Risk Theory and Related Topics

Bedlewo, Poland. 28 september- 8 october 2008

Credit Risk: Reduced Form Approach

Tomasz R. Bielecki, IIT, Chicago
Monique Jeanblanc, University of Evry
Marek Rutkowski, University of New South Wales, Sydney

Hedging of Defaultable Claims

- Bielecki, T., Jeanblanc, M. and Rutkowski, M.: PDE approach to valuation and hedging of credit derivatives. Quantitative Finance 5 (2005), 257-270.
- Rutkowski, M. and Yousiph, K.: PDE approach to the valuation and hedging of basket credit derivatives. Forthcoming in International Journal of Theoretical and Applied Finance.
- Bielecki, T., Jeanblanc, M. and Rutkowski, M.: Hedging of credit derivatives in models with totally unexpected default. In: Stochastic Processes and Applications to Mathematical Finance, J. Akahori et al., eds., World Scientific, Singapore, 2006, 35-100.
- Bielecki, T., Jeanblanc, M. and Rutkowski, M.: Replication of contingent claims in a reduced-form credit risk model with discontinuous asset prices. Stochastic Models 22 (2006), 661-687.

The Model

Default Time

- The default time τ is a non-negative random variable on $(\Omega, \mathcal{G}, \mathbb{Q})$.
- Note that \mathbb{Q} is the statistical probability measure.
- The filtration generated by the default process $H_{t}=\mathbb{1}_{\{\tau \leq t\}}$ is denoted by \mathbb{H}.
- We set $\mathbb{G}=\mathbb{F} \vee \mathbb{H}$, so that $\mathcal{G}_{t}=\mathcal{F}_{t} \vee \mathcal{H}_{t}$ for every $t \in \mathbb{R}_{+}$, where $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$is a reference filtration.
- We define the processes F_{t} and G_{t} as

$$
F_{t}=\mathbb{Q}\left\{\tau \leq t \mid \mathcal{F}_{t}\right\}
$$

and

$$
G_{t}=1-F_{t}=\mathbb{Q}\left\{\tau>t \mid \mathcal{F}_{t}\right\} .
$$

Hazard Process

- The process Γ, given as

$$
\Gamma_{t}=-\ln \left(1-F_{t}\right)=-\ln G_{t}
$$

is the \mathbb{F}-hazard process under the statistical probability \mathbb{Q}.

- We shall assume that the \mathbb{F}-hazard process is absolutely continuous: $\Gamma_{t}=\int_{0}^{t} \gamma_{u} d u$.
- Hence, the compensated default process

$$
M_{t}=H_{t}-\int_{0}^{t \wedge \tau} \gamma_{u} d u=H_{t}-\int_{0}^{t} U_{u} d u
$$

is a \mathbb{G}-martingale under \mathbb{Q}, where we denote $U_{t}=\gamma_{t} \mathbb{1}_{\{t<\tau\}}$.

Hypothesis (H). We assume throughout that any \mathbb{F}-martingale under \mathbb{Q} is also a \mathbb{G}-martingale under \mathbb{Q}.

- Hypothesis (H) is satisfied if a random time τ is defined through the canonical construction.
- If the representation theorem holds for the filtration \mathbb{F} and a finite family $Z^{i}, i \leq n$, of \mathbb{F}-martingales then, under Hypothesis (H), it holds also for the filtration \mathbb{G} and with respect to the \mathbb{G}-martingales $Z^{i}, i \leq n$ and M.

Remark. Hypothesis (H) is not invariant with respect to an equivalent change of a probability measure, in general.

Prices of Traded Assets

- Let Y^{1}, Y^{2}, Y^{3} be semimartingales on $(\Omega, \mathcal{G}, \mathbb{G}, \mathbb{Q})$. We interpret Y_{t}^{i} as the cash price at time t of the i th traded asset in the market model $\mathcal{M}=\left(Y^{1}, Y^{2}, Y^{3} ; \Phi\right)$, where Φ stands for the class of all self-financing trading strategies.
- We postulate that the process Y^{i} is governed by the SDE

$$
d Y_{t}^{i}=Y_{t-}^{i}\left(\mu_{i} d t+\sigma_{i} d W_{t}+\kappa_{i} d M_{t}\right), \quad i=1,2,3
$$

with $Y_{0}^{i}>0$.

- Here W is a one-dimensional Brownian motion and M is the compensated martingale of the default process H.

Assumptions

- We assume that $\kappa_{i} \geq-1$ and $\kappa_{1}>-1$ so that $Y_{t}^{1}>0$ for every $t \in \mathbb{R}_{+}$. This assumption allows us to take the first asset as a numeraire.
- Note that the constant coefficient $\kappa_{1}>-1$ corresponds to a fractional recovery of market value for the first asset.
- In general, we do not assume that a risk-free security exists. Hence we do not refer to the theory involving the risk-neutral probability associated with the choice of a savings account as a numeraire.

Change of Numéraire

- An equivalent martingale measure \mathbb{Q}^{*} is characterized by the property that the relative prices $Y^{i}\left(Y^{1}\right)^{-1}, i=1,2,3$, are \mathbb{Q}^{*}-martingales.
- We will derive the dynamics for the process $Y^{i, 1}=Y^{i}\left(Y^{1}\right)^{-1}$ for $i=2,3$.
- From Itô's formula, we first obtain

$$
\begin{aligned}
& d\left(\frac{1}{Y_{t}^{1}}\right)=\frac{1}{Y_{t-}^{1}}\left(-\mu_{1}+\sigma_{1}^{2}+U_{t}\left(\frac{1}{1+\kappa_{1}}-1+\kappa_{1}\right)\right) d t \\
& \quad-\frac{1}{Y_{t-}^{1}}\left(\sigma_{1} d W_{t}+\frac{\kappa_{1}}{1+\kappa_{1}} d M_{t}\right)
\end{aligned}
$$

Dynamics of Relative Prices

Consequently, the Itô's integration by parts formula yields the following dynamics for the processes $Y^{i, 1}$

$$
\begin{aligned}
d Y_{t}^{i, 1} & =Y_{t-}^{i, 1}\left\{\left(\mu_{i}-\mu_{1}-\sigma_{1}\left(\sigma_{i}-\sigma_{1}\right)-U_{t}\left(\kappa_{i}-\kappa_{1}\right) \frac{\kappa_{1}}{1+\kappa_{1}}\right) d t\right. \\
& \left.+\left(\sigma_{i}-\sigma_{1}\right) d W_{t}+\frac{\kappa_{i}-\kappa_{1}}{1+\kappa_{1}} d M_{t}\right\} .
\end{aligned}
$$

