
MIDTERM 6000

Problem 1 (2 points) Let R be a ring and R[N] be the polynomial ring with coeffcients
in R. Furthermore, let xl, l ∈ N, be the elements of R[N] defined by

xl(n) :=

{
1 for n = l,

0 for n 6= l.

Prove that, for all natural numbers k,m, n,((
k∑

i=0

x2i

)
∗

(
m∑
j=0

x2j+1

))
(2n) = 0.

Solution: Note first that xm1 ∗ xm2 = xm1+m2 for all natural numbers m1 and m2:

∀ n ∈ N : (xm1 ∗ xm2)(n) =
∑

n1+n2=n

xm1(n1)x
m2(n2) =

{
1 for n = m1 +m2,

0 for n 6= m1 +m2.

Now we can directly compute((
k∑

i=0

x2i

)
∗

(
m∑
j=0

x2j+1

))
(2n) =

k∑
i=0

m∑
j=0

x2(i+j)+1(2n) = 0.

Indeed, 2(i + j) + 1 is always odd and 2n is always even, so they can never be
equal.
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Problem 2 (3 points) Let R be a ring and let r ∈ R be a non-zero element such that
rn = 0 for some n ∈ N \ {0}. Show that R cannot be a field.

Solution: We prove it by contradiction. Suppose R is a field. Then it is commutative
and all its non-zero elements are invertible. Hence there exists the multiplicative
inverse r−1, and using the commutativity of R, we obtain

1 = 1n = (r−1r)n = r−nrn = r−n · 0 = 0.

This yields the desired contradiction because 1 6= 0 in any field.
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Problem 3 (4 points) Let f : A → B be a homomorphism of k-algebras. Assume
that B is unital, and let ι : A → A+ denote the inclusion of A into its minimal
unitization A+. Construct a unital algebra homomorphism f̃ : A+ → B such that
f = f̃ ◦ ι.

Solution: We define f̃ : A+ → B by

f̃(a, α) := f(a) + α · 1B ,

where 1B is the unit of B. This map is evidently k-linear and it satisfies the
condition

∀ a ∈ A : (f̃ ◦ ι)(a) = f̃(a, 0) = f(a) + 0 · 1B = f(a),

so it only remains to show that it preserves the algebra multiplication:

∀ a, b ∈ A, α, β ∈ k : f̃
(
(a, α)(b, β)

)
= f̃(ab+ αb+ βa, αβ)

= f(ab+ αb+ βa) + αβ · 1B

= f(a)f(b) + αf(b) + βf(a) + (α · 1B)(β · 1B)

=
(
f(a) + α · 1B

)(
f(b) + β · 1B

)
= f̃((a, α))f̃((b, β)).
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Problem 4 (3 points) Let R be a commutative ring and let I be an ideal of R. Prove
that the set √

I := {r ∈ R | rn ∈ I for some n ∈ N \ {0}}
is an ideal of R.

Solution: We check first that
√
I is a subgroup of R. Take any r, s ∈

√
I. Then there

exist positive integers m and n such that rm ∈ I and sn ∈ I. Consequently,

(r + s)m+n−1 =
m+n−1∑
k=0

(
m+ n− 1

k

)
rm+n−1−ksk ∈ I.

Indeed, for k ≥ n elements of the sum are in I because sk ∈ I. For k < n, we
have m + n− 1− k ≥ m, so elements of the sum are in I because rm+n−1−k ∈ I.
Finally,

√
I is closed under the multiplication by any elements of R because

∀ r ∈
√
I such that rn ∈ I, n ∈ N \ {0}, x ∈ R : (rx)n = rnxn ∈ I.
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Problem 5 (4 points) Consider the homomorphisms of abelian groups:

Z 3 n 7−→ 6n ∈ Z and Z 3 n 7−→ 18n ∈ Z.
Show that they induce the homomorphisms of quotient groups

Z/18Z 3 [n]18
f67−→ [6n]54 ∈ Z/54Z and Z/54Z 3 [n]54

f187−→ [18n]108 ∈ Z/108Z,
respectively. Then prove that the sequence of group homomorphisms

Z/18Z f6−→ Z/54Z f18−→ Z/108Z
is exact.

Solution: The induced maps are well defined because 6·18Z = 108Z ⊂ 54Z and 18·54Z =
972Z ⊂ 108Z. To see that f6(Z/18Z) ⊆ ker f18, note that, for any n ∈ Z,

f18(f6([n]18)) = f18([6n]54) = [108n]108 = [0]108.

Vice versa, ker f18 ⊆ f6(Z/18Z) because

f18([n]54) := [18n]108 = [0]108 ⇐⇒ 18n ∈ 108Z ⇐⇒ n ∈ 6Z ⇐⇒ [n]54 ∈ f6(Z/18Z).


