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The Model

Default Time

The default time 7 is a non-negative random variable on (2,G, Q).
Note that QQ is the statistical probability measure.

The filtration generated by the default process H; = 1 ;<4 is
denoted by H.

We set G =F V H, so that G; = F; V 'H; for every t € R, where
F = (Fi)ter, is a reference filtration.

We define the processes F; and G as
F,=Qf{r <t|F:}

and
Gtzl—Ft:Q{T>t|ft}



Hazard Process

e The process I'', given as
Ft = —111(]. — Ft) = —lnGt
is the F-hazard process under the statistical probability Q.

e We shall assume that the [F-hazard process is absolutely continuous:
t
Ft = fO Yu du.

e Hence, the compensated default process

tAT t
Mt:Ht—/ *yudu:Ht—/Uudu,
0 0

is a G-martingale under QQ, where we denote Uy = v 14 ry.



Hypothesis (H). We assume throughout that any F-martingale under Q
is also a G-martingale under Q.

e Hypothesis (H) is satisfied if a random time 7 is defined through

the canonical construction.

e If the representation theorem holds for the filtration F and a finite
family Z*,7 < n, of F-martingales then, under Hypothesis (H), it
holds also for the filtration G and with respect to the G-martingales
Z' i <n and M.

Remark. Hypothesis (H) is not invariant with respect to an equivalent
change of a probability measure, in general.



Prices of Traded Assets

e Let Y1, Y2 Y3 be semimartingales on (2,5, G, Q). We interpret Y}’
as the cash price at time ¢ of the ith traded asset in the market
model M = (Y1,Y? Y3;®), where ® stands for the class of all
self-financing trading strategies.

e We postulate that the process Y is governed by the SDE
Y} =Y, (pidt + oy dWy + r; dMy), i=1,2,3,
with Y > 0.

e Here W is a one-dimensional Brownian motion and M is the

compensated martingale of the default process H.



Assumptions

e We assume that r; > —1 and 1 > —1 so that ¥} > 0 for every
t € Ry. This assumption allows us to take the first asset as a

numeraire.

e Note that the constant coefficient k; > —1 corresponds to a

fractional recovery of market value for the first asset.

e In general, we do not assume that a risk-free security exists. Hence
we do not refer to the theory involving the risk-neutral probability

associated with the choice of a savings account as a numeraire.



Change of Numeéraire

e An equivalent martingale measure Q* is characterized by the
property that the relative prices Y (Y1)~1 i =1,2,3, are

Q*-martingales.

e We will derive the dynamics for the process Y*! = Y*(Y'1)~1 for
i=2.3

e From Ito’s formula, we first obtain

1 1 1
d| =) =— (- 2 —1 dt
() =5 (mvetevn (i - 1em))

(O’lth -+ ie th) .

1+ Ky

1
v,

10



Dynamics of Relative Prices

Consequently, the Ito’s integration by parts formula yields the following

dynamics for the processes Y*!

i,1 i1 K1
dY;”" = Yt{ (,LLZ'—/«H—01(01'—01)—Ut(/ﬁlz'—/<v'1)1_|_m)dt

RK; — K
+ (O'i—O'l)th—l— 1th}.
1+ K1
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Equivalent Martingale Measure

e By assumption, Q* is equivalent to the statistical probability Q on
(2,Gr) and such that Y1, i = 2,3 are Q*-martingales.

e Kusuoka (1999) showed that any probability equivalent to Q on
(€2, Gr) is defined by means of its Radon-Nikodym density process 7
satisfying the SDE

dng = ng— <9t dWi + (G th)7 no = 1,

where 6 and ( are G-predictable processes satisfying mild technical
conditions (in particular, {; > —1 for t € [0,T)).

e Since M is stopped at 7, we may and do assume that ( is stopped

at 7.
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Radon-Nikodym Density
We define Q* by setting

C;%* =np =Er(OW)Er(CM), Q-as.

Then the processes W and M given by, for t € [0, 7],

t
Wt — Wt—/ Hu du,
0

AN

; ' ;
M, = Mt—/ UuCudu:Ht—/ Uu(1+Cu)du:Ht—/ U, du,
0 0 0

where (A]u = U,(1+ (,), are G-martingales under Q*.
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Martingale Condition

Proposition 1 Processes Y*!, i = 2.3 are Q*-martingales if and only

of drifts in their dynamics, when expressed in terms of W and M ,

vanish.

Hence the following equalities hold for i = 2,3 and every t € |0,T]

i — K
Ytll {Hl—ﬂz“i‘(gl—Ui)(et—01)+Ut(’f1—“z‘)§t 1} = 0.
‘|‘Iﬁ)1

Equivalently, we have for v = 2,3, on the set Yyl =0,

Ct—/ﬂ

= 0.
1+ Ky

p1 — pi + (01 — 04)(0y — 01) + Up(k1 — Ky)
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Case A: Strictly Positive Primary Assets
Case A: standing assumptions:
e We postulate that xk; > —1 so that Y! > 0.

e We assume, in addition, that x; > —1 for ¢ = 2, 3, so that the price
processes Y2 and Y are strictly positive as well.

