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How to model asset prices?

discrete or continuous time discrete time:
Si(t+1
(00D — 14 G2(2), £(¢ + 1))

Sis(l.t(—it_;) =1+ Ci(ta S, Z(‘)v E())
&(.) independent (increments) "noise" process

stationarity

(14 Gt 5,20, €0)(@)) = (1 + G5 2(), £()) (0)) s 2
multiplicative functional

1+ Gi(t+s,2(.), () (w) =

(14 Git,2(.), §(-)) (W)L + (s, 2(-), €(.)) (Bew))-

14 (s, 2(.), €) := Xi(s)

dX(t) = az(t))dt + o(z(t))dB(t) + [pa ¥(2(1), u)N(dt, du)

X(0) =0 and N is a compensated Poisson measure

z(t) Markov process (ergodic) of economic factors

key problem: Markovianity (S(t),z(t)) is a Markov process
problem: replace (B(t)) by a more general Gaussian (e.g. fractional
Gaussian) processes
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Wealth process and portfolio strategies

no transaction costs

N(t) = (Ni(t),..., Ng(t))T number of assets in portfolio at time t.
V/(t) wealth process at time t

X Ni(1)S(e) = V(2)

Ti(t) = ’(\;)(tl)(t)

Wealth and portfolio dynamics:

V(t+s) = V(t)r(t) - (1 +C(t,5,2(.),€))

7t + ) = g (t) o X(c49)-X()

where

m(t) 0 X=X = (m(t)(1+ Gi(t, 5,2(.). §)) =
(mi(t)eXi(tHs)=Xi(1))

Tj

gi(ﬂ) - 2
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Terminal utility maximization - discrete time

Eov {15 F(V(1) + h(V(T)) } — max

strategy 1 = (7 (t)), eg. H(V)=V =XV —2)~
Bellman equations

wr(z, V) = h(V)

wr_1(z, V) = f(V) +sup, E;.v {h(V7 - (1+¢(1,2,6))}

wn(z. V) = F(V) + supy Exy {Wns1(2(1), Vi - (1 + ¢(2,£(1))))
wo(z, V) = F(V) + sup, Exy {wi(2(1). V- (1 + C(2.£(1)))}
Theorem

wo(z, V) = supn Ex.v {15 F(V() + h(V(T)) }
#(8) = Felz(1), V(©))
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Other functionals

infinite horizon models:

discounted reward:

wi(z, V) = supp Ev {372, 8°F(V(1)))}

discounted Bellman equation:

w2, V) = F(V) + Bsup, Exy {wh(z(1), Vi - (1 + C(2.£(1)))}
long time horizon:

w(z, V) = supp liminfr_, LE, { T f(V(t)))}

long time Bellman equations:

H(z2.V) = F(V) 7+ sup, Exy {r(z(1), V- (1 + (2, (1))
Theorem: w(z, V) =7~

example: growth optimal portfolio - risk neutral case
liminfr_o +E,v {In(V(T))} = J(N)
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Risk sensitive functionals

finite horizon

w(z, V) =

sup 5t In Ez,v {exp { ~ACG F(V() + h(V(T)) } }
w(z, V) = supp %1 InE, v {exp{=AIn(V(T))}} =

= supp _Tl InE, v {{(V(T))_)‘}}

Bellman equations:

rr(z, V)= h(V)

I’T,l(Z7 V) =

f((V) +)imc,r In E, v {exp{rr(z(1), V7 - (14 ((z,£(1))}}
ra(z, V) =

f(V)+infrlnE; v {exp{rny1(2(1), Vm - (1 + ((z,£(1))}}
r(z, V) =f(V)+infzInE; v {exp{r(z(1), Vm - (1 +{(z,&(1))}}
w(z, V)= Fn(z, V)
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Long Run Risk Sensitive Functionals

w(z, V) =

supp fiminfr—oo 5% In £, {exp { - AT F(V(1) + h(V(T)) } |
w(z, V) = supp liminfr_o 53 In ;v {exp {=AIn(V(T))}} =

supp (1)

