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Standard Fractional Brownian Motion

(B(t), t ≥ 0) is a standard fractional Brownian motion with

H ∈ (0, 1) if it is a Gaussian process with continuous sample paths

that satisfies

E [B(t)] = 0

E [B(s)B(t)] =
1

2

(
t2H + s2H − |t − s|2H

)
for all s, t ∈ R+.

The formal derivative dB
dt is called fractional Gaussian noise.
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Some properties

1. Self-similarity

(BH(αt), t ≥ 0)
L∼ (αHBH(t), t ≥ 0)

for α > 0

2. Long range dependence for H ∈ (1
2 , 1)

r(n) = E[BH(1)(BH(n + 1)− BH(n))]

Σ∞
n=0r(n) = ∞
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3. A sample path property

(BH(t), t ≥ 0) is of unbounded variation so the sample paths

are not differentiable a.s.

Σi |BH(t
(n)
i+1)− BH(t

(n)
i )|p →


0 pH > 1

c(p) pH = 1

+∞ pH < 1

c(p) = E|BH(1)|p

(t
(n)
i , i = 0, 1, · · · , n) is a sequence of nested partitions of [0, 1]
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p = 2 and H ∈ (1
2 , 1) =⇒ zero quadratic variation

p = 2 and H ∈ (0, 1
2) =⇒ infinite quadratic variation

FBM is not a semimartingale for H 6= 1
2
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Law of the Iterated Logarithm for a

fractional Brownian motion

lim sup
t→∞

BH(t)

(2 t2H log log t)
1
2

= kH a.s.

where kH is a constant that only depends on H
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Some Development of Fractional Brownian Motion

I. J. Schonberg 1937

A. N. Kolmogorov 1940

H. E. Hurst 1951

B. Mandelbrot 1965

Tyrone E. Duncan Fractional Brownian Motion and Applications



Rainfall in the Nile River Valley

(Genesis 41:29-30) “Joseph said unto Pharoah.

There come seven years of great plenty throughout all the land of

Egypt; and there shall arise after them seven years of famine.”

(Genesis 7:11-12) “In the six hundredth year of Noah’s life, the

windows of heaven were opened, and the rain was upon the earth

forty days and forty nights.”
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Hurst considered the data of annual rainfall in the Nile valley for

about 850 years (622-1469). For n successive years, compute the

deviation of the cumulative rainfall in the first k years from the

linear function whose slope is the empirical (sample) mean for the n

years. Hurst noted that the range of these deviations normalized by

the (sample) standard deviation behaved as cnH for H = 0.7 and

the sum of n successive years of rainfall had approximately the same

law as nHx1 where x1 was the first year’s rainfall in these n years.
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Hurst advanced the idea of the Aswan High Dam that was

constructed 1959-1970. He was nicknamed Abu Nil (Father of the

NIle). The reservoir is Lake Nasser that stretches 300 miles

upstream of the dam into northern Sudan.
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B. Mandelbrot studied self similar “pathological” curves (fractals).

A fractal curve retains some general pattern of irregularity no matter

how it is magnified, e.g. snowflakes, tree barks.
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Telecommunications

Traffic occurs in bursts with idle periods in between, e.g. lots of

very short bursts, many long bursts and some very long bursts.

(1994, Leland, Taqqu, Willinger and Wilson, On the self-similar

nature of ethernet traffic)
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Epilepsy

One percent of populations in industrialized countries

Ten percent of populations in developing countries
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1/f Noise

Let X be a stationary stochastic process with spectral density

S(f ) = c
f a

where a > 0.

The Fourier transform of 1
tb is c

f b+1

Electronic devices

Flicker noise

Economic data
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Fractional Calculus

Let (V , ‖ · ‖, 〈·, ·〉) be a separable Hilbert space and let α ∈ (0, 1).

If ϕ ∈ L1([0,T ],V ) then the left-sided and the right-sided fractional

(Riemann-Liouville) integrals of ϕ are defined (for almost all

t ∈ [0,T ]) by

(
Iα
0+ϕ

)
(t) =

1

Γ(α)

∫ t

0
(t − s)α−1 ϕ(s) ds

and

(
Iα
T−ϕ

)
(t) =

1

Γ(α)

∫ T

t
(s − t)α−1ϕ(s) ds

respectively, where Γ(·) is the gamma function.
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The inverse operators of these fractional integrals are called

fractional derivatives and can be given by their respective Weyl

representations

(
Dα

0+ψ
)
(t) =

1

Γ(1− α)

(
ψ(t)

tα
+ α

∫ t

0

ψ(t)− ψ(s)

(t − s)α+1
ds

)
and

(
Dα

T−ψ
)
(t) =

1

Γ(1− α)

(
ψ(t)

(T − t)α
+ α

∫ T

t

ψ(s)− ψ(t)

(s − t)α+1
ds

)
where ψ ∈ Iα

0+

(
L1 ([0,T ],V )

)
and ψ ∈ Iα

T−
(
L1 ([0,T ],V )

)
respectively.
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FBM covariance in terms of fractional calculus

Let s, t ∈ [0,T ] and ua(r) = ra for a ∈ R.

E[BH(s)BH(t)] = ρ(H)

∫ T

0
u2

1
2
−H

(r)

(I
H− 1

2
T− uH− 1

2
1[0,s])(r)(I

H− 1
2

T− uH− 1
2
1[0,t])(r)dr

where ρ(H) =
Γ2(H− 1

2
)H(2H−1)

β(H− 1
2
,2−2H)

and β(·, ·) is

the beta function

β(a, b) =
Γ(a)Γ(b)

Γ(a + b)
,

so ρ(H) =
2HΓ(H+ 1

2
)Γ( 3

2
−H)

Γ(2−2H) .

