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Abstract

In this paper, we address the issue of determining the optimal contribution rate of a sto-
chastic defined benefit pension fund. The affiliate’s mortality is modelled by a jump process
and the benefits paid at retirement are function of the evolution of stochastic salaries. As-
sets of the fund are invested in cash, stocks and a rolling bond. Interest rates are driven
by a Vasicek model. The objective is to minimize both the quadratic spread between the
contribution rate and the normal cost, and the quadratic spread between the terminal wealth
and the mathematical reserve required to cover benefits. The optimization is done under a
budget constraint that guarantees the actuarial equilibrium between the current asset and
future contributions and benefits. The method of resolution is based on the Cox and Huang’s
approach and on dynamic programming.

Keywords : defined benefit, pension fund, asset allocation, optimal rate of contribution.

1 Introduction.
There mainly exist two categories of pension funds: the defined contribution pension plan and the
defined benefit pension plan. In the first one, the financial risk is beared by the affiliate: in case
of poor performance of assets, his savings may be insufficient to maintain his standard of living
at retirement. Whereas in a defined benefit pension plan, the risk is beared by the pension fund:
whatsoever the return of assets, benefits paid to pensioners are proportional to his salary. In this
context, the choice of the investment policy and of the contribution pattern is hence crucial for
the agent financing the fund.

Defined benefit pension plans have been extensively studied in the literature. Some authors like
Sundaresan and Zapatero (1997) argue that the investor should maximize the expected utility of
the surplus of assets over the liabilities of the fund. However, especially from the employer’s point
of view who pays for the defined benefit pension plan of his employees, the important issue is to
find a contribution process which has small fluctuations and which leads as exactly as possible to
the value of the mathematical reserve necessary for covering the liabilities promised in the pension
plan. Therefore a whole branch of papers has studied the minimization of a loss function of con-
tributions and the wealth to be obtained. In the papers of e.g. Haberman and Sung (1994, 2005),
Boulier et al. (1995), Josa Fombellida and Rincon-Zapatero (2004, 2006), the fund manager keeps
the value of the assets as close as possible to liabilities by controlling the level of contributions.
Cairns (1995, 2000) has discussed the role of objectives in selecting an asset allocation strategy and
has analysed some current problems faced by defined benefit pension funds. Huang and Cairns
(2006) have studied the optimal contribution rate for defined benefit pension plans when interest
rates are stochastic.

The most novel features of our work are the modelling of the affiliates’ mortality by a jump
process, the use of stochastic interest rates and salaries. Furthermore, we minimize both con-
tribution adjustments and a terminal surplus. By contribution adjustment, we mean the spread
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between the sponsor’s contribution and the normal cost. Whereas the terminal surplus is here
defined as the difference between the terminal wealth and the fair value of liabilities at retire-
ment. The optimization is done under a budget constraint that ensures the actuarial equilibrium
between the current assets and future deflated cash flows and with initial negative unfunded lia-
bilities. We will see that the last condition is important for obtaining a target wealth higher than
the mathematical reserve for the promised liabilities. The objective function in the optimization
problem further contains some weighting expressing the importance given to the minimization of
contribution adjustments and of the terminal surplus. Numerical results will show that the opti-
mal contribution process depends on the weights corresponding to the minimization of the surplus
variation in comparison with the weight corresponding to the minimization of the contribution
fluctuations.

In this paper we deal with the difficulty that the presence of random salary and mortality en-
tails that the market is incomplete. The set of equivalent martingale measures counts therefore
more than one element and we need to fix the deflator used by the insurer to value liabilities in
order to apply the Cox & Huang (1989) martingale method. This approach was used in a simi-
lar setting by Brennan and Xia (2002) and translates in fact common practice of actuaries who
traditionally already used security adjustments, which means that they already chose a certain
probability measure to work under. A more annoying implication of the incompleteness implied
by the salary and mortality risk, is that the optimal target wealth process found by the martin-
gale method is not fully replicable. However, it is possible to determine the investment strategy
replicating at best this solution by using the dynamic programming principle as in Hainaut and
Devolder (2006a,b) who are both studies of asset allocation of deterministic insurance liabilities
with a stochastic mortality risk.

The outline of this paper is as follows. Sections 2 and 3 respectively present the financial market
and the defined benefit pension plans. In section 4, the form of the deflator is discussed. Section
5 introduces the optimization problem and in section 6, we propose a solution. Section 7 contains
a numerical illustration and the last section concludes.

2 The financial market.
In this section, we introduce the market structure of our model and define the dynamics of in-
terest rates and asset values. The uncertainty involved by the financial market is described by a
2-dimensional standard Brownian motion WP f

t =
(
W r,P f

t ,WS,P f

t

)
defined on a complete proba-

bility space (Ωf ,Ff , P f ). Ff is the filtration generated by WP f

t :

Ff =
(
Ff

t

)
t
= σ

{(
W r,P f

t ,WS,P f

t

)
: u ≤ t

}
.