Equivalent Martingale Measure

- By assumption, \mathbb{Q}^{*} is equivalent to the statistical probability \mathbb{Q} on $\left(\Omega, \mathcal{G}_{T}\right)$ and such that $Y^{i, 1}, i=2,3$ are \mathbb{Q}^{*}-martingales.
- Kusuoka (1999) showed that any probability equivalent to \mathbb{Q} on $\left(\Omega, \mathcal{G}_{T}\right)$ is defined by means of its Radon-Nikodým density process η satisfying the SDE

$$
d \eta_{t}=\eta_{t-}\left(\theta_{t} d W_{t}+\zeta_{t} d M_{t}\right), \quad \eta_{0}=1
$$

where θ and ζ are \mathbb{G}-predictable processes satisfying mild technical conditions (in particular, $\zeta_{t}>-1$ for $t \in[0, T]$).

- Since M is stopped at τ, we may and do assume that ζ is stopped at τ.

Radon-Nikodým Density

We define \mathbb{Q}^{*} by setting

$$
\frac{d \mathbb{Q}^{*}}{d \mathbb{Q}}=\eta_{T}=\mathcal{E}_{T}(\theta W) \mathcal{E}_{T}(\zeta M), \quad \mathbb{Q} \text {-a.s. }
$$

Then the processes \widehat{W} and \widehat{M} given by, for $t \in[0, T]$,

$$
\begin{aligned}
& \widehat{W}_{t}=W_{t}-\int_{0}^{t} \theta_{u} d u \\
& \widehat{M}_{t}=M_{t}-\int_{0}^{t} U_{u} \zeta_{u} d u=H_{t}-\int_{0}^{t} U_{u}\left(1+\zeta_{u}\right) d u=H_{t}-\int_{0}^{t} \widehat{U}_{u} d u
\end{aligned}
$$

where $\widehat{U}_{u}=U_{u}\left(1+\zeta_{u}\right)$, are \mathbb{G}-martingales under \mathbb{Q}^{*}.

Martingale Condition

Proposition 1 Processes $Y^{i, 1}, i=2,3$ are \mathbb{Q}^{*}-martingales if and only if drifts in their dynamics, when expressed in terms of \widehat{W} and \widehat{M}, vanish.

Hence the following equalities hold for $i=2,3$ and every $t \in[0, T]$

$$
Y_{t-}^{i, 1}\left\{\mu_{1}-\mu_{i}+\left(\sigma_{1}-\sigma_{i}\right)\left(\theta_{t}-\sigma_{1}\right)+U_{t}\left(\kappa_{1}-\kappa_{i}\right) \frac{\zeta_{t}-\kappa_{1}}{1+\kappa_{1}}\right\}=0 .
$$

Equivalently, we have for $i=2,3$, on the set $Y_{t^{-}}^{i, 1} \neq 0$,

$$
\mu_{1}-\mu_{i}+\left(\sigma_{1}-\sigma_{i}\right)\left(\theta_{t}-\sigma_{1}\right)+U_{t}\left(\kappa_{1}-\kappa_{i}\right) \frac{\zeta_{t}-\kappa_{1}}{1+\kappa_{1}}=0 .
$$

Case A: Strictly Positive Primary Assets

Case A: standing assumptions:

- We postulate that $\kappa_{1}>-1$ so that $Y^{1}>0$.
- We assume, in addition, that $\kappa_{i}>-1$ for $i=2,3$, so that the price processes Y^{2} and Y^{3} are strictly positive as well.

Martingale Condition

- From the general theory of arbitrage pricing, it follows that the market model \mathcal{M} is complete and arbitrage-free if there exists a unique solution (θ, ζ) such that the process $\zeta>-1$.
- Since $Y^{i, 1}>0$, we search for processes (θ, ζ) such that for $i=2,3$

$$
\theta_{t}\left(\sigma_{1}-\sigma_{i}\right)+\zeta_{t} U_{t} \frac{\kappa_{1}-\kappa_{i}}{1+\kappa_{1}}=\mu_{i}-\mu_{1}+\sigma_{1}\left(\sigma_{1}-\sigma_{i}\right)+U_{t}\left(\kappa_{1}-\kappa_{i}\right) \frac{\kappa_{1}}{1+\kappa_{1}}
$$

Martingale Condition

Since $U_{t}=\gamma \mathbb{1}_{\{t \leq \tau\}}$, we deal here with four linear equations.

- For $t \leq \tau$:

$$
\begin{aligned}
& \theta_{t}\left(\sigma_{1}-\sigma_{2}\right)+\zeta_{t} \gamma \frac{\kappa_{1}-\kappa_{2}}{1+\kappa_{1}}=\mu_{2}-\mu_{1}+\sigma_{1}\left(\sigma_{1}-\sigma_{2}\right)+\gamma \frac{\left(\kappa_{1}-\kappa_{2}\right) \kappa_{1}}{1+\kappa_{1}} \\
& \theta_{t}\left(\sigma_{1}-\sigma_{3}\right)+\zeta_{t} \gamma \frac{\kappa_{1}-\kappa_{3}}{1+\kappa_{1}}=\mu_{3}-\mu_{1}+\sigma_{1}\left(\sigma_{1}-\sigma_{3}\right)+\gamma \frac{\left(\kappa_{1}-\kappa_{3}\right) \kappa_{1}}{1+\kappa_{1}}
\end{aligned}
$$

- For $t>\tau$:

$$
\begin{aligned}
\theta_{t}\left(\sigma_{1}-\sigma_{2}\right) & =\mu_{2}-\mu_{1}+\sigma_{1}\left(\sigma_{1}-\sigma_{2}\right) \\
\theta_{t}\left(\sigma_{1}-\sigma_{3}\right) & =\mu_{3}-\mu_{1}+\sigma_{1}\left(\sigma_{1}-\sigma_{3}\right)
\end{aligned}
$$

- The first (the second, resp.) pair of equations is referred to as the pre-default (post-default, resp.) no-arbitrage condition.

