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What is risk? Portfolio risk? - historical approach

Si (t) the price of the i-th asset at time t (i = 1, 2, . . . , d)
static approach t = 0, 1
random rate of return of the i-th asset

ζi :=
Si (1)− Si (0)

Si (0)
=

Si (1)
Si (0)

− 1

expected rate of return of the i-th asset µi := Eζi
µ = [µ1, . . . , µd ]T vector of the expected rates of return,
ζ := [ζ1, . . . , ζd ]T , vector of random rates of return
Σ covariance matrix
Σ = E

{
(ζ − µ) (ζ − µ)T

}
= (Σij)

T stands for transponse
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What is risk? Portfolio risk? - historical approach (cont.)

θ := [θ1, . . . , θd ]T vector of portfolio strategies (at time 0):
portions of capital invested in assets: θi the portion of capital
invested in i-th asset
random portfolio rate of return R(θ) is equal to θT ζ since: if x is
an initial capital
xθi

Si (0) is the number of i-th assets at time 0
xθi

Si (0)Si (1) is the value of the portfolio located in i-th asset at time
1,

R(θ) =

∑d
i=1

xθi
Si (0)

Si (1)−x

x =∑d
i=1

θi
Si (0)Si (1)− 1 =

∑d
i=1

θi
Si (0)(Si (1)− Si (0)) =

∑d
i=1 θiζi
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Expected value of the portfolio

E {R(θ)} = θTµ (1)

variance of the portfolio rate of return

Var(R(θ)) = θTΣθ. (2)

Explanation:

Var(R(θ)) = E
{(∑d

i=1 θi (ζi − µi )
)2
}

=

E
{
(θT (ζ − µ))((ζ − µ)T θ)

}
= θTE

{
(ζ − µ)(ζ − µ)T

}
θ

risk measure (historical approach) variance of the portfolio
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Harry Markowitz, born Chicago 1927, Nobel prize 1990

The basic concepts of portfolio theory came to me one afternoon in
the library while reading John Burr Williams’s Theory of Investment
Value. Williams proposed that the value of a stock should equal the
present value of its future dividends. Since future dividends are
uncertain, I interpreted Williams’s proposal to be to value a stock
by its expected future dividends. But if the investor were only
interested in expected values of securities, he or she would only be
interested in the expected value of the portfolio; and to maximize
the expected value of a portfolio one need invest only in a single
security. This, I knew, was not the way investors did or should act.
Investors diversify because they are concerned with risk as well as
return. Variance came to mind as a measure of risk. The fact that
portfolio variance depended on security covariances added to the
plausibility of the approach. Since there were two criteria, risk and
return, it was natural to assume that investors selected from the set
of Pareto optimal risk-return combinations.
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Markowitz theory - foundations

We maximize expected portfolio rate of return taking into account
the risk (minimizing it?)
What is risk?
portfolio risk function Risk(R(θ))
in Markowitz theory Risk(R(θ)) = Var(R(θ))
two criterion (minimax) problem
Markowitz order �.
the strategy θ (portfolio rate of return R(θ) is better than θ′ (rate
of return of R(θ′)), we write as θ � θ′ lub R(θ) � R(θ′), if
E {R(θ)} ≥ E {R(θ′)}, and Risk(R(θ)) ≤ Risk(R(θ′)).
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Markowitz theory - foundations (cont.)

the strategy θ is better than θ′ if the rate of return of θ is greater
tan that of θ′ and the risk corresponding to the strategy θ is not
greater than the risk corresponding to θ′

With each strategy one can associate a point on the plane R2,
(Risk(R(θ)),E {R(θ)})
The strategy θ is maximal, if there are no strategy θ′ different than
θ such that θ′ � θ
The maximal strategies form on the plane R2 the set called efficient
frontier
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Classical Markowitz theory - analytic approach

Convex analysis problem: to minimize

θTΣθ (3)

under the constraints
θTµ = µp i θTJ = 1,
where J = [1, . . . , 1]T , while µp is the fixed portfolio expected rate
of return. For fixed portfolio rate of return we minimize risk
understood as portfolio variance,
Markowitz, H., Portfolio Selection Efficient Diversification of
Investments, Wiley, 1959.
When the matrix Σ is nonsingular, the problem is solved using
Lagrange multipliers.
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Classical Markowitz theory - analytic approach (cont.)
G (θ, κ) = θTΣθ + κ1(θ

Tµ− µp) + κ2(θ
TJ − 1)

necessary condition for optimality:
∂G
∂θi

= 0 ∂G
∂κj

= 0 dla j = 1, 2
Hence
Theorem 1. If µ does not have the same coordinates and Σ is
nonsingular then

inf
θ

Var(R(θ)) = BTH−1B, (4)

where H = ATΣ−1A, A = [µ,J ], B =

[
µp
1

]
.

Proof:

2Σθ + Aκ = 0 AT θ = B (5)

where κ := [κ1, κ2]
T

we solve the first equation with respect to θ:
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Classical Markowitz theory - analytic approach (cont.)