P f represents the historical financial probability measure. The two Wiener processes W r,P f

t and
WS,P f

t are independent. The financial market is complete and there exists therefore a unique
equivalent measure under which the discounted prices of assets are martingales. This risk neutral
measure is denoted by Qf . The assets of the defined benefit pension fund are invested in cash,
rolling bonds and stocks. The return of cash is the risk free rate rt and is modelled by an Ornstein-
Uhlenbeck process (Vasicek model):

drt = a.(b− rt).dt + σr.dW r,P f

t . (2.1)

The constant parameters a, b, σr are respectively the speed of mean reversion, the level of mean
reversion and the volatility of rt. Let λr be a negative constant being the market price of risk and
so implying the dynamics of rt under the risk neutral measure Qf . Indeed under Qf , the risk free
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rate is the solution of the following SDE:

drt = a.(b− σr.
λr

a︸ ︷︷ ︸
bQ

−rt).dt + σr.
(
dW r,P f

t + λr.dt
)

︸ ︷︷ ︸
dW r,Qf

t

, (2.2)

where W r,Qf

t is a Wiener process under Qf .
The second category of assets is a rolling bond of maturity K whose price is denoted RK

t . This
bond is a zero coupon bond continuously rebalanced in order to keep a constant maturity and its
price obeys to the dynamics:

dRK
t

RK
t

= rt.dt− σr.n(K).
(
dW r,P f

t + λr.dt
)

= rt.dt− σr.n(K).dW r,Qf

t

where n(K) is a function of the maturity K :

n(K) =
1
a
.
(
1− e−a.K

)
.

Remark that the risk premium of the rolling bond is denoted by νR = −σr.n(K).λr.
The last kind of assets available on the financial market is a stock. Its price process St is modelled
by a geometric Brownian motion and is correlated with the interest rates fluctuations:

dSt

St
= rt.dt + σSr.

(
dW r,P f

t + λr.dt
)

+ σS .
(
dWS,P f

t + λS .dt
)

= rt.dt + σSr.dW r,Qf

t + σS .dWS,Qf

t .

The constant parameters σSr, σS and λS denote respectively the correlation between stocks and
the risk free interest rates, the embedded volatility of the stocks and the market price of risk
parameter. The stock risk premium is defined by νS = σSr.λr + σS .λs.

3 The pension fund.
The pension plan considered in this work provides benefits to affiliates which are defined in terms
of a member’s final salary. For the sake of simplicity, one assumes that the pension fund counts
initially nx members of the same age x and earning the same salary, denoted (At)t. All members
retire at the age x + T and in case of death, no benefits are paid. The evolution of the individual
salary is stochastic and correlated to the financial market. More precisely, one supposes that the
dynamics of an affiliate’s salary are defined by the following SDE:

dAt

At
= µA(t).dt + σArdW r,P f

t + σASdWS,P f

t + σA.dWA,P a

t (3.1)

where µA(t) is the average growth of the salary and WA,P a

t is a Wiener process that represents
the intrinsic randomness of the salary and is independent from W r,P f

t and WS,P f

t . As this salary
risk is not traded, WA,P a

t is a source of incompleteness. We will come back to this point in the
next section. The constants σAr and σAS model the correlation of the salary with resp. interest
rates and stocks; and σA denotes the embedded wage volatility. WA,P a

t is defined on a probability
space (Ωa,Fa, P a) where Fa is the filtration generated by WA,P a

t .

Benefits are defined in terms of the salary at retirement date. Each pensioner will receive a
continuous annuity whose rate B is a fraction, α of the last wage:

B = AT .α.
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These benefits are financed during the accumulation phase. ct is the contribution rate made by
the sponsor to the funding process at time t.

The fair value of liabilities will be discussed in the next section. We now detail the jump process
modelling the mortality of the covered employees. The mortality process is defined as in Møller
(1998) on a probability space (Ωm,Fm, Pm) and is assumed to be independent from the filtration
generated by W r,P f

t , WS,P f

t , WS,P a

t . The remaining lifetimes of the affiliates are exponential
random variables, denoted T1, T2, . . . , Tnx and their hazard rate (namely the mortality rate), at
time t, is given by µ(x + t). Nt points out the total number of deaths observed till time t:

Nt =
nx∑

i=1

I(Ti ≤ t)

where I(.) is an indicator function. The filtration Fm is generated by Nt and the expectation of
the infinitesimal variation of Nt verifies:

E
(
dNt|Fm

t−
)

= (nx −Nt−).µ(x + t).dt.

As the mortality is not traded in our model, this is a second source of incompleteness. The
compensated process Mt of the mortality process is defined as follows:

Mt = Nt −
∫ t

0

(nx −Nu−).µ(x + u).du

and Mt is a martingale under the historical measure Pm. The expected number of survivors under
Pm is equal to the current number of survivors times a survival probability:

E ((nx −Ns)|Fm
t ) = E

(
nx∑

i=1

I(Ti > s)|Fm
t

)

=
∑

Ti>s

E (I(Ti > s)|Fm
t )

= (nx −Nt). exp
(
−

∫ s

t

µ(x + u).du

)

︸ ︷︷ ︸
s−tpx+t

.

s−tpx+t is the actuarial notation for the probability that an individual of age x + t survives till
age x + s.

4 The deflator and the fair value of liabilities.
Let (Ω,F , P ) be the probability space resulting from the product of the financial, wage and
mortality probability spaces:

Ω = Ωf × Ωa × Ωm F = Ff ⊗Fa ⊗Fm ∨N P = P f × P a × Pm

where the sigma algebra N is generated by all subsets of null sets from Ff ⊗Fa⊗Fm. The prices
of pension fund liabilities are defined on (Ω,F , P ). In this setting, the market of pension fund
liabilities is incomplete owing to the presence of two unhedgeable risks: the salary risk and the
mortality risk. It entails that prices may differ from one insurance company to another. The next
subsections describe the insurer’s deflator that is here composed of three elements called abusively
the financial, wage and actuarial deflators, and is an extension of the deflators used in Hainaut
and Devolder (2006 b).
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4.1 Financial deflator.
The completeness of the financial market entails that there exists one unique equivalent measure,
namely the risk neutral measure, under which the discounted prices of assets are martingales. This
measure is denoted Qf and is defined by the following change of measure:

(
dQf

dP f

)

t

= exp
(
−1

2
.