Remark E[BH(s)BH(t)] is an analytic function of H.
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Relation between Fractional Brownian Motion and

Brownian Motion

W (t) =

∫ t

0
c−1
H sH− 1

2 D
H− 1

2
0+ (u 1

2
−H1[0,t])(s)dB(s)

is a standard Wiener process (Brownian motion) and inversely

B(t) =

∫ t

0
cHsH− 1

2 I
H− 1

2
0+ (u 1

2
−H1[0,t])(s)dW (s)

is a standard fractional Brownian motion.

Formally the two expressions can be written as

dW

dt
= K̃−1

H

dB

dt

and
dB

dt
= K̃H

dW

dt
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If H ∈ (1/2, 1) then it is easily verified that H ⊃ H̃ where H̃ is the

Banach space of Borel measurable functions with the norm | · |H̃
given by

|ϕ|2H̃ :=

∫ T

0

∫ T

0
‖ϕ(u)‖ ‖ϕ(v)‖φH(u − v) du dv

where φH(u) = H(2H − 1)|u|2H−2 and it is elementary to verify

that H̃ ⊃ Lp ([0,T ],V ) for p > 1/H and, in particular, for p = 2.
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If ϕ ∈ H̃ and H > 1/2, then

E

∥∥∥∥∫ T

0
ϕ dβ

∥∥∥∥2

=

∫ T

0

∫ T

0
〈ϕ(u), ϕ(v)〉φH(u − v) du dv .
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Deterministic linear functionals for FBM

If H ∈ (1
2 , 1), the paths of an FBM are ‘smoother’ than the paths of

a BM, so the Hilbert space of deterministic linear functionals for

this FBM contains ‘rougher’ functionals than any for a BM.

If H ∈ (0, 1
2), the paths of an FBM are ‘rougher’ than the paths of a

BM, so the Hilbert space of deterministic linear functionals for this

FBM has ‘smoother’ functionals than any nonsmooth functional for

a BM.
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Stochastic Calculus

A Hilbert space of deterministic integrands

Let H ∈ (0, 1) be fixed and ua(s) = sa for a ∈ R.

L̃2
H([0,T ]) is the linear space of functions (for H ∈ (0, 1

2)) and the

linear space of distributions (for H ∈ (1
2 , 1)) such that F ∈ L̃2

H if

〈F ,F 〉L̃ = |F |2
L̃2

H

= ρ(H)

∫ T

0
u2

1
2
−H

(s)((I
H− 1

2
T− uH− 1

2
F )(s))2ds

<∞,

where ρ(H) =
2HΓ(H+ 1

2
)Γ( 3

2
−H)

Γ(2−2H) .
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Wiener integrals

If f , g ∈ L̃2
H , then

∫
fdBH and

∫
gdBH are zero mean Gaussian

random variables with

E[

∫
fdBH

∫
gdBH ] = 〈f , g〉H̃
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Let H ∈ (1
2 , 1).

L2
H([0,T ]) is the linear space of measurable generalized processes

such that X ∈ L2
H if

〈X ,X 〉H = |X |2L2
H

= E[

∫ T

0
u2

1
2
−H

(s)((I
H− 1

2
T− uH− 1

2
X )(s))2ds]

<∞
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The linear space S is the family of smooth, cylindrical, V -valued

random variables on (Ω,F ,P) such that if F ∈ S, then it has the

form

F =
n∑

j=1

fj

(∫ 1

0
γ1jdBH , . . . ,

∫ 1

0
γnj jdBH

)
ηj (1)

where ηj ∈ V , γkj ∈ L2
φH

([0, 1],L2(U,R)), fj ∈ C∞
p (Rnj ) for

j ∈ {1, . . . , n} and k ∈ {1, . . . , nj} and

C∞
p (Rn) = {f : Rn → R | f ∈ C∞ and f and all of its derivatives have

polynomial growth}.
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Path derivative to construct a stochastic integral

The derivative D : S → L2
H is the linear operator acting on smooth

cylindrical random variables F as

DtF = Σn
j=1

∂F

∂xj
(

∫
γ1dBH , · · · ,

∫
γndBH)γj(t)

Remark The derivative operator D can be extended in L2(Ω) to a

closed linear operator

D : D1,2
H → L2

H

where D1,2
H = Dom(D)
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Let X ∈ L2
H . The real-valued generalized process X is integrable

with respect to BH if

F → 〈X ,DF 〉L2
H

is continuous on S with the L2(Ω) norm topology.∫
XdBH is a zero mean random variable such that

〈X ,DF 〉L2
H

= E[

∫
XdBHF ]

for each F ∈ S

The stochastic integral is a dual of D.
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A Hilbert space of integrands

Let H ∈ (1
2 , 1). The linear space L1,2

H ([0,T ]) is the family of

generalized processes

(X (t), t ∈ [0,T ]) such that

1. X ∈ L2
H ;

2. DX exists and is jointly measurable;

3.

|X |
L1,2

H
= 〈X ,X 〉H

= 〈X ,X 〉L2
H

+ E
∫ T

0

∫ T

0
u2

1
2
−H

(s) u2
1
2
−H

(t)

(I
H− 1

2
T− uH− 1

2
(q) (I

H− 1
2

T− uH− 1
2
(r)

DrX (q))(s))(t))2 dsdt <∞.
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Stochastic integrals

If X ∈ L1,2
H ([0,T ]), then X is integrable with respect to BH and∫ T

0 XdBH is a zero mean random variable with finite second

moment.