θ = −1
2 Σ−1Aκ

From the second equation from (5) we have
ATΣ−1Aκ = −2B
i.e.
κ = −2(ATΣ−1A)−1B := −2H−1B
Note that H is symmetric:
H = ATΣ−1A therefore HT = ATΣ−1TA = H since Σ and Σ−1 sa̧
symmetric. We are now in position to calculate the portfolio
variance using the obtained formulae for θ i κ
θTΣθ = −1

2 θ
TΣΣ−1Aκ = θTAH−1B = (AT θ)TH−1B = BTH−1B

which completes the proof, assuming that H is invertible.
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Classical Markowitz theory - analytic approach (cont.)
Let H =

[
a b
b c

]
, and υ = detH.

If matrix Σ is nonsingular and all coordinates of µ are nonidentical
and µ 6= 0 then υ > 0.
From the definition of H we have
a = µTΣ−1µ, b = µTΣ−1J = J TΣ−1µ, c = J TΣ−1J
also υ = ac − b2

since Σ is positive definite (yTΣy > 0 when y 6= 0), the matrix
Σ−1 is also positive definite i.e. a > 0 whenever µ 6= 0 and c > 0
Furthermore
(bµ− aJ )TΣ−1(bµ− aJ ) = bba − abb − abb − aac =
a(ac − b2) = aυ > 0
whenever µ does not have the same coordinates. The proof of
Theorem 1 is completed.
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Classical Markowitz theory - analytic approach (cont.)

(4) characterizes the efficient frontier for variance as a measure of
risk. This will be the upper part of the parabola in coordinate
system (Risk(R(θ)),E {R(θ)})

Using matrix H =

[
a b
b c

]
we have

min
θ

Var(R(θ)) =
1
υ

(cµ2
p − 2bµp + a) (6)

which give us formula for the above mentioned parabola. The
coordinates of the origin of the parabola are
µmv = b

c and Var(R(θmv )) = 1
c .
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Optimal strategy

θ =
−1
2

Σ−1Aκ = Σ−1AH−1B (7)

also

H−1 =
1
υ

[
c −b
−b a

]
(8)

hence (since A = [µ,J ], B =

[
µp
1

]
).

θopt = 1
υΣ−1A

[
cµp − b
−bµp + a

]
=

1
υΣ−1 (µ(cµp − b) + J (−bµp + a)) =
1
υΣ−1 ((aJ − bµ) + (cµ− bJ )µp)
which given the formula for an optimal strategy.
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Minimal variance portfolio

θopt =
1
υ

Σ−1 ((aJ − bµ) + (cµ− bJ )µp) (9)

if now µp = b
c = µmv then

θopt = 1
υΣ−1

(
a − b2

c

)
J = Σ−1J 1

c
is the strategy minimizing variance we denote θmv for which we
have Var(R(θmv )) = 1

c .
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Sharpe coefficient - tangent portfolio

(William F. Sharpe, born Boston 1934, Nobel prize 1990)
Minimal variance strategy usually provides relatively small portfolio
rate of return. Hence it is quite natural to look for other portfolios
from the efficient frontier.
One opportunity is to maximize so called Sharp coefficient

µp√
Var(R(θ))

, (10)

We are looking for the greatest intersection coefficient of the line
starting from the origin with efficient frontier (upper part of
hiperbola) i.e. for linear part of the line tangent to efficient frontier
(upper part of hiperbola) starting from the origin (we tacitly
assume here that µmv > 0)
In fact,
Var(R(θopt)) = 1

υ (cµ2
p − 2bµp + a)
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Sharpe coefficient - tangent portfolio (cont.)
Hence

√
Var(R(θopt)) =

√
1
υ (cµ2

p − 2bµp + a)
To find optimal tangent portfolio we calculate

dµp

d
√

Var(R(θopt))
=

(
d
√

Var(R(θopt))

dµp

)−1

=(
1

2
√

1
υ
(cµ2

p−2bµp+a)
1
υ (2cµp − 2b)

)−1

=
υ
√

1
υ
(cµ2

p−2bµp+a)
cµp−b

We would like to have dµp

d
√

Var(R(θopt)
=

µp√
Var(R(θopt))

, i.e.

µp(cµp − b) = υVar(R(θopt)) = cµ2
p − 2bµp + a

which gives bµp = a and

µp =
a
b

= µtg (11)



– EMS School Risk Theory and Related Topics –

Sharpe coefficient - tangent portfolio (cont.)