∫ t

0

||Λf ||2.du−
∫ t

0

Λf .dWP f

u

)

where Λf = (λr, λS)′. The dynamics of the assets under Qf have been discussed in section 2. The
financial deflator Hf (t, s) at time t for a cash flow paid at time t ≤ s is equal to the product of
the discount factor and of the change of measure:

Hf (t, s) =
exp

(− ∫ s

0
ru.du

)
.
(

dQf

dP f

)
s

exp
(
− ∫ t

0
ru.du

)
.
(

dQf

dP f

)
t

= exp
(
−

∫ s

t

ru.du− 1
2
.

∫ s

t

||Λf ||2.du−
∫ s

t

Λf .dWP f

u

)
.

4.2 The wage deflator.
As the intrinsic salary risk is not traded, the market of pension fund liabilities is incomplete and
for any Fa adapted process λa,t, an equivalent probability measure Qa,λa can be defined by the
following Radon-Nikodym derivative:

(
dQa,λa

dP a

)

t

= exp
(
−1

2
.

∫ t

0

|λa,u|2.du−
∫ t

0

λa,u.dWA,P a

u

)

and under Qa,λa , dWA,Qa,λa

u = dWA,P a

u +λa,u.du is a Brownian motion. For the sake of simplicity,
λa,u is assumed to be constant and denoted λa in the sequel of this paper. The dynamics of the
salary process under Qf ×Qa,λa are:

dAt

At
= (µA(t)− σAr.λr − σAS .λS − σA.λa)︸ ︷︷ ︸

µQ
A(t)

.dt

+σArdW r,Qf

t + σASdWS,Qf

t + σA.dWA,Qa,λa

t (4.1)

and Ha(t, s) denotes the wage deflator at instant t, for a payment occurring at time s ≥ t :

Ha(t, s) =

(
dQa,λa

dP a

)
s(

dQa,λa

dP a

)
t

= exp
(
−1

2
.

∫ s

t

|λa,u|2.du−
∫ s

t

λa,u.dWA,P a

u

)
.

4.3 The actuarial deflator.
The second source of incompleteness is the mortality risk. For any Fm-predictable process hs, such
that hs > −1, an equivalent actuarial measure Qm,h is defined by the random variable solution of
the SDE:

d

(
dQm,h

dPm

)

t

=
(

dQm,h

dPm

)

t

.ht.d

(
Nt −

∫ t

0

(nx −Nu−) .µ(x + u).du

)

=
(

dQm,h

dPm

)

t

.ht.dMt (4.2)
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and we have the property that the process Mm,h
t defined by

Mm,h
t = Nt −

∫ t

0

(nx −Nu−) .µ(x + u).(1 + hu).du

is a martingale under Qm,h. We adopt the notation λN,u = (nx −Nu−) .µ(x + u) for the intensity
of jumps. The solution of the SDE (4.2) is (for details, see Duffie 2001, appendix I on counting
processes):

(
dQm,h

dPm

)

t

=
∏

Ti≤t

(1 + hTi
) . exp

(
−

∫ t

0

hu.λN,u.du

)

= exp
(∫ t

0

ln (1 + hu) .dNu −
∫ t

0

hu.λN,u.du

)

and Hm(t, s) denotes the actuarial deflator at instant t, for a payment occurring at time s ≥ t ,
defined by:

Hm(t, s) =

(
dQm,h

dP m

)
s(

dQm,h

dP m

)
t

= exp
(∫ s

t

ln (1 + hu) .dNu −
∫ s

t

hu.λN,u.du

)
. (4.3)

Under Qm,h, the expected number of survivors at time s is equal to the number of survivors at
time t multiplied by a modified probability of survival s−tp

h
x+t :

EQm,h

((nx −Ns)|Fm
t ) = (nx −Nt). exp

(
−

∫ s

t

µ(x + u).(1 + hu).du

)

︸ ︷︷ ︸
s−tph

x+t

.

In the sequel of this work, we restrict our field of research to a constant process hu = h. The
reason motivating this choice is that, in this particular case, some interesting analytic results
can be presented. Remark that if h > 0, h can be seen as a security margin against an adverse
evolution of the mortality.

4.4 The deflator and the price of liabilities.
The deflator used to price liabilities, written H(t, s) is in our settings the product of the financial,
wage and actuarial deflators:

H(t, s) =
exp

(− ∫ s

0
ru.du

)

exp
(
− ∫ t

0
ru.du

) .

(
dQf

dP f

)
s(

dQf

dP f

)
t

.

(
dQa,λa

dP a

)
s(

dQa,λa

dP a

)
t

.

(
dQm,h

dP m

)
s(

dQm,h

dP m

)
t

. (4.4)

The pricing of pension fund liabilities is hence done under a probability measure Q which is equal
to the product of Qf , Qa and Qm. Q is thus defined by the deflator H(t, s) which depends on
the particular choice of h and λa, which are decided by the insurer and depend on the way he
evaluates the mortality risk and salary risk.

Remark that the expectation of the deflator H(t, s) is equal to the price of a zero coupon bond,
denoted B(t, s):

B(t, s) = E (H(t, s)|Ft)

= EQ
(
e−
R s

t
ru.du|Ft

)

and the analytic expression of B(t, s) is reminded in appendix A. The fair value at time t of
the liabilities at the date of retirement, denoted Lt, is defined as the expectation of the deflated
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value of future contributions and benefits. Lt will be used in the sequel to state the optimization
problem. In particular, if Tm is the maximum time horizon of the insurer’s commitments, Lt is
equal to:

Lt = E

(
−

∫ T

t

H(t, s).cs.ds +
∫ T m

T

H(t, s). (nx −Ns) .B.ds|Ft

)
.