If X ,Y ∈ L1,2
H , then

E[

∫ T

0
XdBH

∫ T

0
YdBH ] = 〈X ,Y 〉
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If G ∈ D1,2
H and γ ∈ L̄2

H , then

∫ 1

0
G γ dBH = G

∫ 1

0
γ dBH

−
∫ 1

0

∫ 1

0
DsG γ(t) φH(s − t)dsdt.

Remark This equality can be used to define a Stratonovich integral

(the first integral on the RHS) and give its relation to the

corresponding Itô integral (the integral on the LHS).
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An elementary Itô formula for H ∈ (1
2 , 1)

If f ∈ C 2, then

f (BH(T ))− f (BH(0)) =

∫ T

0
f ′(BH(s))dBH(s)

+ H

∫ T

0
s2H−1f ′′(BH(s))ds

Formally letting H = 1
2 recovers the usual Itô formula.

Recall that an FBM with H ∈ (1
2 , 1) has zero quadratic

variation.
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Stochastic Differential Equations

dX (t) = a(t,X (t))dt + b(t,X (t))dBH(t)

X (0) = X0

Find a solution.
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Explicit solutions for bilinear equations
Scalar

dX (t) = aX (t)dt + bX (t)dBH(t), X (0) = X0 > 0

for a ∈ R, b ∈ R \ {0}, H ∈ (1
2 , 1)

X (t) = X0 exp(at + bBH(t)− 1

2
b2t2H)

limt→∞ X (t) = 0, a.s., so the FBM always stabilizes the

deterministic equation. Letting H = 1
2 gives the solution for BM.
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Explicit solutions for bilinear equations
Multidimensional commuting transformations

dX (t) = X (t)(Adt + CdBH(t)), X (0) = X0

Assume that [A,C ] = 0, A,C ∈ L(Rn)

X (t) = X0 exp(At + C BH(t)− 1

2
C 2 t2H)

Tyrone E. Duncan Fractional Brownian Motion and Applications



Bilinear equations with some noncommuting operators

dX (t) = X (t)(A dt + C dBH(t)), X (0) = I

A,C ,X (t) ∈ L(Rn), (BH(t), t ≥ 0) is a real-valued standard

fractional Brownian motion with H ∈ (1
2 , 1)

Assume [A, [A,C ]] = [C , [A,C ]] = 0. Find an explicit solution.
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A special case of the Baker-Campbell-Hausdorff formula

Let K and L be linear operators in Rn

If [K , [K , L]] = [L, [K , L]] = 0 then

eKeL = eK+L+ 1
2
[K ,L] = eK+Le

1
2
[K ,L]

or equivalently

eKeLe
−1
2

[K ,L] = eK+L

where [K , L] = KL− LK .

Tyrone E. Duncan Fractional Brownian Motion and Applications



For the bilinear equation described above, a solution is the process

(X̂ (t), t ≥ 0) where

X̂ (t) =
6∏

j=1

eZj (t)

Z1(t) = tA Z2(t) = C BH(t)

Z3(t) = −[A,C ]

∫ t

0
BH(s)ds Z4(t) =

1

2
C [A,C ] t2H+1

Z5(t) = − 1

2(2H + 2)
[A,C ]2 t2H+2 Z6(t) = −1

2
C 2 t2H
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Two examples of bilinear equations

dX (t) = X (t)(A dt + C dBH(t)), X (0) = I

Let

X (t),A,C ∈ L(R3)

A0 = C0 = I

A1 = E12 + E13

C1 = E23

where Eij is the elementary matrix with 1 in the (i , j) position and

zeros elsewhere.
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Case 1: Let A = A0 + A1, C = C0 + C1, then

lim
t→∞

X (t) = 0.

Case 2: Let A = A1, C = C1, then

lim sup
t→∞

X̂13(t) = +∞ a.s.

lim inf
t→∞

X̂13(t) = −∞ a.s.
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Fractional Brownian Motion in a Hilbert Space

Definition

Let (Ω,F ,P) be a complete probability space. A cylindrical process

〈B, ·〉 : Ω×R+ × V → R on (Ω,F ,P) is called a standard

cylindrical fractional Brownian motion with the Hurst parameter

H ∈ (0, 1) if

1 For each x ∈ V \ {0}, 1
‖x‖〈B(·), x〉 is a standard scalar

fractional Brownian motion with the Hurst parameter H.

2 For α, β ∈ R and x , y ∈ V

〈B(t), αx + βy〉 = α〈β(t), x〉+ β〈B(t), y〉 a.s. P.
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Definition

Let G : [0,T ] → L(V ) be Borel measurable, (en, n ∈ N) be a

complete orthonormal basis in V , G (·)en ∈ H for n ∈ N, and B be

a standard cylindrical fractional Brownian motion. The stochastic

integral
∫ T
0 G dB is defined as∫ T

0
G dB :=

∞∑
n=1

∫ T

0
Gen dβn

provided the infinite series converges in L2(Ω).
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Linear Stochastic Equations in a Hilbert Space

Some results are reviewed for a linear stochastic differential equation

with a cylindrical fractional Brownian motion whose solution is often

called a fractional Ornstein-Uhlenbeck process. This process is a

mild solution of the linear stochastic equation

dZ (t) = AZ (t) dt + Φ dB(t)