If µtg = a
b we have

Var(R(θtg )) = 1
υ (c

( a
b

)2 − 2b a
b + a) = 1

υ ( ca2

b2 − a) = a
b2

Using (9)

θtg =
1
υ

Σ−1 (aJ − bµ)

+(cµ− bJ )
a
b

)
= Σ−1µ

b
(12)

We looked for the line tangent to
√

Var(R(θopt)). One could look
for the line tangent to the graph of Var(R(θopt)).
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Maximization of the coefficient

µp

Var(R(θ))
(13)

i.e. tangency coefficient to the upper part of efficient frontier
parabola
cµ2

p − 2bµp + a − υVar(R(θopt)) = 0
The upper part of the parabola is given by
µp = 2b+

√
∆

2c
with ∆ = 4b2 − 4c(a − υVar(R(θopt))) = 4υ(cVar(R(θopt))− 1)
the tangency coefficient should satisfy

dµp
dVar(R(θmin)) = 1

2c
1

2
√

∆
4υc = υ√

∆
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Maximization of the coefficient (cont.)

the tangent line is of the form µ = υ√
∆

Var + z
it intersect the origin when z = 0. We look for µ and Var from the
upper parabola part
i.e. 2cµ = 2b +

√
∆ and µ

√
∆ = υVar , which gives

2cµ2 = 2bµ+ υVar . Therefore cµ2 + a − 2cµ2 = 0, and
µ =

√ a
c = µst

Hence
Var(R(θst)) = 1

υ (c
( a

c

)2 − 2b a
c + a) = 1

υ (a2

c − 2ba
c + a) =

1
υc a(a − 2b + c)
and
θst = 1

υΣ−1 ((aJ − bµ) + (cµ− bJ ) a
c

)
=

1
υΣ−1 (a(1− b

c )J + (a − b)µ
)
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The role of minimal variance and tangent portfolios

θopt = 1
υΣ−1 ((aJ − bµ) + (cµ− bJ )µp)

θtg = Σ−1 µ
b

θmv = Σ−1J 1
c

Hence

θopt =
−b2 + bcµp

υ
θtg +

ac − bcµp

υ
θmv (14)

which means that optimal strategy is a linear combination of
tangent and minimal variance strategies.
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Value functionals
replace two criterions problem by one criterion
we maximize

F (E {R(θ)} ,Risk(R(θ))) (15)

over all admissible portfolio strategies θ. The choice of the point of
efficient frontier is replaced by the choice of risk parameter λ
The function F should be increasing with respect to the first
coordinate and decreasing with respect to the second. The risk
aversion is measured by the parameter λ ≥ 0. The most natural
form of the function F is

F (x , y) = x − 1
2
λy . (16)
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Value functionals (cont.)

We maximize
F (E {R(θ)} ,Var(R(θ))) = E {R(θ)} − 1

2λVar(R(θ)) =
θTµ− 1

2λθ
TΣθ

with respect to such theta θ that θTJ = 1
Again we use Lagrange multipliers method. We form the function
G (θ, κ) = θTµ− 1

2λθ
TΣθ + κ(θTJ − 1)

Necessary condition of optimality is:
∂G
∂θi

= 0 ∂G
∂κ = 0

hence we obtain
Theorem 2. If µ does not have the same coordinates and matrix
Σ is nonsingular then

θopt =
1
λ

Σ−1
(
µ+ J λ− b

c

)
(17)
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Proof

from the necessary condition we get µ− λΣθ+ J κ = 0 J T θ = 1
we solve the first equation with respect to θ
θ = 1

λ

(
Σ−1 (µ+ J κ)

)
and substitute to the second equation
1
λJ

TΣ−1 (µ+ J κ) = 1
Hence (using nonsingularity of Σ)
κ = λ−J TΣ−1µ

J TΣ−1J = λ−b
c

(recall that c = J TΣ−1J i b = J TΣ−1J )
θopt = 1

λΣ−1 (µ+ J λ−b
c

)
= b

λθtg + (1− b
λ)θmv

since θtg = Σ−1µ 1
b and θmv = Σ−1J 1

c

θopt =
b
λ
θtg + (1− b

λ
)θmv (18)

which is an analogy (14) for Markowitz model.
When λ = b (b = J TΣ−1µ) we have θopt = θtg
and when λ→∞ we have θopt → θmv .
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Proof (cont.)

µopt = θT
optµ = 1

λµ
TΣ−1µ+ 1

λJ
TΣ−1µλ−b

c = a
λ + b

λ
λ−b

c =
a
λ + b

c −
b2

cλ = υ
cλ + µmv

since a = µTΣ−1µ, b = J TΣ−1µ, zaś µmv = b
c . Furthermore

(since c = J TΣ−1J and Var(R(θmv )) = 1
c )

Var(R(θopt)) = θT
optΣθopt = 1

λ(µT + J T λ−b
c )Σ−1Σ 1

λΣ−1(µ+

J λ−b
c ) = 1

λ2 (a+2b λ−b
c +(λ−b

c )2c) = 1
λ2 (a+ 2bλ−2b2+λ2−2bλ+b2

c ) =
1
λ2 (a + λ2−b2

c ) = υ
cλ2 + 1

c = υ
cλ2 + Var(R(θmv ))
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Form of the variance corresponding to the optimal strategy