Generally, the minimum asset value that the fund must hold to ensure his solvency is set larger
than or equal to Lt (this minimum depends evidently on the local regulation).

5 The optimization problem.
As motivated in the introduction, the insurer’s objective is to minimize the quadratic spread
between the contribution rate and a constant target one (namely the normal cost) and to minimize
the deviation of the terminal target asset from the mathematical reserve required to cover benefits
at the date of retirement. The normal cost, denoted NC, is the contribution rate allowing equality
between expected assets and liabilities:

NC =
E (H(0, T ).LT |F0)

E
(∫ T

0
H(0, s).ds|F0

) .

The target total asset is denoted X̃T . Following Brennan and Xia (2002), we will use the Cox-
Huang method and minimize first with respect to the contributions and the associated terminal
target wealth. The value function is defined as follows:

V (t, x, n, a) =

min
ct,X̃T∈At(x)

E




∫ T

t

u1. (cs −NC)2 .ds + u2.(X̃T − LT )2 | X̃t = x, Nt = n, At = a︸ ︷︷ ︸
Ft


 (5.1)

where u1 and u2 are constant weights. The contribution rate and the target wealth are chosen in
a set At(x) which is delimited by a constraint ensuring the actuarial equilibrium between future
deflated cash flows and the current asset x.

At(x) =
{(

(cs)s∈[t,T ] , X̃T

)
such that

E

(
−

∫ T

t

H(t, s).cs.ds + H(t, T ).X̃T |Ft

)
≤ x

}
. (5.2)

In the sequel, this constraint is called the budget constraint. However, as the market is incomplete,
the fact that X̃T belongs to At(x) doesn’t guarantee that this process is replicable by an adapted
investment policy. This is the reason why we use the terminology of “target” terminal wealth,
denoted by X̃T . This point is detailed in section 6.2, in which we introduce also a replicable
wealth XT at time of retirement.
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6 The martingale solution.

6.1 Optimal contribution rate and wealth.
In this section, we solve the optimization problem (5.1)-(5.2). Let yt ∈ R+ be the Lagrange
multiplier associated to the the budget constraint at instant t. The Lagrangian is defined by:

L
(
t, x, n, a, (cs)s , X̃T , yt

)
= (6.1)

E

(∫ T

t

u1. (cs −NC)2 .ds + u2.(X̃T − LT )2)|Ft

)
−

yt.

(
x− E

(
−

∫ T

t

H(t, s).cs.ds + H(t, T ).X̃T |Ft

))
.

A sufficient condition to obtain an optimal contribution rate (c∗s)s∈[t,T ] and an optimal target
wealth X̃∗

T , is the existence of an optimal Lagrange multiplier y∗t > 0 such that the couple(
(c∗s)s∈[t,T ], X̃∗

T

)
is a saddle point of the Lagrangian. The value function may therefore be refor-

mulated as:

V (t, x, n, a) = sup
yt∈R+

(
inf

(cs)s, X̃T

L
(
t, x, n, a, (cs)s , X̃T , yt

))

= sup
yt∈R+

Ṽ (t, x, n, a, yt) (6.2)

and
V (t, x, n, a) = Ṽ (t, x, n, a, y∗t ).

It can be proved under technical conditions (see Karatzas and Shreve 1998, for details) that the
optimal contribution rate and target wealth are:

c∗s = y∗t .H(t, s).
1

2.u1
+ NC (6.3)

X̃∗
T = −y∗t .H(t, T ).

1
2.u2

+ LT . (6.4)

Formally, c∗s and X̃∗
T are obtained by offsetting the derivatives of equation (6.1) with respect to cs

and XT . The optimal Lagrange multiplier, y∗t , is such that the budget constraint (5.2) is binding:

y∗t =
E (H(t, T ).LT |Ft)− x−NC.

∫ T

t
E (H(t, s)|Ft) ds

1
2.u1

.
∫ T

t
E (H(t, s)2|Ft) ds + 1

2.u2
.E (H(t, T )2|Ft)

. (6.5)

The numerator of (6.5) is precisely the part of the benefits that are not yet financed: the expected
fair value of reserves less the current asset and less the normal cost times a financial annuity. This
quantity is called unfunded liabilities in the sequel of this paper and noted as follows:

ULt = E (H(t, T ).LT |Ft)− x−NC.

∫ T

t

E (H(t, s)|Ft) ds

︸ ︷︷ ︸
āt,T

(6.6)

where āt,T is a financial annuity of maturity T − t. It is important to note that if ULt ≤ 0 then
∗
T − LT ≥ 0, meaning that the optimal target wealth at the date of retirement is larger than the
mathematical reserve required to cover the liabilities at that date. Remark that if one is in a
situation that ULt > 0, then the optimal target value would not be large enough.
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If we insert (6.3) and (6.4) in the objective (5.1), the value function is rewritten in terms of
unfunded liabilities:

V (t, x, n, a) =
UL2

t

1
u1

.
∫ T

t
E (H(t, s)2|Ft) ds + 1

u2
.E (H(t, T )2|Ft)

(6.7)

The following propositions detail the expectations intervening in the calculation of the Lagrange
multiplier (6.5) and of the value function (6.7).

