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I1. Limiting Behaviour of Maxima

Let X1,X2, . . . be iid random variables with distribution function

(df) F . In risk management applications these could represent

financial losses, operational losses or insurance losses.

Let Mn = max (X1, . . . ,Xn) be worst–case loss in a sample of

n losses. Clearly

P (Mn ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x) = Fn(x) .

It can be shown that, almost surely, Mn
n→∞−→ xF , where

xF := sup{x ∈ R : F (x) < 1} ≤ ∞ is the right endpoint of F .

But what about normalized maxima?
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Limiting Behaviour of Sums or Averages

(See [Embrechts et al., 1997], Chapter 2.)

We are familiar with the central limit theorem.

Let X1,X2, . . . be iid with finite mean µ and finite variance σ2. Let

Sn = X1 +X2 + . . .+Xn. Then

P
(

(Sn − nµ) /
√
nσ2 ≤ x

)
n→∞−→ Φ(x) ,

where Φ is the distribution function of the standard normal

distribution

Φ(x) =
1√
2π

∫ x

−∞
e−u

2/2du .

Note, more generally, the limiting distributions for appropriately

normalized sample sums are the class of α–stable distributions;

Gaussian distribution is a special case.
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Limiting Behaviour of Sample Extrema

(See [Embrechts et al., 1997], Chapter 3.)

Let X1,X2, . . . be iid from F and let Mn = max (X1, . . . ,Xn).

Suppose we can find sequences of real numbers an > 0 and bn such

that (Mn − bn) /an, the sequence of normalized maxima, converges

in distribution, i.e.

P ((Mn − bn) /an ≤ x) = Fn (anx+ bn)
n→∞−→ H(x) ,

for some non–degenerate df H(x).

If this condition holds we say that F is in the maximum domain of

attraction of H, abbreviated F ∈ MDA(H) . Note that such an H is

determined up to location and scale, i.e. will specify a unique type

of distribution.
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I2. Generalized Extreme Value Distribution

The GEV has df

Hξ(x) =

{
exp

(
−(1 + ξx)−1/ξ

)
ξ 6= 0 ,

exp (−e−x) ξ = 0,

where 1 + ξx > 0 and ξ is the shape parameter. Note, this

parametrization is continuous in ξ. For

ξ > 0 Hξ is equal in type to classical Fréchet df

ξ = 0 Hξ is equal in type to classical Gumbel df

ξ < 0 Hξ is equal in type to classical Weibull df .

We introduce location and scale parameters µ and σ > 0 and work

with Hξ,µ,σ(x) := Hξ((x− µ)/σ). Clearly Hξ,µ,σ is of type Hξ.
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GEV: distribution functions for various ξ

D.f.s
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GEV: densities for various ξ

Densities
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I3. Fisher–Tippett Theorem (1928)

Theorem: If F ∈ MDA(H) then H is of the type Hξ for some ξ.

“If suitably normalized maxima converge in distribution to

a non–degenerate limit, then the limit distribution must be an

extreme value distribution.”

Remark 1: Essentially all commonly encountered continuous

distributions are in the maximum domain of attraction of an extreme

value distribution.

Remark 2: We can always choose normalizing sequences an and bn
so that the limit law Hξ appears in standard form (without

relocation or rescaling).
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Fisher-Tippett: Examples

Recall: F ∈ MDA(Hξ) , iff there are sequences an and bn with

P ((Mn − bn) /an ≤ x) = Fn (anx+ bn)
n→∞−→ H(x) .

We have the following examples:

• The exponential distribution, F (x) = 1− e−λx, λ > 0, x ≥ 0, is in

MDA(H0) (Gumbel-case). Take an = 1/λ, bn = (log n)/λ.

• The Pareto distribution,

F (x) = 1−
(

κ

κ+ x

)α
, α, κ > 0, x ≥ 0,

is in MDA(H1/α) (Fréchet case). Take an = κn1/α/α, bn =

κn1/α − κ.

c©2005 (Embrechts, Frey, McNeil) 211



I4. Using Fisher–Tippett: Block Maxima Method

Assume that we have a large enough block of n iid random

variables so that the limit result is more or less exact, i.e. ∃an > 0,

bn ∈ R such that, for some ξ,

P

(
Mn − bn

an
≤ x

)
≈ Hξ(x) .