We have µopt = υ
cλ + µmv , µmv = b

c i Var(R(θmv )) = 1
c

Var(R(θopt)) = υ
cλ2 +Var(R(θmv )) =

(µopt−µmv )2c
υ +Var(R(θmv )) =

1
υ

(
cµ2

opt − 2bµopt + b2

c + υ
c

)
= 1

υ

(
cµ2

opt − 2bµopt + a
)

This is an analogy to (6) (minθ Var(R(θ)) = 1
υ (cµ2

p − 2bµp + a))
obtained for Markowitz model.
Summary:Using optimal strategies for F (E {R(θ)} ,Var(R(θ))) =
E {R(θ)} − 1

2λVar(R(θ)) = θTµ− 1
2λθ

TΣθ for different λ we
obtain the whole part of the efficient frontier form the origin of the
parabola (minimal risk point) to the Sharpe point (tangency point
with the effective frontier hiperbola)
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Comments and remarks

1. the methodology considered (both Markowitz and one criterion
aim functional) does not impose any constraints on the portfolio
strategies (we admit both short selling and short borrowing).
Vector θ can admit arbitrary values (both positive and negative but
θTJ = 1); If we are looking for nonnegative strategies we have to
study (in a number of models) further part of efficient frontier
(using continuity of the aim functional)
2. Function
Fλ (E {R(θ)} ,Var(R(θ))) = E {R(θ)} − 1

2λVar(R(θ))
describes a constant risk aversion - the derivative of this function
with respect to λ is constant. An alternative approach leads to
study risk sensitive functionals of the form
Fλ(R(θ)) = −1

λ ln E {exp {−λR(θ)}}
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Risk sensitive functional - motivation:

Let g(λ) = ln E {exp {−λX}} - using Taylor expansion we have
g(λ) = g(0) + λg ′(0) + λ2

2 g ′′(0) + remainder(λ)

g ′(λ) =
E{−Xe−λX}

E{e−λX}

g ′′(λ) =
E{X 2e−λX}E{e−λX}−(E{−Xe−λX})2

(E{e−λX})2

hence
−1
λ g(λ) = E {X} − 1

2λVar(X ) + remainder(λ), i.e.
Fλ(R(θ)) = −1

λ ln E {exp {−λR(θ)}} =
E {R(θ)} − 1

2λVar(R(θ)) + remainder(λ)
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Risk sensitive stationary portfolio

Fλ(R(θ)) = −1
λ ln E {exp {−λR(θ)}}

Fact 1. θ 7→ Fλ(R(θ)) is (strictly) concave (Hölder inequality).
There is at most one maximum point of θ 7→ Fλ(R(θ)) θTJ = 1.
Fact 2.(Jensen inequality) Fλ(R(θ)) ≤ E

{
θT ζ

}
.

Lagrange multiplier’s method ?
G (θ, κ) = −1

λ ln E {exp {−λR(θ)}}+ κ(θTJ − 1)
Necessary condition of optimality is:
∂G
∂θi

= 0 ∂G
∂κ = 0

We obtain
−1
λ

E{exp{−λθT ζ}(−λ)ζ i}
E{exp{−λθT ζ}} + κ = 0

J T θ = 1
How to find θ(κ) satisfying the first equation? (is it possible?)
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Counterexample

d = 2, θ2 = 1− θ1
ζ1 ∈ {a1, b1},
ζ2 ∈ {a2, b2}
−1 < a1 < 0 < b1, −1 < a2 < 0 < b2 (no arbitrage opportunity)
a1 < a2, b1 > b2
−λθ1(b2 − a1) � Fλ(R(θ)) � λθ1(b1 − a2)
summary: supθ Fλ(R(θ)) = ∞,
Lagrange multipliers method can not be used.
When we restrict ourselves to θi ≥ 0 everything is fine.
We have however to use approximate methods to find an optimal
(unique portfolio).
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Markowitz problem with semivariance

Risk(R(θ)) = SVar(R(θ)) = E
{(∑d

i=1 θi (ζi − µi )
)−2}

→ min

under θTµ = µp and θTJ = 1.
ri = ζi − µi , Eri = 0
θ1 = 1−

∑d
i=1 θi ,

E
{(∑d

i=1 θi ri
)−2}

= E
{(

r1 +
∑d

i=2 θi (ri − r1)
)−2}

→ min

under∑d
i=2 θi (µi − µ1) = µp − µ1

Two cases: 1. µi = µ1, for each i then µ = µp, the problem
becomes

min(θ2,...,θd ) E
{(

r1 +
∑d

i=2 θi (ri − r1)
)−2}

→ min
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An auxiliary lemma

Problem (A): minx∈Rm E
{
(A + BT x)−

}2

where B = (B1, . . . ,Bm)T , EB2
i <∞, EBi = 0 and EA2 <∞.

