MIDTERM 5000

Problem 1 Let R be a ring and G be a finite group. For any $g \in G$, let δ_g be an element of the group ring R[G] defined by

$$\delta_g(h) := \begin{cases} 1 & \text{for} \quad h = g, \\ 0 & \text{for} \quad h \neq g. \end{cases}$$

Prove that $\sum_{g \in G} \delta_k * \delta_g = \sum_{g \in G} \delta_g$ for any $k \in G$.

Solution: First, we show that $\delta_k * \delta_g = \delta_{kg}$:

$$(\delta_k * \delta_g)(h) = \sum_{\substack{m, n \in G \\ mn = h}} \delta_k(m) \delta_g(n) = \begin{cases} 1 & kg = h \\ 0 & kg \neq h \end{cases} = \delta_{kg}(h).$$

Next, we compute:

$$\sum_{g \in G} (\delta_k * \delta_g)(h) = \sum_{g \in G} \delta_{kg}(h) = \sum_{g \in G} \delta_g(h).$$

Here we used the fact that, for any $k \in G$, the map:

$$G \ni g \longmapsto kg \in G$$

is a bijection.

Problem 2 Prove that $\mathbb{Q} + \mathbb{Q}\sqrt{2}$ is a subfield of \mathbb{R} .

Solution: Since $\mathbb{Q} + \mathbb{Q}\sqrt{2}$ is a subset of the field \mathbb{R} containing its neutral elements 0 and 1, we only need to show that $\mathbb{Q} + \mathbb{Q}\sqrt{2}$ is closed under addition, multiplication and taking inverses of non-zero elements:

 $\forall a, b, c, d \in \mathbb{Q} : (a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2} \in \mathbb{Q} + \mathbb{Q}\sqrt{2},$ $\forall a, b, c, d \in \mathbb{Q} : (a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2} \in \mathbb{Q} + \mathbb{Q}\sqrt{2},$ $\forall a, b \in \mathbb{Q} \text{ such that } a + b\sqrt{2} \neq 0 :$

$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{(a+b\sqrt{2})(a-b\sqrt{2})} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} - \frac{b}{a^2-2b^2}\sqrt{2} \in \mathbb{Q} + \mathbb{Q}\sqrt{2}.$$

Here we used the fact that $a+b\sqrt{2} \neq 0$ implies $a-b\sqrt{2} \neq 0$. Indeed, if $a-b\sqrt{2} = 0$, then b = 0 as $\sqrt{2} \notin \mathbb{Q}$, which implies a = 0.

MIDTERM 5000

- **Problem 3** Prove that $A := \{f \in \operatorname{Map}(\mathbb{R}, \mathbb{R}) \mid f([0, 1]) = \{0\}\}$ is an algebra with respect to the pointwise operations. Show that its minimal unitization is the algebra $B := \{f \in \operatorname{Map}(\mathbb{R}, \mathbb{R}) \mid \forall t, s \in [0, 1] : f(t) = f(s)\}$ with the pointwise operations.
- **Solution:** Since A is a subset of the algebra $Map(\mathbb{R}, \mathbb{R})$ containing 0, we only need to check that it is closed under the pointwise addition, scalar multiplication and multiplication:

$$\forall f,g \in A, t \in [0,1] : (f+g)(t) = f(t) + g(t) = 0 + 0 = 0, \forall \alpha \in \mathbb{R}, f \in A, t \in [0,1] : (\alpha f)(t) = \alpha(f(t)) = \alpha 0 = 0, \forall f,g \in A, t \in [0,1] : (fg)(t) = f(t)g(t) = 0 = 0.$$

For the second part, we prove that the following map

$$A^+ \ni (f, \alpha) \stackrel{\varphi}{\longmapsto} f + \alpha \, 1 \in B$$

is an isomorphism of unital algebras. The above map is well defined because, for any $\alpha \in \mathbb{R}$, $f \in A$, $t, s \in [0, 1]$, we have:

$$(f + \alpha 1)(t) = f(t) + \alpha = \alpha = f(s) + \alpha = (f + \alpha 1)(s).$$

Furthermore, it is clearly linear and unital. It is also bijective as any $t_0 \in [0, 1]$ yields the inverse map:

$$B \ni \widetilde{f} \longmapsto (\widetilde{f} - \widetilde{f}(t_0)1, \widetilde{f}(t_0)) \in A^+.$$

Indeed, the above map is well defined because, for any $\tilde{f} \in B$ and any $t \in [0, 1]$, we have $(\tilde{f} - \tilde{f}(t_0)1)(t) = \tilde{f}(t) - \tilde{f}(t_0) = 0$, an the verification that it is a two-sided inverse of φ is immediate. Finally, we prove that φ intertwines the multiplications:

$$\varphi((f,\alpha)(g,\beta))(x) = \varphi((fg + \alpha g + \beta f, \alpha \beta))(x)$$

= $f(x)g(x) + \alpha g(x) + \beta f(x) + \alpha \beta$
= $(f(x) + \alpha)(g(x) + \beta)$
= $\varphi((f,\alpha))(x)\varphi((g,\beta))(x).$

Since the above equality is true for any $x \in \mathbb{R}$, we conclude that

$$\varphi((f,\alpha)(g,\beta)) = \varphi((f,\alpha))\varphi((g,\beta)).$$

MIDTERM 5000

Problem 4 An element x of a ring R is called nilpotent iff $\exists n \in \mathbb{N} \setminus \{0\} : x^n = 0$. Show that the set I of all nilpotent elements in a commutative ring R is an ideal of R.

Solution: Clearly, $0 \in I$. Next, let $x, y \in I$. Then $\exists m, n \in \mathbb{N} \setminus \{0\}$: $x^m = 0$ and $y^n = 0$. With the help of the commutativity of R, it follows that

$$(x+y)^{m+n-1} = \sum_{k=0}^{m+n-1} \binom{m+n-1}{k} x^{m+n-1-k} y^k = 0.$$

Indeed, if $k \leq n-1$, then $x^{m+n-1-k} = 0$, and, if $k \geq n$, then $y^k = 0$. Hence all the elements of the above sum are zero. This shows that I is an abelian subgroup of R. Finally, we verify the ideal property. If $x^m = 0$, then for any $r \in R$, taking again an advantage of the commutativity of R, we obtain:

$$(xr)^m = x^m r^m = 0r^m = 0, \quad (rx)^m = r^m x^m = r^m 0 = 0.$$

- **Problem 5** Let $H \xrightarrow{\phi} G \xrightarrow{\psi} K$ be an exact sequence of abelian groups. Let $m, n \in \mathbb{N} \setminus \{0\}$ be such that mH = 0 and nK = 0 (i.e., any element of H taken m times and added to itself is zero and any element of K taken n times and added to itself is zero). Prove that mn G = 0.
- **Solution:** For any $g \in G$, we have $0 = n\psi(g) = \psi(ng)$, so $ng \in \ker \psi$. By the exactness of the sequence, there is $h \in H$ such that $\phi(h) = ng$. Consequently,

$$0 = \phi(0) = \phi(mh) = m\phi(h) = mng.$$