Notation

To solve explicitly these equations, we find it convenient to write

$$
a=\operatorname{det} A, \quad b=\operatorname{det} B, \quad c=\operatorname{det} C,
$$

where A, B and C are the following matrices:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
\sigma_{1}-\sigma_{2} & \kappa_{1}-\kappa_{2} \\
\sigma_{1}-\sigma_{3} & \kappa_{1}-\kappa_{3}
\end{array}\right], \quad B=\left[\begin{array}{cc}
\sigma_{1}-\sigma_{2} & \mu_{1}-\mu_{2} \\
\sigma_{1}-\sigma_{3} & \mu_{1}-\mu_{3}
\end{array}\right] \\
C=\left[\begin{array}{cc}
\kappa_{1}-\kappa_{2} & \mu_{1}-\mu_{2} \\
\kappa_{1}-\kappa_{3} & \mu_{1}-\mu_{3}
\end{array}\right]
\end{gathered}
$$

Auxiliary Lemma

Lemma 1 The pair (θ, ζ) satisfies the following equations

$$
\begin{aligned}
\theta_{t} a & =\sigma_{1} a+c \\
\zeta_{t} U_{t} a & =\kappa_{1} U_{t} a-\left(1+\kappa_{1}\right) b
\end{aligned}
$$

In order to ensure the validity of the second equation after the default time τ (i.e., on the set $\left\{U_{t}=0\right\}$), we need to impose an additional condition, $b=0$, or more explicitly,

$$
\left(\sigma_{1}-\sigma_{2}\right)\left(\mu_{1}-\mu_{3}\right)-\left(\sigma_{1}-\sigma_{3}\right)\left(\mu_{1}-\mu_{2}\right)=0
$$

If this holds, then we obtain the following equations

$$
\begin{aligned}
\theta_{t} a & =\sigma_{1} a+c \\
\zeta_{t} U_{t} a & =\kappa_{1} U_{t} a
\end{aligned}
$$

Existence of a Martingale Measure

Proposition 2 (i) If $a \neq 0$ and $b=0$ then the unique martingale measure \mathbb{Q}^{*} has the Radon-Nikodým density of the form

$$
\frac{d \mathbb{Q}^{*}}{d \mathbb{Q}}=\mathcal{E}_{T}(\theta W) \mathcal{E}_{T}(\zeta M),
$$

where the constants θ and ζ are given by

$$
\theta=\sigma_{1}+\frac{c}{a}, \quad \zeta=\kappa_{1}>-1,
$$

and where we write, for $t \in[0, T]$,

$$
\begin{gathered}
\mathcal{E}_{t}(\theta W)=\exp \left(\theta W_{t}-\frac{1}{2} \theta^{2} t\right) \\
\mathcal{E}_{t}(\zeta M)=\left(1+\mathbb{1}_{\{\tau \leq t\}} \zeta\right) \exp (-\zeta \gamma(t \wedge \tau))
\end{gathered}
$$

Existence of a Martingale Measure (Continued)

(ii) If $a \neq 0$ and $b=0$ then the model $\mathcal{M}=\left(Y^{1}, Y^{2}, Y^{3} ; \Phi\right)$ is arbitrage-free and complete. Moreover, the process $\left(Y^{1}, Y^{2}, Y^{3}, H\right)$ has the Markov property under \mathbb{Q}^{*}.
(iii) If $a=0$ and $b=0$ then a solution (θ, ζ) exists provided that $c=0$ and the uniqueness of a martingale measure \mathbb{Q}^{*} fails to hold. In this case, the model $\mathcal{M}=\left(Y^{1}, Y^{2}, Y^{3} ; \Phi\right)$ is arbitrage-free, but it is not complete.
(iv) If $b \neq 0$ then a martingale measure fails to exist and consequently the model $\mathcal{M}=\left(Y^{1}, Y^{2}, Y^{3} ; \Phi\right)$ is not arbitrage-free.

Example A: Extension of the Black-Scholes Model

- Assume that the asset Y^{1} is risk-free, the asset $Y^{2} \neq Y^{1}$ is default-free, and Y^{3} is a defaultable asset with non-zero recovery, so that

$$
\begin{aligned}
d Y_{t}^{1} & =r Y_{t}^{1} d t \\
d Y_{t}^{2} & =Y_{t}^{2}\left(\mu_{2} d t+\sigma_{2} d W_{t}\right) \\
d Y_{t}^{3} & =Y_{t-}^{3}\left(\mu_{3} d t+\sigma_{3} d W_{t}+\kappa_{3} d M_{t}\right)
\end{aligned}
$$

- We thus have $\sigma_{1}=\kappa_{1}=0, \mu_{1}=r, \sigma_{2} \neq 0, \kappa_{2}=0$, and $\kappa_{3} \neq 0, \kappa_{3}>-1$.
- Therefore,

$$
a=\sigma_{2} \kappa_{3} \neq 0, \quad c=\kappa_{3}\left(r-\mu_{2}\right)
$$

and the equality $b=0$ holds if and only if

$$
\sigma_{2}\left(r-\mu_{3}\right)=\sigma_{3}\left(r-\mu_{2}\right)
$$

Example A (Continued)

- It is easy to check that

$$
\theta=\frac{r-\mu_{2}}{\sigma_{2}}, \quad \zeta=0
$$

and thus under the martingale measure \mathbb{Q}^{*} we have (irrespective of whether $\sigma_{3}>0$ or $\sigma_{3}=0$)

$$
\begin{aligned}
d Y_{t}^{1} & =r Y_{t}^{1} d t \\
d Y_{t}^{2} & =Y_{t}^{2}\left(r d t+\sigma_{2} d \widehat{W}_{t}\right) \\
d Y_{t}^{3} & =Y_{t-}^{3}\left(r d t+\sigma_{3} d \widehat{W}_{t}+\kappa_{3} d M_{t}\right)
\end{aligned}
$$

- Since $\zeta=0$ the risk-neutral default intensity $\widehat{\gamma}$ coincides here with the statistical default intensity γ. This implies the equality $\widehat{M}=M$.

Case B: Defaultable Asset with Zero Recovery

Case B: standing assumptions:

- We postulate that $\kappa_{i}>-1$ for $i=1,2$ and $\kappa_{3}=-1$.
- This implies that the price of a defaultable asset Y^{3} vanishes after τ, and thus the findings of the preceding section are no longer valid.

Martingale Condition

- Since Y^{3} jumps to zero at τ, the first equality in the martingale condition

$$
\mu_{2}-\mu_{1}+\left(\sigma_{2}-\sigma_{1}\right)\left(\theta_{t}-\sigma_{1}\right)+U_{t}\left(\kappa_{2}-\kappa_{1}\right) \frac{\zeta_{t}-\kappa_{1}}{1+\kappa_{1}}=0
$$

should still be satisfied for every $t \in[0, T]$.