Lemma. The problem (A) admits an optimal solution.
Proof of Lemma.
Assume first that B1, . . . ,Bm are linearly independent
P(
∑m

i=1 αiBi = 0) = 1 implies α1 = . . . = αm = 0.
Let S =

{
(k , y) ∈ Rm+1 : k ∈ [0, 1], ‖y‖ = 1

}
c = inf(k,y)∈S E [(kA + BT y)−]2

(k , y) → E [(kA + BT y)−]2 is continuous so there is (k∗, y∗) such
that c = E [(k∗A + BT y∗)−]2. If c = 0 we have k∗ > 0 since
otherwise E [(BT y∗)−]2 = 0 and P(BT y∗ ≥ 0) = 1, EBT y∗ = 0
and finally P(BT y∗ = 0) = 1, y∗ = 0 but ‖y∗‖ = 1 a contradiction.
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Proof of Lemma cont.

c = 0 ⇒ k∗ > 0
then y∗

k∗ is an optimal solution to the Problem (A).
When c > 0 then for ‖x‖ ≥ 1
E [(A + BT x)−]2 = ‖x‖2E [( A

‖x‖ + BT x
‖x‖)

−]2 ≥ ‖x‖2c so that we
have coercivity of
x → E

{
(A + BT x)−

}2, and since it is a continuous function it
admits a minimizer x∗.
Assume now that {B1, . . . ,Bm} are not independent. If
P(B = 0) = 1 and x ∈ Rm is a minimizer. If P(B 6= 0) > 0 there is
a subset D of {B1, . . . ,Bm} whose elements are linearly
independent and every element in this set is a linear combination of
D. Suppose that such subset is {B1, . . . ,Bk} and let
B̃ = (B1, . . . ,Bk)T .
By the the proof there is a minimizer x̃∗ for

x → E
{

(A + B̃T x)−
}2

and x∗ = (x̃∗, 0, . . . , 0)T is a minimizer.
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Semivariance main result

Theorem There is a minimizer to

E
{(∑d

i=1 θi ri
)−2}

= E
{(

r1 +
∑d

i=2 θi (ri − r1)
)−2}

→ min

under∑d
i=2 θi (µi − µ1) = µp − µ1

Case 1. µi = µ1 (continuation) by Lemma we have a minimizer to

min(θ2,...,θd ) E
{(

r1 +
∑d

i=2 θi (ri − r1)
)−2}

Case 2. There is i such that r1 6= ri . For simplicity let i = 2. We
have
θ2 =

µp−µ1
µ2−µ1

−
∑d

i=3 θi
(µi−µ1)
µ2−µ1

and therefore the problem is reduced to min over (θ3, . . . , θd ) of

E
{(

r1 +
µp−µ1
µ2−µ1

(r2 − r1) +
∑d

i=2 θi (ri − r1)− (r2 − r1)
(µi−µ1)
µ2−µ1

)−2}
and by Lemma there is a minimizer.
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Semivariance result generalizations

H. Jin, H. Markowitz, XY Zhou, A note on semivariance, Math.
Fin. 16 (2006), 53-61
general downside risk function: f (x) = 0 for x ≥ 0, and f (x) > 0
for x < 0
example: f (x) = (x−)p with p > 0

E
{

f
((∑d

i=1 θi (ζi − µi )
)−)}

→ min

Assumptions: f l.s.c, f (kx) ≥ g(k)f (x) and limx→∞ g(x) = ∞.
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Monetary Measures of Risk

financial position X : Ω → R net worth position at maturity
X the class of financial positions
ρ : X → R is monetary measure of risk when:
- if X ≤ Y we have ρ(X ) ≥ ρ(Y ) (monotonicity)
- if m ∈ R then ρ(X + m) = ρ(X )−m (translation invariance)
properties:

ρ(X + ρ(X )) = 0

(ρ(0) = 0 (normalization))
|ρ(X )− ρ(Y )| ≤ ‖X − Y ‖
monetary measure of risk is convex measure whenever
ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ) for λ ∈ [0, 1]
(diversification does not increase the risk)
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Coherent measures of risk

convex measure of risk is called a coherent measure of risk when
if λ ≥ 0 we have ρ(λX ) = λρ(X ) (positive homogeneity)
properties of the coherent measures of risk:
ρ(0) = 0
ρ(X + Y ) ≤ ρ(X ) + ρ(Y )



– EMS School Risk Theory and Related Topics –

Acceptance sets

ρ - monetary measure of risk Aρ := {X ∈ X |ρ(X ) ≤ 0} -
acceptance set
ρ convex iff Aρ is convex
ρ homogeneous iff Aρ is a cone.
ρ(X ) = inf {m ∈ R|m + X ∈ A}
worst case measure ρmax
ρmax(X ) = − infω X (ω)
is a coherent measure of risk
for every monetary measure of risk ρ we have
ρ(X ) ≤ ρ(infω X (ω)) = ρmax(X )
ρ(X ) = −EX is also a coherent measure of risk.
ρ(X ) = supQ∈Q {EQ {−X}} is also a coherent measure of risk
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Value at Risk