Bellman equation:

r(z,V) =

M(V) =X +infrInE; v {exp {r(z(1), V7 - (14 ((2,£(1))}}

W(Z’ V) =7

|im)\*>0 J)\(rl) = Jo(rl)

limy—om =7
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Problems with Transaction Costs

proportional transaction costs

Si(t), t>0,i=1,2....d

V(t), V~(t) wealth processes after and before transaction at time
t, Ni(t), N (t) number of assets at time t in portfolio after and
before transaction

transaction cost at t (assuming we make a transaction

N(t) # N (t))

C(N(t), N=(t), 5(f))

>y cu((Ni(8) =Ny (2))Si(t )) +Z, 1Czl((N:(f)—’Vf(f))Sf(t))_
C(N,N=,S) =31 1C1:(( ND)S) T+ 3y cai (NG = N7)Si) ™
selffinancing property V— = V + C(N, N—,S),

N=-S=N-S+ C(N,N7,S)

V= (t) the wealth before transaction, V/(t) after transaction,
(1) = M0, i) = MOSW a(r) e s

V=(t) = ( )+ V= (t)c(n’" —n—(t)), where
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Problems with Transaction Costs (cont.)

7' € S%is s.t. w(t) = g(n’) and

c(v) = Sy qi(vi) 't + X5 cai(v)”
2omi+e(r =7 (1)) = 1and n(t) = g(n'), &i(7) = sm'—
Lemma 1. Given 7,7 € S there is a continuous e(, ) (0 1] s.t.
F™7(e(m, 7)) = 1 with F™7(§) = § + c(07 — 7)

VIV (t) = e(r™ (), m(t)) V(1)

If there are no transactions in (s, s + t)

V”’V(t + S)f — V”?V(t)ﬂ(t) . eX(t+s)=X(s)

7 (t +s) = g(n(t) o eX(tHs)=X(1))

7T(t) o eX(t+s)=X(s) — (Wi(t)eX;(tJrs)fX,-(t))
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Asymtotics of 7(t) (without transactions)

1+ Ci(s, 2(.), &) i= &Xi0s)
dX(t) = a(z(t))dt + o(2(t))dB(t) + [ra v(2(t), u)N(dt, du)

X(0) =0
by the Law of Large Numbers
lime—oo 2Xi(t) = limy—oo 1[5 @i(2(s))ds = [ ai(z)p(dz) = r;

{4 a unique invariant measure for (z(t))
If 3 re > r; for i # k then
m(t) — 7(00) = 0k, provided 7, (0) > 0
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Asymptotics of the portfolio growth (without transactions)

In(r - eX(M) = 320 Inr(z) - XX (X(0) = 0)

im0 1 (In(w eX(M) = 153 w(n (1), 2(1)) ) =

w(r, z) = [|n7r XW]

imoc 3 7723 win(1),2(1)) = | wln(oc). 2)(de)

limp_.oo 2 In( - X(M) = [ w(m(c0), z)p(dz)

7 — w(m, z) has at most one interior supremum point in S, can we
get better than [ w(7(00),z)u(dz) ?
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Continuous time models

feasible control impulsive control M = (75, 77,)

at time 7; we choose portfolio 7,

for models with fixed plus proportional transaction costs the class
of impulse controls is optimal

how to solve such problems: quasi variational inequalities
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Partial observation models in finance

U =14 Gl(0).€(t 1)

st(f(j)s) = 1+4G(t,s,2(.),€(.))

we do not observe (z(t))

can we recover z(t) from {S(u); u < t}?

how to calculate strategies: discretization (Runggaldier Stettner
1993), quantization,

problem with computational complexity

General question: how to calculate strategies for discrete or
continuous time models?

in the worst cases the main tool is Monte Carlo Method
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