Z (0) = x

where Z (t), x ∈ V , (B(t), t ≥ 0) is a standard cylindrical fractional

Brownian with H ∈ (0, 1), Φ ∈ L(V ), A : Dom(A) → V ,

Dom(A) ⊂ V , and A is the infinitesimal generator of a strongly

continuous semigroup (S(t), t ≥ 0) on V .
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A mild solution is

Z (t) = S(t)x +

∫ t

0
S(t − r)Φ dB(r)

= S(t)x + Ẑ (t) .
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Theorem

If H ∈ (1/2, 1), S(t)Φ ∈ L2(V ) for each t > 0 and∫ T0

0

∫ T0

0
u−αv−α|S(u)Φ|L2(V )|S(v)Φ|L2(V )φh(u − v) du dv <∞

for some T0 > 0 and α > 0 then there is a Hölder continuous

V -valued version of the process (Ẑ (t), t ≥ 0) with Hölder exponent

β < α where Ẑ is the stochastic convolution. If (S(t), t ≥ 0) is an

analytic semigroup then there is a version of the process

(Ẑ (t), t ∈ [0,T ]) with Cβ ([0,T ],Vδ) sample paths for each T > 0

and β + δ < α.
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Theorem

Let (S(t), t ≥ 0) be an analytic semigroup, H ∈ (0, 1/2) and

|S(t)Φ|L2(V ) ≤ ct−γ

for t ∈ [0,T ], some c > 0, and γ ∈ [0,H]. Let α ≥ 0 and δ ≥ 0

satisfy

α+ β + γ < H ,

then there is a version of the process (Ẑ (t), t ∈ [0,T ]) with

Cα ([0,T ],Vδ) sample paths. If it is assumed instead that

Φ ∈ L2(V ) and α+ δ < H then the process
(
Ẑ (t), t ∈ [0,T ]

)
has

a Cα ([0,T ],Vδ) version for all α ≥ 0 and δ ≥ 0. In particular,

there is a Cα ([0,T ],V ) version for 0 < α < H.
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Let KH(t, s) for 0 ≤ s ≤ t ≤ T be the real-valued kernel function

KH(t, s) = cH(t − s)H−
1
2

+ cH

(
1

2
− H

) ∫ t

s
(u − s)H−

3
2

(
1−

( s

u

) 1
2
−H

)
du

where

cH =

[
2HΓ

(
H + 1

2

)
Γ

(
3
2 − H

)
Γ (2− 2H)

] 1
2

and H ∈ (0, 1). If H ∈ (1/2, 1), then KH has a simpler form as

KH(t, s) = cH

(
H − 1

2

)
s

1
2
−H

∫ t

s
(u − s)H−

3
2 uH− 1

2 du .
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Define the integral operator KH induced from the kernel KH by

KHh(t) =

∫ t

0
KH(t, s)h(s) ds

for h ∈ L2 ([0,T ],V ). It is well-known that

KH : L2 ([0,T ],V ) → I
H+ 1

2
0+

(
L2 ([0,T ],V )

)
is a bijection.
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KH can be described as

KHh(s) = cH I 2H
0+

(
u 1

2
−H I

1
2
−H

0+

(
uH− 1

2
h
))

(s) (2)

for H ∈ (0, 1/2] and

KHh(s) = cH I 1
0+

(
uH− 1

2
I
H− 1

2
0+

(
u 1

2
−Hh

))
(s) (3)

for H ∈ [1/2, 1) where ua(s) = sa for s ≥ 0 and a ∈ R.

cH =

[
2HΓ

(
H + 1

2

)
Γ

(
3
2 − H

)
Γ (2− 2H)

] 1
2

, (4)

cH = cHΓ(2H) ,
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The inverse operator, K−1
H for the two cases is given by

K−1
H ϕ(s) = c−1

H s
1
2
−HD

1
2
−H

0+

(
uH− 1

2
D2H

0+ϕ
)

(s)

for H ∈ (0, 1/2] and

K−1
H ϕ(s) = c−1

H sH− 1
2 D

H− 1
2

0+

(
u 1

2
−HD2H

0+ϕ
)

(s)

for H ∈ [1/2, 1) and ϕ ∈ I
H+ 1

2
0+

(
L2 ([0,T ],V )

)
.

Note that if ϕ ∈ H1 ([0,T ],V ), the Sobolev space, then

K−1
H ϕ(s) = c̄−1

H sH− 1
2 I

1
2
−H

0+

(
u 1

2
−Hϕ

′
)

(s) (5)
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Absolute Continuity of Measures

Theorem

Let H ∈ (0, 1) and T > 0 be fixed and let (u(t), t ∈ [0,T ]) be a

V -valued, (Ft)-adapted process such that

1 ∫ T

0
‖u(t)‖ dt <∞ a.s. P

and

2

U(t) :=

∫ t

0
u(s) ds ∈ I

H+ 1
2

0+

(
L2 ([0,T ],V )

)
a.s. P .
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Furthermore, it is assumed that

Eξ(T ) = 1

where

ξ(T ) = exp

[∫ T

0

〈
K−1

H (U)(t), dW (t)
〉
− 1

2

∫ T

0

∥∥K−1
H (U)(t)

∥∥2
dt

]
where (W (t), t ∈ [0,T ]) is a standard cylindrical Wiener process in

V .
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Then the process
(
B̃(t), t ∈ [0,T ]

)
given by

B̃(t) := B(t)− U(t)

is a standard cylindrical fractional Brownian motion in V with the

Hurst parameter H on the probability space
(
Ω,F , P̃

)
where

dP̃

dP
= ξ(T ) a.s.
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W̃ (t) := W (t)−
∫ t

0
K−1

H (U)(s) ds

is a standard cylindrical Wiener process in V . Let

β̃n(t) := 〈B(t), en〉 − 〈U(t), en〉

and

w̃n(t) = 〈W (t), en〉 −
〈∫ t

0
K−1

H (U)(s) ds, en

〉
.