- The second equality in the martingale condition

$$
\mu_{3}-\mu_{1}+\left(\sigma_{3}-\sigma_{1}\right)\left(\theta_{t}-\sigma_{1}\right)+U_{t}\left(\kappa_{3}-\kappa_{1}\right) \frac{\zeta_{t}-\kappa_{1}}{1+\kappa_{1}}=0
$$

is required to hold on the set $\{\tau>t\}$ only (i.e. when $U_{t}=\gamma$).

Martingale Condition

Lemma 2 Under the present assumptions, the unknown processes θ and ζ in the Radon-Nikodym density of \mathbb{Q}^{*} with respect to \mathbb{Q} satisfy the following equations

$$
\begin{aligned}
\mu_{2}-\mu_{1}+\left(\sigma_{2}-\sigma_{1}\right)\left(\theta_{t}-\sigma_{1}\right) & =0, \quad \text { for } t>\tau \\
\mu_{2}-\mu_{1}+\left(\sigma_{2}-\sigma_{1}\right)\left(\theta_{t}-\sigma_{1}\right)+\gamma\left(\kappa_{2}-\kappa_{1}\right) \frac{\zeta_{t}-\kappa_{1}}{1+\kappa_{1}} & =0, \quad \text { for } t \leq \tau \\
\mu_{3}-\mu_{1}+\left(\sigma_{3}-\sigma_{1}\right)\left(\theta_{t}-\sigma_{1}\right)+\gamma\left(-1-\kappa_{1}\right) \frac{\zeta_{t}-\kappa_{1}}{1+\kappa_{1}} & =0, \quad \text { for } t \leq \tau
\end{aligned}
$$

This leads to the following result.

Martingale Measure

Proposition 3 The pair (θ, ζ) satisfies the following equations, for $t \leq \tau$,

$$
\theta_{t} a=\sigma_{1} a+c, \quad \zeta_{t} \gamma a=\kappa_{1} \gamma a-\left(1+\kappa_{1}\right) b .
$$

Moreover, for $t>\tau$,

$$
\mu_{2}-\mu_{1}+\left(\sigma_{2}-\sigma_{1}\right)\left(\theta_{t}-\sigma_{1}\right)=0
$$

Let $a \neq 0, \sigma_{1} \neq \sigma_{2}$ and $\gamma>b / a$. Then the unique solution is
$\theta_{t}=\mathbb{1}_{\{t \leq \tau\}}\left(\sigma_{1}+\frac{c}{a}\right)+\mathbb{1}_{\{t>\tau\}}\left(\sigma_{1}-\frac{\mu_{1}-\mu_{2}}{\sigma_{1}-\sigma_{2}}\right), \zeta_{t}=\kappa_{1}-\frac{\left(1+\kappa_{1}\right) b}{\gamma a}>-1$.
The model $\mathcal{M}=\left(Y^{1}, Y^{2}, Y^{3} ; \Phi\right)$ is arbitrage-free, complete, and has the
Markov property under the unique martingale measure \mathbb{Q}^{*}.

Example B : Extension of the Black-Scholes Model

- Assume that the asset Y^{1} is risk-free, the asset $Y^{2} \neq Y^{1}$ is default-free, and Y^{3} is a defaultable asset with zero recovery, so that

$$
\begin{aligned}
d Y_{t}^{1} & =r Y_{t}^{1} d t \\
d Y_{t}^{2} & =Y_{t}^{2}\left(\mu_{2} d t+\sigma_{2} d W_{t}\right) \\
d Y_{t}^{3} & =Y_{t-}^{3}\left(\mu_{3} d t+\sigma_{3} d W_{t}-d M_{t}\right)
\end{aligned}
$$

- This corresponds to the following conditions:

$$
\sigma_{1}=\kappa_{1}=0, \mu_{1}=r, \sigma_{2} \neq 0, \kappa_{2}=0, \kappa_{3}=-1
$$

Hence $a=-\sigma_{2} \neq 0$. Assume, in addition, that

$$
\gamma>b / a=r-\mu_{3}-\frac{\sigma_{3}}{\sigma_{2}}\left(r-\mu_{2}\right) .
$$

Example B (Continued)

- Then we obtain

$$
\theta=\frac{r-\mu_{2}}{\sigma_{2}}, \quad \zeta=-\frac{b}{\gamma a}=\frac{1}{\gamma}\left(\mu_{3}-r-\frac{\sigma_{3}}{\sigma_{2}}\left(\mu_{2}-r\right)\right)>-1
$$

- Consequently, we have under the unique martingale measure \mathbb{Q}^{*}

$$
\begin{aligned}
d Y_{t}^{1} & =r Y_{t}^{1} d t \\
d Y_{t}^{2} & =Y_{t}^{2}\left(r d t+\sigma_{2} d \widehat{W}_{t}\right) \\
d Y_{t}^{3} & =Y_{t-}^{3}\left(r d t+\sigma_{3} d \widehat{W}_{t}-d \widehat{M}_{t}\right)
\end{aligned}
$$

- We do not assume here that $b=0$; if this holds then $\zeta=0$, as in Example A.
- In Case B , the risk-neutral default intensity $\widehat{\gamma}$ and the statistical default intensity γ are different, in general,

Stopped Trading

- Suppose that the recovery payoff at the time of default is exogenously specified in terms of some economic factors related to the prices of traded assets (e.g. credit spreads).
- The valuation problem for a defaultable claim is reduced to finding its pre-default value, and it is natural to search for a replicating strategy up to default time only.
- It thus suffices to examine the stopped model in which asset prices and all trading activities are stopped at time τ.
- In this case, we search for a pair (θ, ζ) of real numbers satisfying

$$
\begin{aligned}
\theta a & =\sigma_{1} a+c \\
\zeta \gamma a & =\kappa_{1} \gamma a-\left(1+\kappa_{1}\right) b .
\end{aligned}
$$

Case of Stopped Trading

- If $a \neq 0$ then the unique solution (θ, ζ) to the above pair of equations is

$$
\theta=\sigma_{1}+\frac{c}{a}, \quad \zeta=\kappa_{1}-\frac{\left(1+\kappa_{1}\right) b}{\gamma a}>-1,
$$

where the last inequality holds provided that $\gamma>b / a$.