VaRα(X ) = inf {m ∈ R|P {m + X < 0} ≤ α}
α quantiles: upper
q+

α (X ) := inf {x ∈ R : P {X ≤ x} > α}
lower quantile
q−α (X ) := inf {x ∈ R : P {X ≤ x} ≥ α}
α quantiles interval [q−α (X ), q+

α (X )]
P {−X ≤ m} ≥ 1− α
hence: VaRα(X ) = q−1−α(−X )
for continuous r.v. X
inf {m : P {m + X < 0} ≤ α} = sup {m : P {m + X < 0} > α}
so that VaRα(X ) = −q+

α (X ) and P {X ≤ −VaRα(X )} = α
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Properties of the value at risk

VaRα(X ) = inf {m ∈ R|P {m + X < 0} ≤ α}
1. X ≥ 0 then VaRα(X ) ≤ 0,
2. X ≥ Y then VaRα(X ) ≤ VaRα(Y )
3. VaRα(λX ) = λVaRα(X ) for λ ≥ 0
4. VaRα(m + X ) = VaRα(X )−m
VaRα is a monetary measure of risk
α ∈ [0, 0.05]
VaRα in general is not a convex measure of risk
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Conditional value at risk
X continuous integrable r.v.
(expected shortfall, average value at risk)
CVaRα(X ) = E {−X |X + VaRα(X ) ≤ 0}
properties of CVaRα

1. CVaRα(λX ) = λCVaRα(X ) for λ ≥ 0
2. CVaRα(m + X ) = CVaRα(X )−m
Lemma: If X ∈ L1, x ∈ R s.t. P {X ≤ x} > 0 then for any A s.t.
P(A) ≥ P {X ≤ x} we have

E {X |A} ≥ E {X |X ≤ x}

Proof.

1
P(A)

∫
A

ufX (u)du ≥ 1
P {X ≤ x}

∫
X≤x

ufX (u)dy

hint: approximate X by discrete r.v.
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Conditional value at risk (cont.)

3. X ≥ Y implies that CVaRα(X ) ≤ CVaRα(Y )
since P(X + VaRα(X ) ≤ 0) = α = P(Y + VaRα(Y ) ≤ 0)
hence CVaRα(Y ) ≥ −E {Y |X + VaRα(X ) ≤ 0} ≥
−E {X |X + VaRα(X ) ≤ 0} = CVaRα(X )
4. CVaRα(X + Y ) ≤ CVaRα(X ) + CVaRα(Y )
since
CVaRα(X + Y ) = E {−X |X + Y + VaRα(X + Y ) ≤ 0}+
E {−Y |X + Y + VaRα(X + Y ) ≤ 0} ≤
E {−X |X + VaRα(X ) ≤ 0}+ E {−Y |Y + VaRα(Y ) ≤ 0}
CVaR is a coherent measure of risk
5. CVaRα(X ) = 1

α

∫ α
0 VaRα(X )

CVaRα is a continuous function of the parameter α
6. limα→0 CVaRα(X ) = −essinfX
limα→1 CVaRα(X ) = −EX
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Measures of dispersion (deviation)

X = L2

D : X → [0,∞] is a measure of dispersion iff
D(X + c) = D(X ) for any c ∈ R
D(0) = 0, D(αX ) = αD(X ) for α > 0
D(X + Y ) ≤ D(X ) + D(Y )
D(X ) ≥ 0, and D(X ) > 0 for X 6= const
Examples: standard deviation, negative semi standard deviation
σ−(X ) =

√
E (max(EX − X , 0))2

positive semi standard deviation
σ+(X ) =

√
E (max(X − EX , 0))2
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Elliptic distributions

random vector X = (X1, . . . ,Xd )T has elliptic law, if there is a
vector µ, a positive definite symmetric matrix Ω, a nonnegative
function gd such that,

∫∞
0 x

d
2−1gd (x)dx <∞, and a norming

constant cd such that the density fX of the vector X is of the form
fX (x) = cd |Ω|−1/2gd (1

2(x − µ)TΩ−1(x − µ)),
where |Ω| is the determinant of Ω. One can show that

cd =
Γ( d

2 )

(2π)d/2

(∫∞
0 xd/2−1gd (x)dx

)−1
.

where Γ(z) =
∫∞
0 xz−1e−xdx and for positive integer d we have

Γ(d) = d !, while Γ(d + 1
2) = 1·2·3·(2d−1)

2d

√
π i Γ(1

2) =
√
π

Douglas Kelker 1970 Department of Statistics and Applied
Probability, University of Alberta
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Properties of elliptic distributions (I)

characteristic function of the vector X is given by
φX (t) = E

(
e itX ) = e itT µψ(1

2 tTΩt)
for a function ψ(t) called characteristic generator.
Notation: X ∼ Ed (µ,Ω, ψ), X ∼ Ed (µ,Ω, gd ).
If
∫∞
0 g1(x)dx <∞ there exists EX and EX = µ. If furthermore

|ψ′(0)| <∞
or equivalently

∫∞
0
√

xg1(x)dx <∞ then
Cov(X ) := E

{
(X − EX )(X − EX )T

}
= −ψ′(0)Ω



– EMS School Risk Theory and Related Topics –

Properties of elliptic distributions (II)