It follows that∫ t

0
KH(t, s) dw̃n(s) =

∫ t

0
KH(t, s) dwn(s)−

∫ t

0
KH(t, s)

〈
K−1

H (U)(s), en

〉
ds

(6)

= βn(t)−
〈∫ t

0
KH(t, s)

(
K−1

H (U)(s)
)

ds, en

〉
= βn(t)−

〈
KHK

−1
H (U)(t), en

〉
= βn(t)− 〈U(t), en〉 = β̃n(t) .
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Semilinear Stochastic Equations in a Hilbert Space

The following semilinear stochastic equation is considered:

dX (t) = (AX (t) + F (X (t))) dt + Φ dB(t)

where t ∈ R+, X (t),X0 ∈ V , (B(t), t ≥ 0) is a standard cylindrical

fractional Brownian motion with the Hurst parameter H ∈ (0, 1),

Φ ∈ L(V ), A : Dom(A) → V , Dom(A) ⊂ V , and A is the

infinitesimal generator of a strongly continuous semigroup

(S(t), t ≥ 0) on V . The function F : V → V is nonlinear but for

the applications to stochastic partial differential equations it is more

useful to assume that F is only defined on a (dense) subspace of V .

So, let (E , ‖ · ‖E ) be a separable Banach space that is continuously

embedded in V and F : E → E with X0 ∈ E .
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It is assumed that F : E → E is Borel measurable, im(F ) ⊂ im(Φ),

for G := Φ−1F , G : E → V , and

‖G (x)‖ ≤ k̂
(
1 + ‖x‖p

E

)
and

‖F (x)‖E ≤ k̂
(
1 + ‖x‖p

E

)
for each x ∈ E and some p ≥ 1.
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Furthermore, it is assumed that there is a constant K̄ such that for

each pair (x , y) in Dom(A), there is a z∗ ∈ ∂‖z‖E such that

〈Ax − Ay + F (x)− F (y), z∗〉E ,E∗ ≤ K̄‖x − y‖E

where ∂‖z‖E is the subdifferential of the norm ‖z‖E at the point

z = x − y and 〈·, ·, 〉E ,E∗ is the pairing between E and E ∗. This

inequality is a one-sided growth condition that ensures the absence

of explosions.
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Definition

A weak solution is a triple (X (t),B(t), (Ω,F ,P), t ≥ 0) where

(B(t), t ≥ 0) is a standard cylindrical fractional Brownian motion in

V that is defined on the probability space (Ω,F ,P) and

(X (t), t ≥ 0) is an E -valued process satisfying

X (t) = S(t)X0 +

∫ t

0
S(t − r)F (X (r)) dr +

∫ t

0
S(t − r)Φ dB(r) .

A mild solution, (X (t), t ≥ 0) of the equation is an E -valued

process on a fixed probability space (Ω,F ,P) with a given standard

cylindrical fractional Brownian motion that is the fractional

Brownian motion, and the process (X (t), t ≥ 0) satisfies the

equation.
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Definition

The equation has a unique weak solution if for any two weak

solutions, (X (t),B(t), (Ω,F ,P), t ≥ 0), and

(X̃ (t), B̃(t), (Ω̃, F̃ , P̃), t ≥ 0), the processes (X (t), t ≥ 0) and

(X̃ (t), t ≥ 0) have the same probability law.

The equation has a unique mild solution if for any two processes

(X1(t), t ≥ 0) and (X2(t), t ≥ 0) that satisfy the equation on the

same probability space (Ω,F ,P) with the same standard cylindrical

fractional Brownian motion, P (X1(t) = X2(t), t ≥ 0) = 1.
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The following three assumptions are made to construct a solution:

(H1). The semigroup (S(t), t ≥ 0) generated by A is analytic on V

and for each t ≥ 0, S(t)|E ∈ L(E ) and ‖S(t)‖L(E) is bounded

on compact time intervals.

(H2). Φ ∈ L(V ) is injective and for T > 0, the stochastic

convolution process(∫ t

0
S(t − r)Φ dB(r), t ∈ [0,T ]

)
has C ([0,T ],E ) sample paths.
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(H3). The function F : E → V in (59) is Borel measurable,

im(F ) ⊂ im(Φ) and the function G = Φ−1F : E → V satisfies

‖G (x)‖ ≤ k (1 + ‖x‖E )

for some k > 0 and all x ∈ E .
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Theorem

If H ∈ (0, 1/2) and conditions (H1)-(H3) are satisfied, then the

equation has a weak solution. If additionally F : E → E and

‖F (x)‖E ≤ k1 (1 + ‖x‖E )

for some k1 > 0 and all x ∈ E, then the weak solution is unique.
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Theorem