- As expected, in the stopped model, we obtain the unique martingale measure \mathbb{Q}^{*} for any choice of recovery coefficients κ_{2} and κ_{3}.
- In the case of stopped trading, hedging of a contingent claim after the default time τ is not considered.

Case A: Pricing PDEs and Hedging

Pricing PDEs

Contingent Claim
Let us now discuss the PDE approach in a model in which the prices of all three primary assets are non-vanishing.

- It is natural to focus on the case when the market model $\mathcal{M}=\left(Y^{1}, Y^{2}, Y^{3} ; \Phi\right)$ is complete and arbitrage-free.
- Therefore, we shall work under the assumptions of part (i) in the proposition on the existence of a martingale measure.
- We are interested in the valuation and hedging of a generic contingent claim with maturity T and the terminal payoff $Y=G\left(Y_{T}^{1}, Y_{T}^{2}, Y_{T}^{3}, H_{T}\right)$.
- The technique derived for this case can be easily applied to a defaultable claim that is subject to a fairly general recovery scheme.

Risk-Neutral Price

- Let $a \neq 0$ and $b=0$, and let \mathbb{Q}^{*} be the unique martingale measure associated with the numeraire Y^{1}. Then

$$
\frac{d \mathbb{Q}^{*}}{d \mathbb{Q}}=\mathcal{E}_{T}(\theta W) \mathcal{E}_{T}(\zeta M)
$$

where θ and ζ are explicitly known.

- If $Y\left(Y_{T}^{1}\right)^{-1}$ is \mathbb{Q}^{*}-integrable then the risk-neutral price of Y equals, for every $t \in[0, T]$,

$$
\begin{aligned}
\pi_{t}(Y) & =Y_{t}^{1} \mathbb{E}_{\mathbb{Q}^{*}}\left(\left(Y_{T}^{1}\right)^{-1} Y \mid \mathcal{G}_{t}\right) \\
& =Y_{t}^{1} \mathbb{E}_{\mathbb{Q}^{*}}\left(\left(Y_{T}^{1}\right)^{-1} G\left(Y_{T}^{1}, Y_{T}^{2}, Y_{T}^{3}, H_{T}\right) \mid Y_{t}^{1}, Y_{t}^{2}, Y_{t}^{3}, H_{t}\right)
\end{aligned}
$$

where the second equality is a consequence of the Markov property of $\left(Y^{1}, Y^{2}, Y^{3}, H\right)$ under \mathbb{Q}^{*}.

Pricing PDEs: Case A

Proposition 4 Let the price processes $Y^{i}, i=1,2,3$ satisfy

$$
d Y_{t}^{i}=Y_{t-}^{i}\left(\mu_{i} d t+\sigma_{i} d W_{t}+\kappa_{i} d M_{t}\right)
$$

with $\kappa_{i}>-1$ for $i=1,2,3$. Assume that $a \neq 0$ and $b=0$. Then the risk-neutral price $\pi_{t}(Y)$ of the claim Y equals

$$
\pi_{t}(Y)=\mathbb{1}_{\{t<\tau\}} C\left(t, Y_{t}^{1}, Y_{t}^{2}, Y_{t}^{3}, 0\right)+\mathbb{1}_{\{t \geq \tau\}} C\left(t, Y_{t}^{1}, Y_{t}^{2}, Y_{t}^{3}, 1\right)
$$

for some function

$$
C:[0, T] \times \mathbb{R}_{+}^{3} \times\{0,1\} \rightarrow \mathbb{R}
$$

Assume that for $h=0$ and $h=1$ the function $C(\cdot, h):[0, T] \times \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}$ belongs to the class $\mathrm{C}^{1,2}\left([0, T] \times \mathbb{R}_{+}^{3}, \mathbb{R}\right)$.

Pricing PDEs: Case A

Then the functions $C(\cdot, 0)$ and $C(\cdot, 1)$ solve the following PDEs:

$$
\begin{aligned}
& \partial_{t} C(\cdot, 0)+\sum_{i=1}^{3}\left(\alpha-\gamma \kappa_{i}\right) y_{i} \partial_{i} C(\cdot, 0)+\frac{1}{2} \sum_{i, j=1}^{3} \sigma_{i} \sigma_{j} y_{i} y_{j} \partial_{i j} C(\cdot, 0)-\alpha C(\cdot, 0) \\
& \quad+\gamma\left[C\left(t, y_{1}\left(1+\kappa_{1}\right), y_{2}\left(1+\kappa_{2}\right), y_{3}\left(1+\kappa_{3}\right), 1\right)-C\left(t, y_{1}, y_{2}, y_{3}, 0\right)\right]=0
\end{aligned}
$$

and

$$
\partial_{t} C(\cdot, 1)+\alpha \sum_{i=1}^{3} y_{i} \partial_{i} C(\cdot, 1)+\frac{1}{2} \sum_{i, j=1}^{3} \sigma_{i} \sigma_{j} y_{i} y_{j} \partial_{i j} C(\cdot, 1)-\alpha C(\cdot, 1)=0
$$

where $\alpha=\mu_{i}+\sigma_{i} \frac{c}{a}$, subject to the terminal conditions

$$
C\left(T, y_{1}, y_{2}, y_{3}, 0\right)=G\left(y_{1}, y_{2}, y_{3}, 0\right), C\left(T, y_{1}, y_{2}, y_{3}, 1\right)=G\left(y_{1}, y_{2}, y_{3}, 1\right) .
$$

Comments

- The valuation problem splits into two pricing PDEs, which are solved recursively.
- In the first step, we solve the PDE satisfied by the post-default pricing function $C(\cdot, 1)$.
- Next, we substitute this function into the first PDE, and we solve it for the pre-default pricing function $C(\cdot, 0)$.
- The assumption that we deal with only three primary assets and the coefficients are constant can be easily relaxed, but a general result is too heavy to be stated here.
- Observe that the real-world default intensity γ under \mathbb{Q}, rather than the risk-neutral default intensity $\widehat{\gamma}$ under \mathbb{Q}^{*}, enters the valuation PDE .

Black and Scholes PDE

- We consider the set-up of Example A, with $a \neq 0$ and $b=0$.
- Let $Y=G\left(Y_{T}^{2}\right)$ for some function $G: \mathbb{R} \rightarrow \mathbb{R}$ such that $Y\left(Y_{T}^{1}\right)^{-1}$ is \mathbb{Q}^{*}-integrable.
- It is possible to show that $\pi_{t}(Y)=C\left(t, Y_{t}^{2}\right)$.
- The two valuation PDEs of Proposition A2 reduce to a single PDE

$$
\partial_{t} C+\left(\mu_{2}-\sigma_{2} \theta\right) y_{2} \partial_{2} C+\frac{1}{2} \sigma_{2}^{2} y_{2}^{2} \partial_{22} C-\left(\mu_{2}-\sigma_{2} \theta\right) C=0
$$

with $\theta=\left(r-\mu_{2}\right) / \sigma_{2}$.