Proposition 6.1. Under the assumptions that interest rates follow (2.1), that the deflator is
defined by (4.4), and that the process defining the actuarial measure Qa,h is constant, ht = h with
h > − 1

2 , the conditional expectation of the square of the deflator is equal to:

E
(
H(t, s)2|Ft

)
=

exp
(∫ s

t

(
λ2

r + λ2
S + λ2

a

)
.du

)
.

exp
(
−βP̃ .(s− t) + n(s− t).(βP̃ − 2.rt)− σ2

r

a
.n(s− t)2

)
.

nx−Nt∑
n=1

(nx −Nt)!
(nx −Nt − n)! n!

(
kn.

(
s−tp

2h
x+t

)nx−Nt−n
.
(
1− s−tp

2h
x+t

)n
)

where βP̃ and k are constant and defined by:

βP̃ = 2.b− 4.
σr.λr

a
− 2.

σ2
r

a2

k =
(1 + h)2

(1 + 2.h)

s−tp
2h
x+t is a probability of survival under a modified measure of probability:

s−tp
2h
x+t = exp

(
−

∫ s

t

µ(x + u).(1 + 2.h).du

)

and n(s− t) is a positive decreasing function, null when s=t,

n(s− t) =
1− e−a(s−t)

a
(6.8)

The proof is provided in appendix B.

Proposition 6.2. The expectation of the deflated value of liabilities, at time t ≤ T , is:

E (H(t, T ).LT |Ft) = (nx −Nt).α.

∫ T

t
s−tp

h
x+t.EQ

(
e−
R T

t
ru.du.AT .B(T, s)|Ft

)
.ds

where

EQ
(
e−
R T

t
ru.du.AT .B(T, s)|Ft

)
= At . e

R T
t

µQ
A(u).du . B(t, s)

.e(
σAr.σr

a .(−(T−t)+n(s−t)−n(s−T )))

and n(s− t) is defined by equation (6.8).

The proof is detailed in appendix C. Note that, in the example detailed in section 7, the integrals∫ T

t
E

(
H(t, s)2|Ft

)
ds and

∫ T

t s−tp
h
x+t.EQ

(
e−
R T

t
ru.du.AT .B(T, s)|Ft

)
.ds are computed numeri-

cally.
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6.2 The best replicating strategy.
We now turn to the issue that the optimal target wealth X̃∗

T is in general not hedgeable due to
the incompleteness of the market caused by mortality and salary risk. From the previous section,
we recall that X̃∗

T depends on LT which has the following expression:

LT = E

(∫ Tm

T

H(T, s). (nx −Ns) .B.ds|FT

)

= (nx −NT ) .α.AT .

∫ Tm

T
s−T ph

x+T .B(T, s).ds.

As LT is a function both of the mortality and of the salary which are not replicable, it is easily
seen that X̃∗

T is not hedgeable. However, it is possible to find the investment strategy replicating
at best this process. We refer the interested reader to Hainaut and Devolder (2006a), in which
two conceivable ways to establish the best investment policy are studied in order to determine
the optimal asset allocation in case of pure endowment insurance contracts. Our reasoning in this
paper is based on dynamic programming (see e.g. Fleming and Rishel 1975 for details) and is
also applied in Hainaut and Devolder (2006b), which is a study of the dividend policy and the as-
set allocation of a portfolio of life insurance policies with predetermined contributions and benefits.

Let Aπ
t (x) be the set of replicable wealth processes. If (πS

t , πR
t ) denote respectively the frac-

tion of the wealth invested in stocks and rolling bonds, Aπ
t (x) is defined as follows:

Aπ
t (x) =

{(
(cs)s∈[t,T ] , XT

)
| ∃ (πS

t )t (πR
t )t Ft − adapted :

e−
R T

t
rs.ds.XT = x +

∫ T

t

e−
R s

t
ru.du.cs.ds

+
∫ T

t

e−
R s

t
ru.du.πS

s .Xs.dSs +
∫ T

t

e−
R s

t
ru.du.πR

s .Xs.dRK
s

}
.

By definition, the set Aπ
t (x) is included in At(x) and the dynamics of the replicable wealth process

are such that:

dXt =
((

rt + πS
t .νS + πR

t .νR

)
.Xt + ct

)
.dt + πS

t .σS .Xt.dWS,P f

t

+
(
πS

t .σSr − πR
t .σr.n(K)

)
.Xt.dW r,P f

t .

For a small step of time ∆t, the dynamic programming principle states that:

V (t, x, n, a) = E

[∫ t+∆t

t

u1. (c∗s −NC)2 .ds + V
(
t + ∆t, X̃∗

t+∆t, Nt+∆t, At+∆t

)
| Ft

]
.(6.9)

Given that (X̃∗
t )t is the process minimizing the value function, any other process (Xt)t ∈ Aπ

t (x) ⊂
At(x) verifies the inequality:

V (t, x, n, a) ≤ E

[∫ t+∆t

t

u1. (c∗s −NC)2 .ds + V (t + ∆t,Xt+∆t, Nt+∆t, At+∆t) | Ft

]
.(6.10)

The Ito’s lemma for jump processes (see for e.g. Øksendal and Sulem 2004, chapter one), leads to
the following expression for the expectation of the value function at time t + ∆t :

E (V (t + ∆t,Xt+∆t, Nt+∆t, At+∆t)|Ft) =

V (t, x, n, a) + E

(∫ t+∆t

t

Gπ(s,Xs, Ns, As).ds|Ft

)
+

E

(∫ t+∆t

t

(V (s,Xs, Ns, As)− V (s,Xs, Ns−, As)) .dNs|Ft

)

10



where Gπ(s,Xs, Ns, As) is the generator of the value function:

Gπ(s,Xs, Ns, As) =

Vs + a.(b− rs).Vr + µA(s).As.VA +
1
2
.σ2

r .Vrr +
1
2
.A2

s.(σ
2
A + σ2

Ar + σ2
AS).VAA

+σAr.As.σr.VAr + Xs.As.
(
σAS .πS

s .σS + σAr.
(
πS

s .σSr − πR
s .σr.n(K)

))
.VXA

+
((

rs + πS
s .νS + πR

s .νR

)
.Xs + c∗s

)
.VX + Xs.σr.