If H ∈ (1/2, 1), (H1)–(H3) are satisfied and

‖G (x)− G (y)‖ ≤ kG‖x − y‖γ (7)

for all x , y ∈ E, some γ ∈ (0, 1], kG > 0 and Z̃ ∈ Cβ([0,T ],V ) for

some β satisfying

β >
H − 1

2

γ
(8)

where Z̃ is the stochastic convolution process in (H2), then the

semilinear equation has a weak solution. If, additionally, the

inequality in the above theorem is satisfied, then the weak solution

is unique.
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Theorem

Let H ∈ (0, 1/2) and (H1) and (H2) be satisfied. Let Φ ∈ L(V ) be

injective, Φ−1 ∈ L(E ,V ) and (S(t)|E , t ≥ 0) be a strongly

continuous semigroup on E such that

|S(t)|E |L(E) ≤ ew̃t (9)

for t ≥ 0 and some w̃ ∈ R. Let F : E → E be continuous and

satisfy

‖F (x)‖E ≤ k1

(
1 + ‖x‖ρ

E

)
(10)

for x ∈ E for some k1 ≥ 0 and ρ ≥ 1 and for each pair x , y ∈ E ,

there is a z∗ ∈ ∂‖x − y‖E where ∂‖z‖E is the subdifferential of the

norm ‖ · ‖E at z ∈ E such that

〈F (x)− F (y), z∗〉E ,E∗ ≤ k2‖x − y‖E (11)

for some k2 ∈ R, that is, F − k2I is dissipative on E .
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Then there is one and only one mild solution of the semilinear

equation and its probability law on the Borel σ-algebra of

Ω̌ = C ([0,T ],E ) is mutually absolutely continuous with respect to

the probability law of the fractional Ornstein-Uhlenbeck process on

Ω.
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Theorem

Let H ∈ (1/2, 1) and the other assumptions in the above theorem be

satisfied. Let Φ−1 ∈ L(V ), Z̃ ∈ Cβ([0,T ],V ) for some β ∈ (0, 1),

〈F (x)− F (y), x − y〉 ≤ k2 ‖x − y‖2 (12)

for each pair x , y ∈ E and a k2 ∈ R+ (that is, F − k2I is dissipative

on E with respect to the norm on V ) and

‖F (x)− F (y)‖ ≤ k3

(
1 + ‖x‖q

E + ‖y‖q
E

)
‖x − y‖γ (13)

for each x , y ∈ E , with some k3 > 0, q ≥ 1, and γ ∈ (0, 1] such that

γβ > H − 1

2
. (14)
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Then there is one and only one mild solution to the semilinear

equation and its probability law is mutually absolutely continuous

with respect to the probability law of the fractional

Ornstein-Uhlenbeck process on Ω̌.
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Some Examples

Consider the equation

dX (t) = f (X (t)) dt + Φ dB(t)

where f : Rn → Rn, Φ ∈ L(Rn) and (B(t), t ≥ 0) is an Rn-valued

standard fractional Brownian motion with Hurst parameter

H ∈ (0, 1). Let E = V = Rn, S(t) = I for t ∈ R+ and assume that

Q = ΦΦ∗ is positive definite. The process(∫ t

0
Φ dB, t ∈ [0,T ]

)
has sample paths in Cβ([0,T ],Rn) for 0 < β < H.
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If f : Rn → Rn is Borel measurable and

‖f (x)‖ ≤ k1(1 + ‖x‖)

for some k1 > 0 and all x ∈ Rn then for H < 1
2 there is one and

only one weak solution.
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If, additionally, it is assumed that

‖f (x)− f (y)‖ ≤ k‖x − y‖γ

for all x , y ∈ Rn and some γ > 1− 1
2H , then for H > 1

2 , there is

one and only one weak solution. In each of these cases, the

probability measure of the solution is mutually absolutely continuous

with respect to the probability measure of the process

(ΦB(t), t ∈ [0,T ]).
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Now, replace the inequality of linear growth by

‖f (x)‖ ≤ k1(1 + ‖x‖p)

for some p ≥ 1 and k1 > 0. Assume that f : Rn → Rn is

continuous and satisfies

〈f (x)− f (y), x − y〉 ≤ k3‖x − y‖2

for some k3 > 0 and all x , y ∈ Rn.
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If H > 1
2 , then assume that

‖f (x)− f (y)‖ ≤ k4 (1 + ‖x‖q + ‖y‖q) ‖x − y‖γ

for some q ≥ 1, k4 > 0, γ > 1− 1
2H . Then, the probability law of

the solution is mutually absolutely continuous with respect to the

probability law of (ΦB(t), t ∈ [0,T ]). Furthermore, there is one and

only one mild solution and this mild solution is a strong solution

because the state space is finite dimensional.
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Stochastic Partial Differential Equations

Consider a 2mth order stochastic parabolic equation

∂u

∂t
(t, ξ) = [L2mu](t, ξ) + η(t, ξ)

for (t, ξ) ∈ [0,T ]×O with the initial condition

u(0, ξ) = x(ξ)

for ξ ∈ O and the Dirichlet boundary condition

∂ku

∂vk
(t, ξ) = 0

for (t, ξ) ∈ [0,T ]× ∂O, k ∈ {0, . . . ,m − 1}.
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∂
∂v denotes the conormal derivative, O is a bounded domain in Rd

with a smooth boundary and L2m is a 2mth order uniformly elliptic

operator

L2m =
∑

|α|≤2m

aα(ξ)Dα

and aα ∈ C∞
b (O).
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For example, if m = 1 then this equation is called the stochastic

heat equation. The process η denotes a space dependent noise

process that is fractional in time with the Hurst parameter

H ∈ (0, 1) and, possibly, in space. The system is modeled as

dZ (t) = AZ (t) dt + Φ dB(t)

Z (0) = x

in the space V = L2(O) where A = L2m,

Dom(A) =

{
ϕ ∈ H2m(O) | ∂

k

∂vk
ϕ = 0 on ∂D for k ∈ {0, . . . ,m − 1}

}
,

Φ ∈ L(V ) defines the space correlation of the noise process and

(B(t), t ≥ 0) is a cylindrical standard fractional Brownian motion in

V .
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For Φ = I , the noise process is uncorrelated in space. It is well

known that A generates an analytic semigroup (S(t), t ≥ 0).