- After simplifications, we obtain the classic Black and Scholes PDE

$$
\partial_{t} C+r y_{2} \partial_{2} C+\frac{1}{2} \sigma_{2}^{2} y_{2}^{2} \partial_{22} C-r C=0 .
$$

Trading Strategies

- Recall that $\phi=\left(\phi^{1}, \phi^{2}, \phi^{3}\right)$ is a self-financing strategy if the processes $\phi^{1}, \phi^{2}, \phi^{3}$ are \mathbb{G}-predictable and the wealth process

$$
V_{t}(\phi)=\phi_{t}^{1} Y_{t}^{1}+\phi_{t}^{2} Y_{t}^{2}+\phi_{t}^{3} Y_{t}^{3}
$$

satisfies

$$
d V_{t}(\phi)=\phi_{t}^{1} d Y_{t}^{1}+\phi_{t}^{2} d Y_{t}^{2}+\phi_{t}^{3} d Y_{t}^{3}
$$

- We say that ϕ replicates a contingent claim Y if $V_{T}(\phi)=Y$. If ϕ is a replicating strategy for a claim Y then, for $t \in[0, T]$,

$$
\pi_{t}(Y)=\phi_{t}^{1} Y_{t}^{1}+\phi_{t}^{2} Y_{t}^{2}+\phi_{t}^{3} Y_{t}^{3}
$$

- To find a replicating strategy, we combine the sensitivities of the valuation function C with respect to primary assets with the jump $\Delta C_{t}=C_{t}-C_{t-}$ associated with default event.

Hedging with Sensitivities and Jumps

Proposition 5 Under the present the assumptions, the claim $G\left(Y_{T}^{1}, Y_{T}^{2}, Y_{T}^{3}, H_{T}\right)$ is replicated by $\phi=\left(\phi^{1}, \phi^{2}, \phi^{3}\right)$, where the components $\phi^{i}, i=2,3$, are given in terms of the valuation functions $C(\cdot, 0)$ and $C(\cdot, 1)$:
$\phi_{t}^{2}=\frac{1}{a Y_{t-}^{2}}\left(\left(\kappa_{3}-\kappa_{1}\right)\left(\sum_{i=1}^{3} \sigma_{i} Y_{t-}^{i} \partial_{i} C-\sigma_{1} C\right)-\left(\sigma_{3}-\sigma_{1}\right)\left(\Delta C-\kappa_{1} C\right)\right)$
$\phi_{t}^{3}=\frac{1}{a Y_{t-}^{3}}\left(\left(\kappa_{2}-\kappa_{1}\right)\left(\sum_{i=1}^{3} \sigma_{i} Y_{t-}^{i} \partial_{i} C-\sigma_{1} C\right)-\left(\sigma_{2}-\sigma_{1}\right)\left(\Delta C-\kappa_{1} C\right)\right)$
and ϕ^{1} equals

$$
\phi_{t}^{1}=\left(Y_{t}^{1}\right)^{-1}\left(C_{t}-\sum_{i=2}^{3} \phi_{t}^{i} Y_{t}^{i}\right) .
$$

Example A: Extension of the Black-Scholes Model

- Assume that the asset Y^{1} is risk-free, the asset $Y^{2} \neq Y^{1}$ is default-free, and Y^{3} is a defaultable asset with non-zero recovery, so that

$$
\begin{aligned}
d Y_{t}^{1} & =r Y_{t}^{1} d t \\
d Y_{t}^{2} & =Y_{t}^{2}\left(\mu_{2} d t+\sigma_{2} d W_{t}\right) \\
d Y_{t}^{3} & =Y_{t-}^{3}\left(\mu_{3} d t+\sigma_{3} d W_{t}+\kappa_{3} d M_{t}\right)
\end{aligned}
$$

with $\sigma_{2} \neq 0$ and $\kappa_{3} \neq 0, \kappa_{3}>-1$.

- We may assume, without loss of generality, that C does not depend explicitly on the variable y_{1}.
- Assume that $a=\sigma_{2} \kappa_{3} \neq 0$ and $\sigma_{2}\left(r-\mu_{3}\right)=\sigma_{3}\left(r-\mu_{2}\right)$. The following result combines and adapts previous results to the present situation.

Example A: Pricing PDEs

Corollary 1 The arbitrage price of a claim $Y=G\left(Y_{T}^{2}, Y_{T}^{3}, H_{T}\right)$ can be represented as $\pi_{t}(Y)=C\left(t, Y_{t}^{2}, Y_{t}^{3}, H_{t}\right)$, where $C\left(t, y_{2}, y_{3}, 0\right)$ satisfies

$$
\begin{aligned}
& \partial_{t} C(\cdot, 0)+r y_{2} \partial_{2} C(\cdot, 0)+y_{3}\left(r-\kappa_{3} \gamma\right) \partial_{3} C(\cdot, 0)-r C(\cdot, 0) \\
& \quad+\frac{1}{2} \sum_{i, j=2}^{3} \sigma_{i} \sigma_{j} y_{i} y_{j} \partial_{i j} C(\cdot, 0)+\gamma\left(C\left(t, y_{2}, y_{3}\left(1+\kappa_{3}\right), 1\right)-C\left(t, y_{2}, y_{3}, 0\right)\right)=0
\end{aligned}
$$

with $C\left(T, y_{2}, y_{3}, 0\right)=G\left(y_{2}, y_{3}, 0\right)$, and $C\left(t, y_{2}, y_{3}, 1\right)$ satisfies

$$
\begin{aligned}
& \partial_{t} C\left(t, y_{2}, y_{3}, 1\right)+r y_{2} \partial_{2} C\left(t, y_{2}, y_{3}, 1\right)+r y_{3} \partial_{3} C\left(t, y_{2}, y_{3}, 1\right)-r C\left(t, y_{2}, y_{3}, 1\right) \\
& \quad+\frac{1}{2} \sum_{i, j=2}^{3} \sigma_{i} \sigma_{j} y_{i} y_{j} \partial_{i j} C\left(t, y_{2}, y_{3}, 1\right)=0
\end{aligned}
$$

with $C\left(T, y_{2}, y_{3}, 1\right)=G\left(y_{2}, y_{3}, 1\right)$.