Now set y = anx+ bn. P (Mn ≤ y) ≈ Hξ

(
y−bn
an

)
= Hξ,bn,an(y).

We wish to estimate ξ, bn and an.

Implication: We collect data on block maxima and fit the

three–parameter form of the GEV. For this we require a lot of raw

data so that we can form sufficiently many, sufficiently large blocks.

c©2005 (Embrechts, Frey, McNeil) 212



ML Inference for Maxima

We have block maxima data y =
(
M

(1)
n , . . . ,M

(m)
n

)′
from m blocks

of size n. We wish to estimate θ = (ξ, µ, σ)′. We construct

a log–likelihood by assuming we have independent observations from

a GEV with density hθ,

l(θ; y) = log

(
m∏

i=1

hθ

(
M (i)
n

)
1n

1+ξ
“
M

(i)
n −µ

”
/σ>0

o

)
,

and maximize this w.r.t. θ to obtain the MLE θ̂ = (ξ̂, µ̂, σ̂)′.

Clearly, in defining blocks, bias and variance must be traded off. We

reduce bias by increasing the block size n; we reduce variance by

increasing the number of blocks m.
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I5. An Example: S&P 500

It is the early evening of Friday the 16th October 1987. In the equity

markets it has been an unusually turbulent week, which has seen the

S&P 500 index fall by 9.21%. On that Friday alone the index is

down 5.25% on the previous day, the largest one–day fall since 1962.

At our disposal are all daily closing values of the index since 1960.

We analyse annual maxima of daily percentage falls in the index.

These values M
(1)
260, . . . ,M

(28)
260 are assumed to be iid from Hξ,µ,σ.

Remark. Although we have only justified this choice of limiting

distribution for maxima of iid data, it turns out that the GEV is also

the correct limit for maxima of stationary time series, under some

technical conditions on the nature of the dependence. These

conditions are fulfilled, for example, by GARCH processes.
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S&P 500 Return Data
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S&P 500 to 16th October 1987
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Assessing the Risk in S&P

We will address the following two questions:

• What is the probability that next year’s maximum exceeds all

previous levels?

• What is the 40–year return level R260,40?

In the first question we assess the probability of observing a new

record. In the second problem we define and estimate a rare stress or

scenario loss.
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Return Levels

Rn,k, the k n–block return level, is defined by

P (Mn > Rn,k) = 1/k ;

i.e. it is that level which is exceeded in one out of every k n–blocks,

on average.

We use the approximation

Rn,k ≈ H−1
ξ,µ,σ(1− 1/k) ≈ µ+ σ

(
(− log(1− 1/k))

−ξ − 1
)/

ξ .

We wish to estimate this functional of the unknown parameters of

our GEV model for maxima of n–blocks.
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S–Plus Maxima Analysis with EVIS

> out <- gev(-sp,"year")

> out

$n.all: [1] 6985

$n: [1] 28

$data:

1960 1961 1962 1963 1964 1965 1966 1967

2.268191 2.083017 6.675635 2.806479 1.253012 1.757765 2.460411 1.558183

1968 1969 1970 1971 1972 1973 1974 1975

1.899367 1.903001 2.768166 1.522388 1.319013 3.051598 3.671256 2.362394

1976 1977 1978 1979 1980 1981 1982 1983

1.797353 1.625611 2.009257 2.957772 3.006734 2.886327 3.996544 2.697254

1984 1985 1986 1987

1.820587 1.455301 4.816644 5.253623

$par.ests:

xi sigma mu

0.3343843 0.6715922 1.974976

$par.ses:

xi sigma mu

0.2081 0.130821 0.1512828

$nllh.final:

[1] 38.33949
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S&P Example (continued)

Answers:

• Probability is estimated by

1−Hξ̂,µ̂,σ̂

(
max

(
M

(1)
260, . . . ,M

(28)
260

))
= 0.027 .

• R260,40 is estimated by

H−1

ξ̂,µ̂,σ̂
(1− 1/40) = 6.83 .

It is important to construct confidence intervals for such statistics.

We use asymptotic likelihood ratio ideas to construct asymmetric

intervals – the so–called profile likelihood method.
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Estimated 40–Year Return Level
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