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K1. Efficient Quantile Estimation with POT

Estimation of quantiles with POT is a more efficient method than
simple empirical quantile estimation. The latter is often used in the
historical simulation approach, but gives poor estimates when we are
estimating at the edge of the sample.

Recall that we can compare the efficiency of two quantile estimators
by comparing their mean squared errors (MSE). If Z,, is an estimator
of z, then

MSE (z,) L ((53\(1 - xq)2)

= var(Zq) + E (Zq — xq)2

Good estimators trade variance of against bias to give small MSE.
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Comparison of Estimators

Take ordered data X1y > ... > X, (no ties) and place threshold u
at an order statistic: u = X(41).

We emphasize dependence of POT estimator on choice of k by

writing ) A
. 15 n —&k
Zqgo = X(k+1) T g_k (E(l B Q)) 1
k

where k € {j e N:j >n(l—q)}.
The empirical quantile estimator is 5:\(]13 = X([n(1—q)]+1)-
Example. n = 1000 implies T 995 = X(¢)-

We compare MSE (Z,,1,) with MSE (z).
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Simulation Study

For various underlying F', various sample sizes n and various quantile
probabilities ¢ we compare the MSEs of these estimators. MSEs are
estimated by Monte Carlo, i.e. repeated simulation of random
samples from F'.

Examples
Hard: ¢—distribution, n = 1000, ¢ = 0.999.
Easy: normal distribution n = 1000, ¢ = 0.95.

We will actually compare

_ J/MSEG,)

Lq

RRMSE (&)

to express error relative to original units.
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K2. Statistical Implications of Dependence

If we believe we have a (strictly) stationary time series with a
stationary distribution F' in the MDA of an extreme value
distribution, then we can still apply the POT method and attempt
to approximate the excess distribution Fy,(x) by a GPD for some
high threshold w.

Although the marginal distribution of excesses may be approximately
GPD, the joint distribution is unknown. We form the likelihood by
making the simplifying assumption of independent excesses.

We can expect our estimation procedure to deliver consistent
parameter estimates, but standard errors and confidence intervals
may be over-optimistically small. Dependent samples carry less
information about extreme events than independent samples of the
same size.
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Other Possibilities

e Use statistical estimation method for GPD parameters which
does not implicitly assume independence of the excesses, such
as probability weighted moments. However this method does not
deliver standard errors.

e Attempt to make the excesses more independent by the technique
of declustering and then use ML estimation. We identify clusters
of exceedances and reduce each cluster to a single representative
such as the cluster maximum.
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K3. EVT in a Time Series Framework

We assume (negative) returns follow stationary time series of the
form

Xt = g + 042y

Dynamics of conditional mean p; and conditional volatility o; are
given by an AR(1)-GARCH(1,1) model:

Ut = QbXt—l 3

07:2 = ag + oy (Xy—1 — Mt—l)2 + 50752—1 ;

with o, a1, 3> 0, a1 + 6 <1 and |¢p| < 1.

We assume (Z;) is strict white noise with E(Z;) = 0 and

var(Z;) = 1, but leave exact innovation distribution unspecified.
Other GARCH-type models could be used if desired.
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Dynamic EVT

Given a data sample z;_,11,...,2: from (X;) we adopt a two-stage
estimation procedure. (Typically we take n = 1000.)

e We forecast p¢1 and oy by fitting an AR-GARCH model with
unspecified innovation distribution by pseudo-maximume-likelihood

(PML) and calculating 1-step predictions.
(PML yields consistent estimator of GARCH—parameters)

e We consider the model residuals to be iid realisations from the
Innovation distribution and estimate the tails of this distribution
using EVT (GPD-fitting). In particular estimates of quantiles z,
and expected shortfalls £ [Z | Z > z,] for the distribution of (Z;)
can be determined.
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Risk Measures

Recall that we must distinguish between risk measures based on tails
of conditional and unconditional distributions of the loss - in this
case the negative return.

We are interested in the former and thus calculate risk measures
based on the conditional distribuion Fix, |7,

For a one-step time horizon risk measure estimates are easily
computed from estimates of z, and E |[Z | Z > z,] and predictions

of p;41 and o411 using

VaRy(X¢y1) = pe1 + 0412,
ESq(Xt+1) — M¢41 -+ O't+1E [Z ‘ /> Zq] .
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Dynamic EVT I

Advantages of this approach

We model tails of innovation distribution explicitly, using methods
which are supported by statistical theory. Residuals are

approximately iid, so use of standard POT procedure is
unproblematic.

Alternative Estimation Approaches.