Example A: Hedging
Corollary 2 The replicating strategy for Y equals $\phi=\left(\phi^{1}, \phi^{2}, \phi^{3}\right)$, where

$$
\begin{aligned}
\phi_{t}^{1}= & \left(Y_{t}^{1}\right)^{-1}\left(C_{t}-\sum_{i=2}^{3} \phi_{t}^{i} Y_{t}^{i}\right), \\
\phi_{t}^{2}= & \frac{1}{\sigma_{2} \kappa_{3} Y_{t-}^{2}}\left(\kappa_{3} \sum_{i=2}^{3} \sigma_{i} y_{i} \partial_{i} C\left(t, Y_{t-}^{2}, Y_{t-}^{3}, H_{t-}\right)\right. \\
& \left.-\sigma_{3}\left(C\left(t, Y_{t-}^{2}, Y_{t-}^{3}\left(1+\kappa_{3}\right), 1\right)-C\left(t, Y_{t-}^{2}, Y_{t-}^{3}, 0\right)\right)\right), \\
\phi_{t}^{3}= & \frac{1}{\kappa_{3} Y_{t-}^{3}}\left(C\left(t, Y_{t-}^{2}, Y_{t-}^{3}\left(1+\kappa_{3}\right), 1\right)-C\left(t, Y_{t-}^{2}, Y_{t-}^{3}, 0\right)\right) .
\end{aligned}
$$

Example A: Survival Claim

- By a survival claim we mean a claim of the form $Y=\mathbb{1}_{\{\tau>T\}} X$, where an \mathcal{F}_{T}-measurable random variable X represents the promised payoff.
- In other words, a survival claim is a contract with zero recovery in the case of default prior to maturity T.
- We assume that the promised payoff has the form $X=G\left(Y_{T}^{2}, Y_{T}^{3}\right)$, where Y_{T}^{i} is the (pre-default) value of the i th asset at time T.
- It is obvious that the pricing function $C(\cdot, 1)$ is now equal to zero, and thus we are only interested in the pre-default pricing function $C(\cdot, 0)$.

Example A: Survival Claim

Corollary 3 The pre-default pricing function $C(\cdot, 0)$ of a survival claim of the form $Y=\mathbb{1}_{\{\tau>T\}} G\left(Y_{T}^{2}, Y_{T}^{3}\right)$ solves the $P D E$

$$
\begin{aligned}
& \partial_{t} C(\cdot, 0)+r y_{2} \partial_{2} C(\cdot, 0)+y_{3}\left(r-\kappa_{3} \gamma\right) \partial_{3} C(\cdot, 0) \\
& \quad+\frac{1}{2} \sum_{i, j=2}^{3} \sigma_{i} \sigma_{j} y_{i} y_{j} \partial_{i j} C(\cdot, 0)-(r+\gamma) C(\cdot, 0)=0
\end{aligned}
$$

with $C\left(T, y_{2}, y_{3}, 0\right)=G\left(y_{2}, y_{3}\right)$. The components ϕ^{2} and ϕ^{3} of a replicating strategy ϕ are given by the following expressions

$$
\phi_{t}^{2}=\frac{1}{\kappa_{3} \sigma_{2} Y_{t-}^{2}}\left(\kappa_{3} \sum_{i=2}^{3} \sigma_{i} Y_{t-}^{i} \partial_{i} C(\cdot, 0)-\sigma_{3} C(\cdot, 0)\right), \quad \phi_{t}^{3}=-\frac{C(\cdot, 0)}{\kappa_{3} Y_{t-}^{3}} .
$$

Case B: Pricing PDEs and Hedging

Pricing PDEs

Case B: Defaultable Asset with Zero Recovery
Standing assumptions:

- We now assume that the prices Y^{1} and Y^{2} are strictly positive, but $\kappa_{3}=-1$ so that Y^{3} is a defaultable asset with zero recovery.
- Of course, the price Y_{t}^{3} vanishes after default, that is, on the set $\{t \geq \tau\}$.
- We assume here that $a \neq 0$ and $\sigma_{1} \neq \sigma_{2}$, but we no longer postulate that $b=0$.
- We still assume that $\gamma>b / a$, however. Let us denote

$$
\alpha_{i}=\mu_{i}+\sigma_{i} \frac{c}{a}, \quad \beta_{i}=\mu_{i}-\sigma_{i} \frac{\mu_{1}-\mu_{2}}{\sigma_{1}-\sigma_{2}}
$$

Valuation PDEs: Case B

Proposition 6 Let the price processes $Y^{i}, i=1,2,3$, satisfy

$$
d Y_{t}^{i}=Y_{t-}^{i}\left(\mu_{i} d t+\sigma_{i} d W_{t}+\kappa_{i} d M_{t}\right)
$$

with $\kappa_{i}>-1$ for $i=1,2$ and $\kappa_{3}=-1$. Assume that

$$
a \neq 0, \sigma_{1} \neq \sigma_{2}, \gamma>b / a .
$$

Consider a contingent claim Y with maturity date T and the terminal payoff $G\left(Y_{T}^{1}, Y_{T}^{2}, Y_{T}^{3}, H_{T}\right)$.

In addition, we postulate that the pricing functions $C(\cdot, 0)$ and $C(\cdot, 1)$ belong to the class $\mathrm{C}^{1,2}\left([0, T] \times \mathbb{R}_{+}^{3}, \mathbb{R}\right)$.