(
πS

s .σSr − πR
s .σr.n(K)

)
.VXr

+
1
2
.X2

s .
((

πS
s .σS

)2
+

(
πS

s .σSr − πR
s .σr.n(K)

)2
)

.VXX .

Vs, VX , Vr, VA, VXX , VXr, VXA, Vrr, VAA are partial derivatives of first and second orders with
respect to time, fund, wage and interest rate. When ∆t tends to zero, minimizing the right hand
term of the inequality (6.10) is equivalent to minimizing the generator Gπ(s,Xs, Ns, As). The in-
vestment strategy replicating at best the process X̃∗

t is then obtained by deriving Gπ(t,Xt, Nt, At)
with respect to πS

t and πR
t :

πS∗
t =

(
− νR.σSr

σ2
S .σr.n(K)

− νS

σ2
S

)
.

VX

VXX
.

1
Xt

− σAS

σS
.
VXA

VXX
.
At

Xt
(6.11)

πR∗
t =

(
− νS .σSr

σ2
S .σr.n(K)

− νR

σ2
r .n(K)2

.

(
1 +

σ2
Sr

σ2
S

))
.

VX

VXX
.

1
Xt

+
(

σAr

σr.n(K)
− σAS .σSr

σS .σr.n(K)

)
VXA

VXX
.
At

Xt
+

1
n(K)

.
VXr

VXX
.

1
Xt

. (6.12)

As the value function is known (see expression (6.7)), it suffices to derive it with respect to Xt, rt

and At to obtain the optimal part of the funds invested in stocks and bonds:

πS∗
t =

(
νR.σSr

σ2
S .σr.n(K)

+
νS

σ2
S

)
.
ULt

Xt
+

σAS

σS
.
E (H(t, T ).LT |Ft)

Xt
(6.13)

πR∗
t =

(
νS .σSr

σ2
S .σr.n(K)

+
νR

σ2
r .n(K)2

.

(
1 +

σ2
Sr

σ2
S

))
.
ULt

Xt

−
(

σAr

σr.n(K)
− σAS .σSr

σS .σr.n(K)

)
.
E (H(t, T ).LT |Ft)

Xt

+
1

n(K)
.
VXr

VXX
.

1
Xt︸ ︷︷ ︸

correction term

. (6.14)

The correction term has no simple analytic expression:

1
n(K)

.
VXr

VXX
.

1
Xt

=
1

n(K).Xt
.

(
NC.

∫ T

t

∂B(t, s)
∂rt

.ds− ∂E (H(t, T ).LT |Ft)
∂rt

)
+

ULt

n(K).Xt
.

(
1
u1

.
∫ T

t

∂E(H(t,s)2|Ft)
∂rt

ds + 1
u2

.
∂E(H(t,T )2|Ft)

∂rt

)

(
1
u1

.
∫ T

t
E (H(t, s)2|Ft) ds + 1

u2
.E (H(t, T )2|Ft)

)2

where

∂B(t, s)
∂rt

= −n(s− t).B(t, s)
∂E

(
H(t, s)2|Ft

)

∂rt
= −2.n(s− t).E

(
H(t, s)2|Ft

)

11



∂E (H(t, T ).LT |Ft)
∂rt

= −(nx −Nt).α.

∫ T

t
s−tp

h
x+s.n(T − s).EQ

(
e−
R T

t
ru.du.AT .B(T, s)|Ft

)
.ds

An interesting characteristic of this correction term is that it tends to zero when t → T . Indeed,
all terms intervening in the numerator of the correction term are integrals or function of n(T − t)
which tend to zero when t → T .

7 Example.
We consider a male population; age 50, of n50 =10000 affiliates, and who earns a wage At=0 of
2500 Eur. We assume that all individuals go on retirement at 65 years and receive till their death,
a continuous annuity equal to α = 20% of the last salary AT . Market parameters are presented
in the table 7.1.

Table 7.1: Parameters.

a 12.72% σSR -0.10%
b 3.88% νS 5.35%
σr 1.75% µA 2.00%
λr -2.36% σAr 2.00%

rt=0 2.00% σAS 2.00%
K 8 years µQ

A 2.00%
νR 2.77% σA 5.00%
λS 34.94% λa -4.54%
σS 15.24% h 0.0

The normal cost is set to

NC =
E (H(0, T ).LT |F0)

ā0,T
= 26.763 Eur

According to equation (6.7), this is the normal cost minimizing the value function at time t = 0
(indeed, it implies that ULt=0 = 0 since the initial wealth is null at t = 0). Three choices of
weights u1, u2 are tested. In the first test, the asset manager seeks mainly to limit the volatility
of the contribution rate : u1 = 1, u2 = 0.1. In the second case studied, u1 and u2 are set equal
to one. In the last test, the aim is mainly to limit the volatility of the terminal surplus : u1 = 1,
u2 = 10. We have opted for Monte Carlo simulations. 5000 sample paths are generated for each
test and the discretization step of time ∆t is set to one year (Contributions and asset allocation
are both changed once a year). In the following figures, we compare resp. the average contribution
rates and the average negative unfunded liabilities (−ULt which is equal at time T to the terminal
surplus, see eq. (6.6) ).
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Figure 7.1: Contribution rates.
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Figure 7.2: −ULt (% of the fund).
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For each set of weights, the contribution rate decreases on average. The higher is the weight u2