(a) Assume (X;) is GARCH process with normal innovations and fit
by standard ML. In practice high quantiles are often underestimated.

(b) Assume (X;) is GARCH process with scaled ¢,—innovations. Use
ML to estimate v and GARCH—parameters at the same time.

In practice: this works much better but has some problems with
asymmetric return series.
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K4. Example with S&P Data
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Series and Conditional SD

1000 day excerpt from series of negative log returns on Standard &
Poors index containing crash of 1987.
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“Prewhitening” with GARCH

Series : data Series : abs(data)
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Heavy—Tailedness Remains

QQ-plot of residuals; raw data from S&P
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Comparison with Standard Conditional Distributions

Losses
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Kb. Backtesting

Eiofgencssiscirne Decaarmant
Techinischire Hochscirule f=14
L Afatfrermnalics

The ETH Riskometer -

Market Risk Summary for Major | ndices on 18/04/00

Dynamic Risk M easur es

I ndex VaR (95%0) ESfall (9520) VaR (99%206) ESfall (99206) Volatility
S&P 500 3.98 5.99 7.16 9.46 40.1
Dow Jones 3.66 5.43 6.47 8.47 37.4
DAX 3.08 4.21 4.89 6.12 29.3

VaR and ESfall prognoses are estimates of potential daily losses expressed as percentage
Volatility is an annualized estimate expressed as a percentage; click on column heading f
history.

Data are kindly provided b¥Ylsen & Associates

Developer s ar e Alexander McNeilandRudiger Freyn the group fofinancial and insurance
mathematicsn themathematicslepartment of ETH Zarich.

Our methods, which combine econometric modelling and extreme value theory, are descri
our research paper; there postscriptandpdf versions.

VaR Backtests & Violation Summary

In all

DAX backtesttableor picture
Dow Jones backtesableor picture
S&P backtestableor picture

backtest pictures the 95206 VVaR is marked by a solid red line and the 99%26 VaR by a dotted

Circles and triangles indicate violation respectively.

Alexander McNeil ( mcneil @math.ethz.ch )
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Dynamic EVT: 95% and 99% VaR Predictions

DAX Returns: losses (+ve) and profits (-ve)

g | ;.
o
:\‘.:"j‘xx‘x L
. MH\ M | \\\
i
8 |
Q
[ [ [ [ [
01.01.98 01.07.98 01.01.99 01.07.99 01.01.100
Time

(©2005 (Embrechts, Frey, McNeil)

265



Backtesting Il — numbers of violations

S&P DAX
Length of Test 7414 5146
0.95 Quantile
Expected 371 257
Conditional EVT 366 (0.41) 258 (0.49)
Conditional Normal 384 (0.25) 238 (0.11)
Conditional t 404 (0.04) 253 (0.41)
Unconditional EVT 402 (0.05) 266 (0.30)
0.99 Quantile
Expected 74 51
Conditional EVT 73 (0.48) 55 (0.33)
Conditional Normal 104 (0.00) 74 (0.00)
Conditional t 78 (0.34) 61 (0.11)
Unconditional EVT 86 (0.10) 59 (0.16)
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Remark: Performance of ES estimates even more sensitive to
suitability of model in the tail region.
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K6. Multi-day returns: Simulation of P&L

We adopt a Monte Carlo procedure and simulate from our dynamic
model. We simulate iid noise from composite distribution made up

of empirical middle and GPD tails.

\

(2)

k

(2)|z—=z(nm—p)l AL
i (1 —l—fk BES)_ ) ) if 2 < Z(n—k)

1 ;_7/:1 i<z If Zin—k) S 2 <X Z(k41)s

(1)

n

k (1) 2~ 2(k+1 e
1__<1+§/< ﬁ) if 2> 2(41)-

For an h-day calculation we simulate 1000 (say) conditionally

independent future paths x;.1,...,z+1n and compute simulated iid
observations x;11 + ...+ T+ . Risk measures are estimated from

simulated data.
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Goal: assess performance and compare with “square root of time

Empirical Multi—-day Results

rule” (valid for iid normally distributed returns).

Square root of time scaling does not seem sophisticated enough!
Note that formal statistical testing difficult because of overlapping

returns.

