
MIDTERM 5000

Problem 1 Let R be a ring and G be a finite group. For any g ∈ G, let δg be an element
of the group ring R[G] defined by

δg(h) :=

{
1 for h = g,

0 for h 6= g.

Prove that
∑

g∈G δk ∗ δg =
∑

g∈G δg for any k ∈ G.

Solution: First, we show that δk ∗ δg = δkg:

(δk ∗ δg)(h) =
∑

m,n∈G
mn=h

δk(m)δg(n) =

{
1 kg = h

0 kg 6= h
= δkg(h).

Next, we compute:∑
g∈G

(δk ∗ δg)(h) =
∑
g∈G

δkg(h) =
∑
g∈G

δg(h).

Here we used the fact that, for any k ∈ G, the map:

G 3 g 7−→ kg ∈ G
is a bijection.
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Problem 2 Prove that Q + Q
√

2 is a subfield of R.

Solution: Since Q+Q
√

2 is a subset of the field R containing its neutral elements 0 and 1,
we only need to show that Q + Q

√
2 is closed under addition, multiplication and

taking inverses of non-zero elements:

∀ a, b, c, d ∈ Q : (a+ b
√

2) + (c+ d
√

2) = (a+ c) + (b+ d)
√

2 ∈ Q + Q
√

2,

∀ a, b, c, d ∈ Q : (a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2 ∈ Q + Q
√

2,

∀ a, b ∈ Q such that a+ b
√

2 6= 0 :

1

a+ b
√

2
=

a− b
√

2

(a+ b
√

2)(a− b
√

2)
=
a− b

√
2

a2 − 2b2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2 ∈ Q + Q

√
2.

Here we used the fact that a+b
√

2 6= 0 implies a−b
√

2 6= 0. Indeed, if a−b
√

2 = 0,
then b = 0 as

√
2 6∈ Q, which implies a = 0.
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Problem 3 Prove that A := {f ∈ Map(R,R) | f([0, 1]) = {0}} is an algebra with
respect to the pointwise operations. Show that its minimal unitization is the
algebra B := {f ∈ Map(R,R) | ∀ t, s ∈ [0, 1] : f(t) = f(s)} with the pointwise
operations.

Solution: Since A is a subset of the algebra Map(R,R) containing 0, we only need to
check that it is closed under the pointwise addition, scalar multiplication and
multiplication:

∀ f, g ∈ A, t ∈ [0, 1] : (f + g)(t) = f(t) + g(t) = 0 + 0 = 0,

∀ α ∈ R, f ∈ A, t ∈ [0, 1] : (αf)(t) = α(f(t)) = α 0 = 0,

∀ f, g ∈ A, t ∈ [0, 1] : (fg)(t) = f(t)g(t) = 0 0 = 0.

For the second part, we prove that the following map

A+ 3 (f, α)
ϕ7−→ f + α 1 ∈ B

is an isomorphism of unital algebras. The above map is well defined because, for
any α ∈ R, f ∈ A, t, s ∈ [0, 1], we have:

(f + α 1)(t) = f(t) + α = α = f(s) + α = (f + α 1)(s).

Furthermore, it is clearly linear and unital. It is also bijective as any t0 ∈ [0, 1]
yields the inverse map:

B 3 f̃ 7−→ (f̃ − f̃(t0)1, f̃(t0)) ∈ A+.

Indeed, the above map is well defined because, for any f̃ ∈ B and any t ∈ [0, 1],

we have (f̃− f̃(t0)1)(t) = f̃(t)− f̃(t0) = 0, an the verification that it is a two-sided
inverse of ϕ is immediate. Finally, we prove that ϕ intertwines the multiplications:

ϕ((f, α)(g, β))(x) = ϕ((fg + αg + βf, αβ))(x)

= f(x)g(x) + αg(x) + βf(x) + αβ

= (f(x) + α)(g(x) + β)

= ϕ((f, α))(x)ϕ((g, β))(x).

Since the above equality is true for any x ∈ R, we conclude that

ϕ((f, α)(g, β)) = ϕ((f, α))ϕ((g, β)).
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Problem 4 An element x of a ring R is called nilpotent iff ∃n ∈ N \ {0} : xn = 0. Show
that the set I of all nilpotent elements in a commutative ring R is an ideal of R.

Solution: Clearly, 0 ∈ I. Next, let x, y ∈ I. Then ∃ m, n ∈ N\{0}: xm = 0 and yn = 0.
With the help of the commutativity of R, it follows that

(x+ y)m+n−1 =
m+n−1∑
k=0

(
m+ n− 1

k

)
xm+n−1−kyk = 0.

Indeed, if k ≤ n − 1, then xm+n−1−k = 0, and, if k ≥ n, then yk = 0. Hence all
the elements of the above sum are zero. This shows that I is an abelian subgroup
of R. Finally, we verify the ideal property. If xm = 0, then for any r ∈ R, taking
again an advantage of the commutativity of R, we obtain:

(xr)m = xmrm = 0rm = 0, (rx)m = rmxm = rm0 = 0.
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Problem 5 Let H
φ→ G

ψ→ K be an exact sequence of abelian groups. Let m,n ∈ N\{0}
be such that mH = 0 and nK = 0 (i.e., any element of H taken m times and
added to itself is zero and any element of K taken n times and added to itself is
zero). Prove that mnG = 0.

Solution: For any g ∈ G, we have 0 = nψ(g) = ψ(ng), so ng ∈ kerψ. By the exactness
of the sequence, there is h ∈ H such that φ(h) = ng. Consequently,

0 = φ(0) = φ(mh) = mφ(h) = mng.