If X ∼ Ed (µ,Ω, gd ), A is m × d matrix (m ≤ d) and b - m dim.
vector then
AX + b ∼ Em(Aµ+ b,AΩAT , gm)
linear combination of elliptic distributions with the same generator
ψ is elliptic with generator ψ.
marginal law of X ∼ Ed (µ,Σ, gd ) is elliptic
Xk ∼ E1(µk , ω

2
k , g1)

where ω2
k is the k-th element of the diagonal of Ω, the density of

Xk is of the form

fXk (x) = c1
ωk

g1

(
1
2

(
x−µk

ωk

)2
)
.



– EMS School Risk Theory and Related Topics –

Properties of elliptic distributions (III)

Main property
If X ∼ Ed (µ,Ω, gd ) then for
Y = θ1X1 + θ2X2 + . . .+ θdXd = θTX we have
Y ∼ E1(θ

Tµ, θTΩθ, g1)
Examples
Multidimensional normal X ∼ Nd (µ,Σ)
the density is of the form: (we identify Ω = Σ)
fX (x) = cd√

|Σ|
exp
{
−1

2(x − µ)TΣ−1(x − µ)
}

with cd = (2π)
−d
2 ; the characteristic function

φX (t) = exp
{
itTµ− 1

2 tTΣt
}

so that g(u) = e−u and ψ(t) = e−t

(since ψ′(0) = −1 Σ = Cov(X )).
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Examples of elliptic distributions

multidimensional Student X ∼ td (µ,Ω; p) with p > d
2

the density is of the form:

fX (x) = cd√
|Ω|

[
1 + (x−µ)TΩ−1(x−µ)

2kp

]−p

where cd = Γ(p)

Γ(p− d
2 )

(2πkp)
−d
2 , and kp is a constant dependent on p,

we have here gd (u) = (1 + u
kp

)−p

in particular cases when p = d+ν
2 i kp = ν

2 we have
multidimensional t-Student with ν degrees of freedom and then
Ω = ν

ν−2Σ
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Examples of elliptic distributions cont.

in particular case when p = d+m
2 for positive integer m i d and

kp = m
2 we have

fX (x) =
Γ( d+m

2 )

(πm)
d
2 Γ(m

2 )
√
|Σ|

[
1 + (x−µ)TΩ−1(x−µ)

m

]− d+m
2

in general case for kp = 2p−3
2 with p > 3

2 we have Cov(X ) = Ω

then in particular for p = d+m
2

fX (x) =
Γ( d+m

2 )

(π(d+m−3))
d
2 Γ(m

2 )
√
|Ω|

[
1 + (x−µ)TΩ−1(x−µ)

d+m−3

]− d+m
2

with Cov(X ) = Ω.
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Examples of elliptic distributions cont.

fX (x) = cd√
|Ω|

[
1 + (x−µ)TΩ−1(x−µ)

2kp

]−p

when 1
2 < p ≤ 3

2 there are no variance (heavy tails)
when 1

2 < p ≤ 1 we have that EX does not exist. For p = 1 we
have a multidimensional Cauchy distribution

fX (x) =
Γ( d+1

2 )π−
d+1
2√

|Ω|

[
1 + (x − µ)TΩ−1(x − µ)

]− d+1
2

multidimensional logistic g(u) = e−u

(1+e−u)2
, multidimensional

exponential g(u) = e−rus
.
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Portfolio analysis with elliptic rate of return

principal assumption: random rate of return ζ is Ed (µ,Ω, ψ)
portfolio rate of return R(θ)) (for a strategy θ = (θ1, . . . , θd )) is of
the law
E1(θ

Tµ, θTΩθ, ψ)
furthermore Var(R(θ)) = −ψ′(0)ω2, where ω2 = θTΩθ, and
R(θ)−θT µ

ω ∼ E1(0, 1, ψ)
This procedure allows standardization of the elliptic r. v.
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Risk measures for elliptic rate of returns

ζ is Ed (µ,Ω, ψ) and consequently R(θ) is E1(θ
Tµ, θTΩθ, ψ)

probability of the shortfall
Risk(R(θ)) = P {R(θ) ≤ q} .
Using standardization we obtain
Risk(R(θ)) = FY (q−θT µ

ω ),
where FY is the distribution of E1(0, 1, ψ).
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Value at Risk - VaRα

restriction on the portfolio rate of return of the form
P {R(θ) ≤ q} ≤ α
which leads to the following lower bound for the expected portfolio
rate of return
θTµ+ καω ≥ q,
where κα is α quantile of E1(0, 1, ψ)
Value at Risk (VaRα):
VaRα(R(θ)) = inf {x : P {R(θ) + x ≤ 0} ≤ α}
is the minimal value added to the portfolio rate of return which
guarantees nonpositive rate of return with probability at most α.
We have
VaRα(R(θ)) = −καω − θTµ
where κα is α quantile of E1(0, 1, ψ).
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Conditional VaRα or CVaRα

conditional VaRα (CVaRα), called also shortfall (expected shortfall)
CVaRα(R(θ)) = E {−R(θ)|R(θ) + VaRα ≤ 0} ,
which is the expected value of −R(θ) given nonpositive
R(θ) + VaRα.
One can show that (Föllmer Schied)
CVaRα(R(θ)) = 1

α

∫ α
0 VaRβdβ = −ω 1

α

∫ α
0 κβdβ − θTµ.