granted to minimize the terminal surplus variation, the higher is the decrease of the contribution
rate and the lower is the average negative unfunded liabilities.
The next figure depicts the evolution of the average asset allocation for u1 = 1 and u2 = 0.1
as obtained in equations (6.13) and (6.14). Over the first nine years, huge amounts of cash are
borrowed and invested in stocks and bonds. This short position in cash is reduced with time.
One year before T , the asset allocation is as follows: 68.3% in bonds, 21.3% in cash and 10.4%
in stocks. We also observe that weights mainly influences the contribution rate and the terminal
surplus: the average asset allocation for the two other sets of weights are nearly identical to the
one displayed in figure (7.3).
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Figure 7.3: Asset mix for u1 = 1 and u2 = 10.
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8 Conclusions.
In this paper, we have investigated a model for defined benefits pension plans which incorporates
stochastic interest rates, mortality and salary. In particular, we have studied the problem of
pension funding from the perspective of an asset manager who wishes to minimize the deviation
of contributions and terminal surplus from target ones, under a budget constraint and using a
quadratic criterion.

The presence of stochastic mortality and salary entails that the market of pension fund liabil-
ities is incomplete and the set of deflators used to valuate liabilities counts more than one element.
In order to apply the Cox & Huang martingale method, it is then necessary to choose a deflator
that reflects the pricing preferences of the fund manager. This assumption is not really impeding
and corresponds to the actuarial practice. Another drawback of the market incompleteness is that
the optimal wealth process found by the martingale approach is not perfectly replicable. However,
we can find the optimal investment hedging this process at best by a reasoning based on the
dynamic programming principle.

We have seen that the optimal contribution rate is the sum of the normal cost and of the unfunded
liabilities amortized by a factor, function of the market conditions. The optimal investment strat-
egy also depends on the unfunded liabilities; in particular: for initial negative unfunded liabilities,
the optimal target wealth will be larger than the mathematical reserve at retirement date nec-
essary to cover the promised liabilities. An illustrative example has been given which shows the
dependence between the contribution rate and the weights respectively given to the minimization
of the contribution risk and of the surplus risk.

Appendix A.
As mentioned early in section 4.4, the expected value of the deflator, E (H(t, s) | Ft), is the price
of a zero coupon bond B(t, s), because of independency of W r,P f

u , WS,P f

t and WA,P a

t . If interest
rates are driven by a Vasicek model (for details on this model, we refer to Cairns 2004), the price
of a zero coupon bond is given by

B(t, s) = exp
(
−β.(s− t) + n(s− t).(β − rt)− σ2

r

4.a
.n(s− t)2

)
(8.1)

14



where

β = bQ − σ2
r

2.a2
= b− σr.

λr

a
− σ2

r

2.a2
(8.2)

and n(s− t) is a positive decreasing function, null when s = t :

n(s− t) =
1
a
.
(
1− e−a.(s−t)

)
.

The derivative of the bond price with respect to rt , used in paragraph 6.2 to calculate the
correction term of the optimal bonds strategy (6.14), is:

∂B(t, s)
∂rt

= −n(s− t).B(t, s).

Appendix B.
This appendix presents the proof of the proposition 6.1. The deflator (4.4) can be rewritten as
follows:

H(t, s) = exp
(
−

∫ s

t

ru.du− 1
2
.

∫ s

t

||Λ||2.du−
∫ s

t

Λ.dWP
u

)
.

exp
(∫ s

t

ln (1 + h) .dNu −
∫ s

t

h.λN,u.du

)

where Λ = (λr, λS , λa)′ and WP
u =

(
W r,P f

u ,WS,P f

u ,WA,P a

u

)′
. EP

(
H(t, s)2|Ft

)
can therefore

be decomposed in two independent terms abusively called in the sequel financial and actuarial
components which are next calculated separately:

EP
(
H(t, s)2|Ft

)
= EP

(
exp

(
−2.

∫ s

t

ru.du−
∫ s

t

||Λ||2.du− 2.

∫ s

t

Λ.dWP
u

)
|Ft

)

︸ ︷︷ ︸
Financial component

EP

(
exp

(∫ s

t

ln
(
(1 + h)2

)
.dNu −

∫ s

t

2.h.λN,u.du

)
|Ft

)

︸ ︷︷ ︸
Actuarial component

(8.3)

Calculation of the financial component.
The following random variable defines a change of measure from P to P̃ :

(
dP̃

dP

)

t

= exp
(
−

∫ t

0

2.Λ.dWP
u − 1

2
.

∫ t

0

||2.Λ||2.du

)

and under P̃ , the following elements are Brownian motions:

dW̃ r,P̃
u = dW r,P f

u + 2.λr.du

dW̃S,P̃
u = dWS,P f

u + 2.λS .du

dW̃A,P̃
u = dWA,P a

u + 2.λa.du.

The financial component of (8.3) becomes:

EP

(
exp

(
−2.

∫ s

t

ru.du−
∫ s

t

||Λ||2.du− 2.

∫ s

t

Λ.dWP
u

)
|Ft

)

= exp
(∫ s

t

||Λ||2.du

)
.EP̃

(
e−
R s

t
2.ru.du|Ft

)
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and as 2.ru has mean reverting dynamics under P̃ ,

d (2.ru) = a.

(
2.b− 4.