S&P DAX BMW

h = 10; length of test 7405 5136 5136
0.95 Quantile

Expected 370 257 257
Conditional EVT (h-day) 403 249 231
Square—root—of—time 623 318 315
0.99 Quantile

Expected 74 51 51
Conditional EVT (h-day) 85 48 53
Square-root-of-time 206 83 70

(©2005 (Embrechts, Frey, McNeil)

268



References

On EVT and Market Risk Management

° | ]
° | ]

e Papers in the Part “Applications to Finance” of | ]

(©2005 (Embrechts, Frey, McNeil) 269



Bibliography

[Abramowitz and Stegun, 1965] Abramowitz, M. and Stegun, I,
editors (1965). Handbook of Mathematical Functions. Dover
Publications, New York.

[Alexander, 2001] Alexander, C. (2001). Market Models: A Guide to
Financial Data Analysis. Wiley, Chichester.

[Artzner et al., 1999] Artzner, P., Delbaen, F., Eber, J., and Heath,
D. (1999). Coherent measures of risk. Math. Finance, 9:203-228.

[Atkinson, 1982] Atkinson, A. (1982). The simulation of generalized
inverse Gaussian and hyperbolic random variables. SIAM J. Sci.
Comput., 3(4):502-515.

(©2005 (Embrechts, Frey, McNeil) 270



[Balkema and de Haan, 1974] Balkema, A. and de Haan, L. (1974).
Residual life time at great age. Ann. Probab., 2:792—-804.

[Barndorff-Nielsen, 1997] Barndorff-Nielsen, O. (1997). Normal
inverse Gaussian distributions and stochastic volatility modelling.
Scand. J. Statist., 24:1-13.

[Barndorff-Nielsen and Shephard, 1998| Barndorff-Nielsen, O. and
Shephard, N. (1998). Aggregation and model construction for

volatility models. Preprint, Center for Analytical Finance, University
of Aarhus.

[Bollerslev et al., 1994] Bollerslev, T., Engle, R., and Nelson, D.
(1994). ARCH models. In Engle, R. and McFadden, D., editors,
Handbook of Econometrics, volume 4, pages 2959-3038. North-
Holland, Amsterdam.

(©2005 (Embrechts, Frey, McNeil) 271



[Brockwell and Davis, 1991] Brockwell, P. and Davis, R. (1991).
Time Series: Theory and Methods. Springer, New York, 2nd
edition.

[Brockwell and Davis, 2002] Brockwell, P. and Davis, R. (2002).

Introduction to Time Series and Forecasting. Springer, New York,
2nd edition.

[Christoffersen et al., 1998] Christoffersen, P., Diebold, F., and
Schuermann, T. (1998). Horizon problems and extreme events

in financial risk management. Federal Reserve Bank of New York,
Economic Policy Review, October 1998:109-118.

[Crouhy et al., 2001] Crouhy, M., Galai, D., and Mark, R. (2001).
Risk Management. McGraw-Hill, New York.

(©2005 (Embrechts, Frey, McNeil) 272



[Eberlein and Keller, 1995] Eberlein, E. and Keller, U. (1995).
Hyperbolic distributions in finance. Bernoulli, 1:281-299.

[Eberlein et al., 1998] Eberlein, E., Keller, U., and Prause, K. (1998).
New insights into smile, mispricing, and value at risk: the hyperbolic
model. J. Bus., 38:371-405.

[Embrechts, 2000] Embrechts, P., editor (2000). Extremes and
Integrated Risk Management. Risk Waters Group, London.

[Embrechts et al., 1997] Embrechts, P., Klippelberg, C., and
Mikosch, T. (1997). Modelling Extremal Events for Insurance
and Finance. Springer, Berlin.

[Embrechts et al., 2002] Embrechts, P., McNeil, A., and Straumann,
D. (2002). Correlation and dependency in risk management:

(©2005 (Embrechts, Frey, McNeil) 273



properties and pitfalls. In Dempster, M., editor, Risk Management:
Value at Risk and Beyond, pages 176—223. Cambridge University
Press, Cambridge.

[Fang et al., 1987] Fang, K.-T., Kotz, S., and Ng, K.-W. (1987).
Symmetric Multivariate and Related Distributions. Chapman &
Hall, London.

[Fisher and Tippett, 1928] Fisher, R. and Tippett, L. (1928).
Limiting forms of the frequency distribution of the largest or
smallest member of a sample. Proc. Camb. Phil. Soc., 24:180-190.

[Frees and Valdez, 1997] Frees, E. and Valdez, E. (1997).
Understanding relationships using copulas. N. Amer. Actuarial
J., 2(1):1-25.

(©2005 (Embrechts, Frey, McNeil) 274



[Genest and Rivest, 1993] Genest, C. and Rivest, L. (1993).
Statistical inference procedures for bivariate archimedean copulas.
J. Amer. Statist. Assoc., 88:1034-1043.

|Gnedenko, 1943] Gnedenko, B. (1943). Sur la distribution limite du
terme maximum d'une série aléatoire. Ann. of Math., 44:423—-453.