We see that if we had no ω, where ω2 = θTΩθ, for a given α both
VaRα(R(θ)) and CVaRα(R(θ)) would be a linear function of the
investment strategy θ or in other words they would depend on the
expected portfolio rate of return θTµ only.



– EMS School Risk Theory and Related Topics –

Risk functions for elliptic rate of return
Since CVaRα is a coherent measure of risk we consider the
following optimization problem
Fλ(E (R(θ),CVaRα(R(θ)) = E (R(θ))− 1

2λCVaRα(R(θ)).
Notice that
Fλ(E (R(θ),CVaRα(R(θ))) = (1+ 1

2λ)θTµ+ 1
2λ
√
θTΩθ 1

α

∫ α
0 κβdβ.

the second term is negative since for small α (usually below 0.05)
the value of

∫ α
0 κβdβ is negative; We are not able to solve the

problem explicitly. On can find the maximum of
Fλ(E (R(θ),CVaRα(R(θ)))
using approximate methods
In fact, consider Lagrange multiplier’s method to the function
Fλ(E (R(θ),CVaRα(R(θ)))
We form
G (θ, κ) = (1 + 1

2λ)θTµ+ 1
2λ
√
θTΩθ 1

α

∫ α
0 κβdβ + κ(θTJ − 1)

Necessary condition for optimality is
∂G
∂θi

= 0 ∂G
∂κ = 0

Hence



– EMS School Risk Theory and Related Topics –

Risk functions for elliptic rate of return (cont.)
(1 + 1

2λ)µ+ 1
2λ

1√
θTΩθ

2Ωθz(α) + J κ = 0

with J T θ = 1.
We are not able to solve θ from the first equation, which earlier
together with the send equation gave us κ.
The difficulties come because of the existence of the term with
square root. Since

√
x ≤ x for x ≥ 1 one can optimize the modified

risk function for elliptic rates of return
Fm

λ (θ) = (1 + 1
2λ)θTµ+ 1

2λθ
TΩθ 1

α

∫ α
0 κβdβ,

which is diminished the term with θTΩθ.
We use to this new problem the Lagrange multiplier’s method and
have
G (θ, κ) = (1 + 1

2λ)θTµ+ 1
2λθ

TΩθ 1
α

∫ α
0 κβdβ + κ(θTJ − 1)

Necessary condition for optimality is then of the form
∂G
∂θi

= 0 ∂G
∂κ = 0

from which we obtain
(1 + 1

2λ)µ+ 1
2λ2Ωθz(α) + J κ = 0

with J T θ = 1.
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Risk functions for elliptic rate of return (cont.)

From the first equation
θ = 1

λz(α)Ω
−1 (−(1 + 1

2λ)µ− J κ
)

substituting this to the second equation we obtain
J T 1

λz(α)Ω
−1 (−(1 + 1

2λ)µ− J κ
)

= 1
or

1
λz(α)

(
−(1 + 1

2λ)J TΩ−1µ− J TΩ−1J κ
)

= 1
κ =

((
−(1 + 1

2λ)J TΩ−1µ
)
− λz(α)

) 1
J TΩ−1J

so
κ = 1

J TΩ−1J
(
−(1 + 1

2λ)J TΩ−1µ
)
− λz(α)

J TΩ−1J
and finally

θ =
−(1+ 1

2λ)

λz(α) Ω−1µ+
(1+ 1

2λ)µTΩ−1J
λz(α)J TΩ−1J Ω−1J + 1

J TΩ−1J Ω−1J
with z(α) = 1

α

∫ α
0 κβdβ.
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Further alternatives

One can consider also a function
Risk(R(θ)) = (CVaRα(R(θ)) + ER(θ))2.
which corresponds to the square of the CVaR (an analogy to the
variance considered as a square of the standard deviation).
Then
F̃λ = θTµ− 1

2λθ
TΩθ(z(α))2

the only difference is that z(α) = 1
α

∫ α
0 κβdβ in the aim function

has been replaced by (z(α))2. The optimal strategy is of the form

θ̃ =
−(1+ 1

2λ)

λ(z(α))2
Ω−1µ+

(1+ 1
2λ)

λ(z(α))2
µTΩ−1J
J TΩ−1J Ω−1J + 1

J TΩ−1J Ω−1J .
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