σr.λr

a
− 2.ru

)
.dt + 2.σr.dW̃ r,P̃

u ,

it suffices to apply the Vasicek’s formula to obtain that:

EP̃
(
e−
R s

t
2.ru.du|Ft

)
= exp

(
−βP̃ .(s− t) + n(s− t).(βP̃ − 2.rt)− σ2

r

a
.n(s− t)2

)

where

βP̃ = 2.b− 4.
σr.λr

a
− 2.

σ2
r

a2

and
n(s− t) =

1
a
.
(
1− e−a.(s−t)

)
.

Calculation of the actuarial component.
By the assumption that h > − 1

2 , it is possible to define a positive constant k:

k =
(1 + h)2

(1 + 2.h)

such that the actuarial component of equation (8.3) can be rewritten as:

EP

(
exp

(∫ s

t

ln
(
(1 + h)2

)
.dNu −

∫ s

t

2.h.λN,u.du

)
|Ft

)
=

EP a


exp

(∫ s

t

ln(k).dNu

)
. exp

(∫ s

t

ln (1 + 2.h) .dNu −
∫ s

t

2.h.λN,u.du

)

︸ ︷︷ ︸
|Ft


(8.4)

dQa,2.h

dP a

The term dQa,2.h

dP a defines a new actuarial measure Qa,2.h, under which the following centered
process

Ma,2.h
t = Nt −

∫ t

0

(nx −Nu−) .µ(x + u).(1 + 2.h).du

is a martingale. The expected number of survivors at time s, conditionally to instant t is given
by:

EQa,2.h

((nx −Ns)|Ft) = (nx −Nt). exp
(
−

∫ s

t

µ(x + u).(1 + 2.h).du

)

︸ ︷︷ ︸
s−tp2.h

x+t

Equation (8.4) is finally rewritten as the expectation under Qa,2.h of a constant k to the power
Ns −Nt, the number of deaths.

EP

(
exp

(∫ s

t

ln
(
(1 + h)2

)
.dNu −

∫ s

t

2.h.λN,u.du

)
|Ft

)
= EQa,2.h (

kNs−Nt |Ft

)
.
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Under Qa,2.h, the probability of observing n deceases in the interval of time (t, s) is a binomial
variable of parameters (nx −Nt, 1− s−tp

2.h
x+t) . The expected value of kNs−Nt is then computable

by the following formula:

EP

(
exp

(∫ s

t

ln
(
(1 + h)2

)
.dNu −

∫ s

t

2.h.λN,u.du

)
|Ft

)

= EQa,2.h (
kNs−Nt |Ft

)

=
nx−Nt∑

n=1

(nx −Nt)!
(nx −Nt − n)! n!

(
kn.

(
s−tp

2.h
x+t

)nx−Nt−n
.
(
1− s−tp

2.h
x+t

)n
)

.

Appendix C.
The independence between mortality and the other random variables of our model entails that the
fair value of the pension fund liabilities is:

LT = E

(∫ Tm

T

H(T, s). (nx −Ns) .B.ds|FT

)

= (nx −NT ) .α.AT .

∫ Tm

T
s−T ph

x+T .B(T, s).ds

and that the expectation at time t ≤ T of LT equals:

E (H(t, T ).LT |Ft)

= α. (nx −Nt) .

∫ Tm

T
s−tp

h
x+t.EQ

(
e−
R T

t
ru.du.AT .B(T, s)|Ft

)
.ds.

The sequel of this paragraph focus then on the calculation of EQ
(
e−
R T

t
ru.du.AT .B(T, s)|Ft

)
.

This step is based on the following four observations. Firstly, AT is the Dolean-Dade exponential,
solution of the SDE (4.1):

AT = At. exp

(∫ T

t

(
µQ

A(u)− σ2
Ar

2
− σ2

AS

2
− σ2

A

2

)
du

)

. exp

(
+

∫ T

t

σA.dWA,Qa,λa

u +
∫ T

t

σArdW r,Qf

u +
∫ T

t

σASdWS,Qf

u

)
. (8.5)

Secondly, as detailed in appendix A, the price of a zero coupon bond is given by:

B(T, s) = exp
(
−β.(s− T ) + n(s− T ).(β − rT )− σ2

r

4.a
.n(s− T )2

)
(8.6)

where β is defined by equation (8.2). The last useful elements are related to the fact that interest
rates are Gaussian in the Vasicek model:

rT =
(
1− e−a.(T−t)

)
.bQ + e−a.(T−t).rt +

∫ T

t

σr.e
−a.(T−u).dW r,Qf

u (8.7)

∫ T

t

rudu = bQ.(T − t) + (rt − bQ).n(T − t) + σr.

∫ T

t

n(T − u).dW r,Qf

u (8.8)

The proof of such results can be found in Cairns (2004), appendix B. Combining expressions (8.5),
(8.6), (8.7) and (8.8) allows us to rewrite e−

R T
t

ru.du.AT .B(T, s) as an exponential of independent
normal random variables and the calculation of EQ

(
e−
R T

t
ru.du.AT .B(T, s)|Ft

)
directly results

from the expectation of lognormal variables.
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Appendix D.
In the example presented in this paper, mortality rates obey to a Gompertz-Makeham distribution.
The parameters are those defined by the Belgian regulator for the pricing of a life insurance
purchased by a man. For an individual of age x, the mortality rate is :

µ(x) = aµ + bµ.cx aµ = − ln(sµ) bµ = ln(gµ). ln(cµ)

where the parameters sµ, gµ, cµ take the values showed in the table 8.1.

Table 8.1: Belgian legal mortality, for life insurance products and for a male population.
sµ: 0.999441703848
gµ: 0.999733441115
cµ : 1.116792453830
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