[Gouriéroux, 1997] Gouriéroux, C. (1997). ARCH-Models and
Financial Applications. Springer, New York.

[Joe, 1997] Joe, H. (1997). Multivariate Models and Dependence
Concepts. Chapman & Hall, London.

[Jorion, 2001] Jorion, P. (2001). Value at Risk: the New Benchmark
for Measuring Financial Risk. McGraw-Hill, New York, 2nd edition.

(©2005 (Embrechts, Frey, McNeil) 275



[Klugman and Parsa, 1999] Klugman, S. and Parsa, R. (1999).
Fitting bivariate loss distributions with copulas. Ins.: Mathematics
Econ., 24:139-148.

[Kotz et al., 2000] Kotz, S., Balakrishnan, N., and Johnson, N.
(2000). Continuous Multivariate Distributions. Wiley, New York.

[Lindskog, 2000] Lindskog, F. (2000). Modelling dependence with
copulas. RiskLab Report, ETH Zurich.

[Mardia et al., 1979] Mardia, K., Kent, J., and Bibby, J. (1979).
Multivariate Analysis. Academic Press, London.

[Marshall and Olkin, 1988] Marshall, A. and Olkin, 1. (1988).
Families of multivariate distributions. J. Amer. Statist. Assoc.,
83:834-841.

(©2005 (Embrechts, Frey, McNeil) 276



[Mashal and Zeevi, 2002] Mashal, R. and Zeevi, A. (2002). Beyond
correlation: extreme co-movements between financial assets.
Preprint, Columbia Business School.

[McNeil, 1997] McNeil, A. (1997). Estimating the tails of loss severity
distributions using extreme value theory. Astin Bulletin, 27:117-
137.

[McNeil, 1998] McNeil, A. (1998). History repeating. Risk, 11(1):99.

[McNeil, 1999] McNeil, A. (1999). Extreme value theory for risk
managers. In Internal Modelling and CAD Il, pages 93—-113. Risk
Waters Group, London.

[McNeil and Frey, 2000] McNeil, A. and Frey, R. (2000). Estimation

(©2005 (Embrechts, Frey, McNeil) 277



of tail-related risk measures for heteroscedastic financial time series:
an extreme value approach. J. Empirical Finance, 7:271-300.

[McNeil et al., 2005] McNeil, A., Frey, R., and Embrechts, P. (2005).
Quantitative Risk Management: Concepts, Techniques and Tools.
Princeton University Press, Princeton.

[Mikosch, 2003] Mikosch, T. (2003). Modeling dependence and tails
of financial time series. In Finkenstadt, B. and Rootzén, H.,
editors, Extreme Values in Finance, Telecommunications, and the
Environment. Chapman & Hall, London.

[Mina and Xiao, 2001] Mina, J. and Xiao, J. (2001). Return to

RiskMetrics: the evolution of a standard. Technical report,
RiskMetrics Group, New York.

(©2005 (Embrechts, Frey, McNeil) 278



[Nelsen, 1999] Nelsen, R. (1999). An Introduction to Copulas.
Springer, New York.

[Pickands, 1975] Pickands, J. (1975). Statistical inference using
extreme order statistics. Ann. Statist., 3:119-131.

[Prause, 1999] Prause, K. (1999). The generalized hyperbolic model.

estimation, financial derivatives and risk measures. PhD thesis,
Institut fur Mathematische Statistik, Albert-Ludwigs-Universitat
Freiburg.

[Reiss and Thomas, 1997] Reiss, R.-D. and Thomas, M. (1997).
Statistical Analysis of Extreme Values. Birkhauser, Basel.

[Seber, 1984] Seber, G. (1984). Multivariate Observations. Wiley,
New York.

(©2005 (Embrechts, Frey, McNeil) 279



[Smith, 1987] Smith, R. (1987). Estimating tails of probability
distributions. Ann. Statist., 15:1174-1207.

[Tsay, 2002] Tsay, R. (2002). Analysis of Financial Time Series.
Wiley, New York.

[Venter and de Jongh, 2002] Venter, J. and de Jongh, P
(2001/2002). Risk estimation using the normal inverse Gaussian
distribution. J. Risk, 4(2):1-23.

[Zivot and Wang, 2003] Zivot, E. and Wang, J. (2003). Modeling
Financial Time Series with S-PLUS. Springer, New York.

(©2005 (Embrechts, Frey, McNeil) 280