Furthermore

|S(t)Φ|L2(V ) ≤ |S(t)|L2(V )|Φ|L(V ) ≤ ct−
d

4m

for t ∈ [0,T ].
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It is assumed that there is a δ1 > 0 and β̂ ∈ R such that

im(Φ) ⊂ Dom
(
(β̂I − A)δ1

)
so that for r ≥ 0

|S(t)Φ|L2(V )

≤ |S(t)(β̂I−A)r |L(V )|(β̂I−A)−r−δ1 |L2(V )|(β̂I−A)δ1Φ|L(V ) ≤ ct−r

(15)

for t ∈ (0,T ] assuming that the operator (β̂I − A)−r−δ1 is a

Hilbert-Schmidt operator on V , which occurs if

r + δ1 >
d

4m
.
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For the spaces Vδ = Dom

((
β̂I − A

)δ
)

, δ ≥ 0, if

H >
d

2m
,

then for any Φ ∈ L(V ), the stochastic convolution process(∫ t

0
S(t − r)Φ dB(r), t ∈ [0,T ]

)
is well-defined and has a version with Cα([0,T ],Vδ) sample paths

for α ≥ 0, δ ≥ 0 satisfying

α+ δ < H − d

4m
.
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Consider the equation

∂y

∂t
(t, ξ) =

∂2y

∂ξ2
(t, ξ) + f (y(t, ξ)) + η(t, ξ)

for (t, ξ) ∈ (0,T )× (0, 1) and

y(0, ξ) = x0(ξ)

∂y

∂ξ
(t, 0) =

∂y

∂ξ
(t, 1) = 0

for (t, ξ) ∈ (0,T )× (0, 1) where f : R→ R and (η(t, ξ), t ∈ [0,T ])

is a space dependent noise that is fractional in time.
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The equation is rewritten in a standard infinite dimensional form

letting V = L2([0, 1]), A = ∂2

∂ξ2 ,

Dom(A) =

{
φ ∈ H2([0, 1]) | ∂

∂ξ
φ(0) =

∂

∂ξ
φ(1) = 0

}
and F : V → V where F (x)(ξ) = f (x(ξ)) for x ∈ V and ξ ∈ (0, 1).

It is assumed that Q = ΦΦ′ has a bounded inverse in L(V ).
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Some Other Applications

Mutual Information

Prediction of Some Processes Related to FBM
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Model A: Fractional Brownian Motion

dY (t) = X (t)dt + dB(t)

Y (0) = 0

t ∈ [0, t], (B(t), t ∈ [0,T ]) is a real-valued standard fractional

Brownian motion with the fixed Hurst parameter H ∈ (0, 1) and

(X (t), t ∈ [0,T ]) is a real-valued process independent of B(·),
T > 0 is fixed and both of these processes are defined on the

complete probability space (Ω,F ,P).
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Mutual Information for Stochastic Processes

I (X ,Y ) =

∫
N log Nd(µX ⊗ µY )

where N is the Radon-Nikodym derivative,

N =
dµXY

d(µX ⊗ µY )
=

dµXY

d(µX ⊗ µB)

dµB

dµY
.

If N does not exist then I (X ,Y ) = +∞.
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Likelihood Functions

Theorem 1

Let (X (t), t ∈ [0,T ]) satisfy C1 and C2. Then µXY � µX ⊗ µB

and the Radon-Nikodym derivative is

dµXY

d(µX ⊗ µB)
= M̃(T )

= exp(

∫ T

0
K−1

H (Z )(t)dW (t)− 1

2

∫ T

0
|K−1

H (Z )(t)|2dt)

where K−1
H is given above, (W (t), t ∈ [0,T ]) is the standard

Wiener process (Brownian motion) associated to (B(t), t ∈ [0,T ])

and (Z (t), t ∈ [0,T ]) is the process given by

Z (t) =

∫ t

0
X (s)ds.
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Theorem 2

Let µB , µX and µXY be the measures for the processes

(B(t), t ∈ [0,T ]), (X (t), t ∈ [0,T ]) and ((X (t),Y (t)), t ∈ [0,T ])

respectively. Then µY � µB and the associated Radon-Nikodym

derivative is

M(T ) = EX [M̃(T )] =
dµY

dµB

= exp(

∫ T

0
〈K̂−1

H (Z )(t, t), dW (t)〉 − 1

2

∫ T

0
|K̂−1

H (Z )(t, t)|2dt)

where Z (t) =
∫ t
0 X (s)ds, t ∈ [0,T ] and
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K̂−1
H (Z )(t, t) = E[K−1

H (Z )(t)|Ft ]

=
1

Γ(3
2 − H)

(t1−2H X̂ (t, t)

+ (H − 1

2
)

∫ t

0

t
1
2
−H X̂ (t, t)− s

1
2
−H X̂ (s, t)

(t − s)H+ 1
2

ds)

X̂ (s, t) = E[X (s)|Ft ]
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Theorem 3