Pricing PDEs: Case B

Proposition 7 Then the pre-default pricing function $C\left(t, y_{1}, y_{2}, y_{3}, 0\right)$ satisfies the pre-default PDE

$$
\begin{aligned}
& \partial_{t} C(\cdot, 0)+\sum_{i=1}^{3}\left(\alpha_{i}-\gamma \kappa_{i}\right) y_{i} \partial_{i} C(\cdot, 0)+\frac{1}{2} \sum_{i, j=1}^{3} \sigma_{i} \sigma_{j} y_{i} y_{j} \partial_{i j} C(\cdot, 0) \\
& \quad+\left(\gamma-\frac{b}{a}\right)\left[C\left(t, y_{1}\left(1+\kappa_{1}\right), y_{2}\left(1+\kappa_{2}\right), 0,1\right)-C\left(t, y_{1}, y_{2}, y_{3}, 0\right)\right] \\
& \quad-\left(\alpha_{1}+\kappa_{1} \frac{b}{a}\right) C(\cdot, 0)=0
\end{aligned}
$$

subject to the terminal condition

$$
C\left(T, y_{1}, y_{2}, y_{3}, 0\right)=G\left(y_{1}, y_{2}, y_{3}, 0\right) .
$$

Pricing PDEs: Case B
Proposition 8 The post-default pricing function $C\left(t, y_{1}, y_{2}, 1\right)$ solves the post-default PDE

$$
\partial_{t} C(\cdot, 1)+\sum_{i=1}^{2} \beta_{i} y_{i} \partial_{i} C(\cdot, 1)+\frac{1}{2} \sum_{i, j=1}^{2} \sigma_{i} \sigma_{j} y_{i} y_{j} \partial_{i j} C(\cdot, 1)-\beta_{1} C(\cdot, 1)=0
$$

subject to the terminal condition

$$
C\left(T, y_{1}, y_{2}, 1\right)=G\left(y_{1}, y_{2}, 0,1\right) .
$$

The components of the replicating strategy ϕ are given by the general formulae.

Example B (Continued)

- We assume that the processes Y^{1}, Y^{2}, Y^{3} satisfy

$$
\begin{aligned}
d Y_{t}^{1} & =r Y_{t}^{1} d t \\
d Y_{t}^{2} & =Y_{t}^{2}\left(\mu_{2} d t+\sigma_{2} d W_{t}\right) \\
d Y_{t}^{3} & =Y_{t-}^{3}\left(\mu_{3} d t+\sigma_{3} d W_{t}-d M_{t}\right)
\end{aligned}
$$

- Let us write $\widehat{r}=r+\widehat{\gamma}$, where

$$
\widehat{\gamma}=\gamma(1+\zeta)=\gamma-\frac{b}{a}=\gamma+\mu_{3}-r+\frac{\sigma_{3}}{\sigma_{2}}\left(r-\mu_{2}\right)>0
$$

stands for the default intensity under \mathbb{Q}^{*}.

- The quantity \widehat{r} is interpreted as the credit-risk adjusted short-term rate.
- Straightforward calculations show that the following corollary is valid.

Example B: Pricing PDEs

Corollary 4 Assume that $\sigma_{1}=\kappa_{1}=\kappa_{2}=0, \kappa_{3}=-1$ and

$$
\gamma>b / a=r-\mu_{3}-\frac{\sigma_{3}}{\sigma_{2}}\left(r-\mu_{2}\right)
$$

Then $C(\cdot, 0)$ satisfies the PDE

$$
\begin{aligned}
& \partial_{t} C\left(t, y_{2}, y_{3}, 0\right)+r y_{2} \partial_{2} C\left(t, y_{2}, y_{3}, 0\right)+\widehat{r} y_{3} \partial_{3} C\left(t, y_{2}, y_{3}, 0\right)-\widehat{r} C\left(t, y_{2}, y_{3}, 0\right) \\
& \quad+\frac{1}{2} \sum_{i, j=2}^{3} \sigma_{i} \sigma_{j} y_{i} y_{j} \partial_{i j} C\left(t, y_{2}, y_{3}, 0\right)+\widehat{\gamma} C\left(t, y_{2}, 1\right)=0
\end{aligned}
$$

with $C\left(T, y_{2}, y_{3}, 0\right)=G\left(y_{2}, y_{3}, 0\right)$, and the function $C(\cdot, 1)$ solves

$$
\partial_{t} C\left(t, y_{2}, 1\right)+r y_{2} \partial_{2} C\left(t, y_{2}, 1\right)+\frac{1}{2} \sigma_{2}^{2} y_{2}^{2} \partial_{22} C\left(t, y_{2}, 1\right)-r C\left(t, y_{2}, 1\right)=0
$$

with $C\left(T, y_{2}, 1\right)=G\left(y_{2}, 0,1\right)$.

Example B: Survival Claim

For a survival claim, we have $C(\cdot, 1)=0$, and thus we obtain following results.

Corollary 5 The pre-default pricing function $C(\cdot, 0)$ of a survival claim $Y=\mathbb{1}_{\{\tau>T\}} G\left(Y_{T}^{2}, Y_{T}^{3}\right)$ solves the following PDE:

$$
\begin{aligned}
& \partial_{t} C\left(t, y_{2}, y_{3}, 0\right)+r y_{2} \partial_{2} C\left(t, y_{2}, y_{3}, 0\right)+\widehat{r} y_{3} \partial_{3} C\left(t, y_{2}, y_{3}, 0\right) \\
& \quad+\frac{1}{2} \sum_{i, j=2}^{3} \sigma_{i} \sigma_{j} y_{i} y_{j} \partial_{i j} C\left(t, y_{2}, y_{3}, 0\right)-\widehat{r} C\left(t, y_{2}, y_{3}, 0\right)=0
\end{aligned}
$$

with the terminal condition $C\left(T, y_{2}, y_{3}, 0\right)=G\left(y_{2}, y_{3}\right)$.

Corollary B2 (Continued)

Corollary 6 The components ϕ^{2} and ϕ^{3} of the replicating strategy are, for every $t<\tau$,

$$
\begin{aligned}
\phi_{t}^{2} & =\frac{1}{\sigma_{2} Y_{t-}^{2}}\left(\sum_{i=2}^{3} \sigma_{i} Y_{t-}^{i} \partial_{i} C\left(t, Y_{t-}^{2}, Y_{t-}^{3}, 0\right)+\sigma_{3} C\left(t, Y_{t-}^{2}, Y_{t-}^{3}, 0\right)\right) \\
\phi_{t}^{3} & =\frac{1}{Y_{t-}^{3}} C\left(t, Y_{t-}^{2}, Y_{t-}^{3}, 0\right)
\end{aligned}
$$

- We have $\phi_{t}^{3} Y_{t-}^{3}=C\left(t, Y_{t-}^{2}, Y_{t-}^{3}, 0\right)$ for every $t \in[0, T]$. Hence the following relationships holds, for every $t<\tau$,

$$
\phi_{t}^{3} Y_{t}^{3}=C\left(t, Y_{t}^{2}, Y_{t}^{3}, 0\right), \quad \phi_{t}^{1} Y_{t}^{1}+\phi_{t}^{2} Y_{t}^{2}=0
$$

- The last equality is a special case of a balance condition introduced in Bielecki et al. (2006) in a semimartingale set-up.

