of all such elements by K ′. Since

p · (q · 1K)−1 = pr · (qr · 1K)−1 ⇐⇒ (p · 1K)(qr · 1K) = (pr · 1K)(q · 1K),

we have the map f : Q 3 p
q
7→ p · (q · 1K)−1 that has K ′ as its image. Furthermore,

as
p · (q · 1K)−1 + p′ · (q′ · 1K)−1 = (pq′ + p′q) · (qq′ · 1K)−1,

because

(p · 1K)(q · 1K)−1(qq′ · 1K) + (p′ · 1K)(q′ · 1K)−1(qq′ · 1K) = (pq′ + p′q) · 1K ,

f preserves the addition. It also preserves the multiplication, because

(p · (q · 1K)−1)(p′ · (q′ · 1K)−1) = pp′ · (qq′ · 1K)−1,

and maps 1 to 1K . Hence f is a field homomorphism, so it must be injective and
its image must be a field, as for f(x) 6= 0 we have x 6= 0 and f(x)−1 = f(x−1).
Consequently, Q is isomorphic with the subfield K ′.

Vice versa, if f : Q→ K is a field homomorphism, then

∀ n ∈ N \ {0} : f(n) = n · 1K 6= 0,

so K has characteristic 0.
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Problem 3 Prove that A := {f ∈ Map(R,R) | f(
√
π) = 0} is an algebra with respect

to the pointwise operations. Show that its minimal unitization is the algebra
Map(R,R) with the pointwise operations.

Solution: Since A is a subset of the algebra Map(R,R) containing 0, we only need to
check that it is closed under the pointwise addition, scalar multiplication and
multiplication:

∀ f, g ∈ A : (f + g)(
√
π) = f(

√
π) + g(

√
π) = 0 + 0 = 0,

∀ α ∈ R, f ∈ A : (αf)(
√
π) = α(f(

√
π)) = α 0 = 0,

∀ f, g ∈ A : (fg)(
√
π) = f(

√
π)g(
√
π) = 0 0 = 0.

For the second part, we prove that the following map

A+ 3 (f, α)
ϕ7−→ f + α 1 ∈ Map(R,R)

is an isomorphism of unital algebras. The above map is clearly linear and unital.
It is also bijective as it has the inverse map:

Map(R,R) 3 f̃ 7−→ (f̃ − f̃(
√
π)1, f̃(

√
π)) ∈ A+.

Indeed, the above map is well defined because, for any f̃ ∈ Map(R,R), we have

(f̃ − f̃(
√
π)1)(

√
π) = f̃(

√
π)− f̃(

√
π) = 0,

and the verification that it is a two-sided inverse of ϕ is immediate. Finally, we
prove that ϕ intertwines the multiplications:

ϕ((f, α)(g, β))(x) = ϕ((fg + αg + βf, αβ))(x)

= f(x)g(x) + αg(x) + βf(x) + αβ

= (f(x) + α)(g(x) + β)

= ϕ((f, α))(x)ϕ((g, β))(x).

Since the above equality is true for any x ∈ R, we conclude that

ϕ((f, α)(g, β)) = ϕ((f, α))ϕ((g, β)).
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Problem 4 Let s be a central element in a ring R: sr = rs for any r ∈ R. Show that
I := {r ∈ R | rs = 0} is an ideal of R.

Solution: As 0 ∈ I and ∀ r, r′ ∈ I:

(r + r′)s = rs+ r′s = 0 + 0 = 0,

the set I is an additive subgroup of R. Due to the centrality of s in R, it also
satisfies the ideal property:

∀ r ∈ I, r′ ∈ R : (r′r)s = r′(rs) = r′0 = 0,

(rr′)s = r(r′s) = r(sr′) = (rs)r′ = 0r′ = 0.
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Problem 5 Consider the homomorphisms of abelian groups:

Z 3 n 7−→ 2n ∈ Z and Z 3 n 7−→ 3n ∈ Z.
Show that they induce the homomorphisms of quotient groups

Z/3Z 3 [n]3
f27−→ [2n]6 ∈ Z/6Z and Z/6Z 3 [n]6

f37−→ [3n]2 ∈ Z/2Z,
respectively. Then prove that the sequence of group homomorphisms

0 −→ Z/3Z f2−→ Z/6Z f3−→ Z/2Z −→ 0

is exact.

Solution: The induced maps are well defined because 2 ·3Z = 6Z and 3 ·6Z = 18Z ⊂ 2Z.
Furthermore, f3 is surjective because f3([1]6) := [3]2 = [1]2. Next, f2 is injective
because

f2([n]3) := [2n]6 = [0]6 ⇐⇒ 2n ∈ 6Z ⇐⇒ n ∈ 3Z ⇐⇒ [n]3 = 0.

To see that f2(Z/3Z) ⊆ ker f3, note that, for any n ∈ Z,

f3(f2([n]3)) = f3([2n]6) = [6n]2 = [0]2.

Vice versa, ker f3 ⊆ f2(Z/3Z) because

f3([n]6) := [3n]2 = [0]2 ⇐⇒ 3n ∈ 2Z ⇐⇒ n ∈ 2Z ⇐⇒ [n]6 ∈ f2(Z/3Z).