Let X satisfy C1 and C2. The mutual information I (X ,Y ) for

(X (t), t ∈ [0,T ]) (Y (t), t ∈ [0,T ]) is given by

I (X ,Y ) =
1

2
E[

∫ T

0
|K−1

H (Z )(t)− K̂−1
H (Z )(t, t)|2dt

=
1

2
E[

∫ T

0

1

Γ2(3
2 − H)

|t1−2H(X (t)− X̂ (t, t))

+ (H − 1

2
)

∫ t

0

t
1
2
−H(X (t)− X̂ (t, t))− s

1
2
−H(X (s)− X̂ (s, t))

(t − s)H+ 1
2

ds|2dt]

Z (·) =

∫ ·

0
X (s)ds
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A Modification of Model A

Let α > 0, let T > 0 be fixed and let (Yα(t), t ∈ [0,T ]) be the

process that satisfies

dYα(t) = αX (t)dt + dB(t)

Yα(0) = 0.

Find the rate of change of I (X ,Yα) with respect to α.
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Theorem 4

Let (Yα(t), t ∈ [0,T ]) be the process above where α > 0 is a

parameter. It is assumed that X satisfies C1 and C2. Then the

mutual information I (X ,Yα) satisfies the following equality

dI (X ,Yα)

dα
= αE[

∫ T

0
|K−1

H (Z )(t)− K̂−1
H (Z )(t,T )|2dt]

= αE[

∫ T

0

1

Γ2(3
2 − H)

|t1−2H(X (t)− X̂ (t,T ))

+ (H − 1

2
)

∫ t

0

t
1
2
−H(X (t)− X̂ (t,T ))− s

1
2
−H(X (s)− X̂ (s,T ))

(t − s)H+ 1
2

ds|2dt]
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K̂−1
H (Z )(t,T ) = E[K−1

H (Z )(t)|Yα(u), 0 ≤ u ≤ T ]

and

X̂ (t,T ) = E[X (t)|Yα(u), 0 ≤ u ≤ T ]
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Prediction for Some Processes Related to FBM
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Let (X (t), t ≥ 0) be the real-valued, Gaussian process that is the

solution of the stochastic differential equation

dX (t) = a(t)X (t)dt + dB(t) (16)

X (0) = x0,

where x0 ∈ R, a : R+ → R is bounded and Borel measurable and

(B(t), t ≥ 0) is a standard fractional Brownian motion with

H ∈ (0, 1), It is elementary to verify that X (t) is given by

X (t) = e
R t
0 ax0 +

∫ t

0
e

R t
s adB(s) (17)

so it follows from the above that

σ(X (u), u ∈ [0, t]) = σ(B(u), u ∈ [0, t]).
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Lemma

If 0 < s < t and c : [s, t] → R is an element of L2
H , then

E
[∫ t

s
cdB | B(r), r ∈ [0, s]

]
=

∫ s

0
u−(H−1/2)

(
I
−(H−1/2)
s−

(
I
(H−1/2)
t− uH−1/2c

))
dB (18)
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Proposition:

Let (X (t), t ≥ 0) be the process given by (17) that is the solution

of (16) and let t > 0 and s ∈ (0, t) be fixed. Then the following

equality is satisfied

E[X (t) | X (r), r ∈ [0, s]]

= E[X (t) | Fs ]

= e
R t
s aX (s) +

∫ s

0
u−(H−1/2)

(
I
−(H−1/2)
s−

(
I
H−1/2
t− uH−1/2v1[s,t)

))
dB

= e
R t
s aX (s) +

∫ s

0
u−(H−1/2)

(
I
−(H−1/2)
s−

(
I
H−1/2
t− uH−1/2v1[s,t)

))
× (dX − aXdr) (19)

where ua(r) = ra and v(r) = e
R t
r a.
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Now consider the stochastic differential equation for a geometric

fractional Brownian motion with H ∈ (0, 1)

dX (t) = X (t)(a(t)dt + b(t)dB(t)) (20)

X (0) = x0

where a : R+ → R and b : R+ → R are bounded, Borel measurable

functions and x0 > 0. A solution of (20) is

X (t) = x0 exp

[∫ t

0
ads +

∫ t

0
bdB − 1

2
|b1[0,t]|2H

]
. (21)

This solution can also be expressed using the Wick exponential,

exp�, (e.g., [2]) as

X (t) = x0 exp

[∫ t

0
a

]
exp�

(∫ t

0
bdB

)
(22)

where

exp�
(∫ t

0
bdB

)
:=

∞∑
n=0

1

n!

(∫ t

0
bdB

)�n
(23)

and ( )�n is the nth Wick product.
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Wick Products and Expectation

E[Y � Z | G ] = E[Y | G ] � E[Z | G ] (24)

where G is a sub-σ-algebra of F .
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Proposition:

Let (X (t), t ≥ 0) be the process given by (12) and let t > 0 and

s ∈ (0, t) be fixed. Then the following equality is satisfied

E[X (t) | Fs ]

= E

[
X (s) exp

[ ∫ t

s
a +

∫ t

s
bdB − 1

2
〈b1[s,t), b1[s,t)〉H

] ∣∣∣∣∣Fs

]

= X (s) exp

[∫ t

s
a

]
exp�

(
E

[∫ t

s
bdB | Fs

])
= X (s) exp

[ ∫ t

s
a− 1

2
〈b1[s,t), b1[s,t)〉H

+

∫ s

0
u−(H−1/2)

(
I
−(H−1/2)
s−

(
I
H−1/2
t− uH−1/2b1[s,t)

))
dB

]
(25)
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