15



Martingale Condition

e From the general theory of arbitrage pricing, it follows that the
market model M is complete and arbitrage-free if there exists a

unique solution (#, () such that the process { > —1.

e Since Y»! > 0, we search for processes (6, () such that for i = 2,3

K1 — K; R1
0 —0; U = U; — —0;)+U — K .
t(o1—03)+ Uy 11 pi — p1+o1(o1—05) + Ui (k1 K)1+/<;1
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Martingale Condition

Since Uy = y1llf4<,1, we deal here with four linear equations.

o Fort < r:
R1 — R2
0 _
(o1 —o2) + Gy L+ ry
K1 — R3
0 _
(o1 —o3) + Gy 1+ ry
e Fort > :
975(01 —02)
(915(0'1 —0'3)

po — p1 +o1(o1 — o2) +7

ps — p1 +o1(or —o3) + 7

p2 — p1 + o1(o1 — o2),
Hm3 — U1 ‘|—O'1(O'1 — 0'3).

(/431 — %2)/61

1+ Ky

Y

(ffl — /433)/‘61

14+ Kk

e The first (the second, resp.) pair of equations is referred to as the

pre-default (post-default, resp.) no-arbitrage condition.
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Notation

To solve explicitly these equations, we find it convenient to write
a=detA, b=detB, c=det(C,

where A, B and C are the following matrices:

01— 02 K1 — R2 01— 02 [H1— M2
A: , B:
01 —03 K1 —R3 01 —03 H1— M3
ki —R2 M1 — H2
C =

K1 —R3 M1 — U3
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Auxiliary Lemma

Lemma 1 The pair (6,() satisfies the following equations

0ia = o010+ c,

CtUtCL = /ﬁ)lUtCL — (1 -+ /il)b.

In order to ensure the validity of the second equation after the default
time 7 (i.e., on the set {U; = 0}), we need to impose an additional

condition, b = 0, or more explicitly,
(01 —02)(p1 — ps) — (01 — 03) (11 — p2) = 0.
If this holds, then we obtain the following equations
0ia = o010+ c,

(tUia = k1Uza.

19



Existence of a Martingale Measure

Proposition 2 (i) If a # 0 and b = 0 then the unique martingale
measure Q* has the Radon-Nikodym density of the form

dQ*
dQ

where the constants 0 and ¢ are given by

Er(OW)Er(CM),

C
9:()’1—|—a, C:/i1>—].,

and where we write, for t € [0,T],
1
E(OW) = exp (ewt _ 59%)

E(CM) = (1 + 1< C)exp ( — (YA T))

20



Existence of a Martingale Measure (Continued)

(i) If a # 0 and b = 0 then the model M = (Y1, Y?,Y3: ®) is
arbitrage-free and complete. Moreover, the process (Y1, Y2, Y3 H) has
the Markov property under Q.

(iii) If a =0 and b =0 then a solution (0,() exists provided that ¢ =0
and the uniqueness of a martingale measure Q* fails to hold. In this
case, the model M = (Y1, Y2, Y3 ®) is arbitrage-free, but it is not

complete.

(iv) If b # 0 then a martingale measure fails to exist and consequently
the model M = (Y1, Y2, Y?;®) is not arbitrage-free.
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Example A: Extension of the Black-Scholes Model

e Assume that the asset Y1 is risk-free, the asset Y2 # Y is
default-free, and Y? is a defaultable asset with non-zero recovery,
so that

dy,! = rY'dt,
Yy = Y7 (p2dt+ o2 dWr),
dY? = Y7 (psdt+o5dWy + ks dMy).

e We thus have 01 = k1 =0, u1 =1, 09 #0, ko =0, and
K3 #O, k3 > —1.

e Therefore,
a=o09kr3 #0, c=kK3(r— ),
and the equality b = 0 holds if and only if
o2(r — pg) = o3(r — pi2).
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Example A (Continued)

e It is easy to check that

p="—12 (=0,

02

and thus under the martingale measure Q* we have (irrespective of
whether o3 > 0 or g3 = 0)

Ay, = rY'dt,
dY}? = Yf(rdt—l—ag dwt),
dY? = Y2 (rdt+ osdW; + ks dM,).

e Since ¢ = 0 the risk-neutral default intensity 7 coincides here with
the statistical default intensity ~. This implies the equality M = M.

23



Case B: Defaultable Asset with Zero Recovery

Case B: standing assumptions:
e We postulate that k; > —1 for i = 1,2 and k3 = —1.

e This implies that the price of a defaultable asset Y2 vanishes after
7, and thus the findings of the preceding section are no longer valid.

24



Martingale Condition

e Since Y2 jumps to zero at 7, the first equality in the martingale

condition
Mo — U1 —+ (0'2 — 0'1)((9t — 0'1) -+ Ut(lig — lﬁ)l)it;:i — (0
should still be satisfied for every t € [0, T.
e The second equality in the martingale condition
— K
,u3—,u1+(03—01)(9t—01)+Ut(/€3—/€1)Q L =0

is required to hold on the set {7 >t} only (i.e. when U, = 7).
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Martingale Condition

Lemma 2 Under the present assumptions, the unknown processes 6
and ¢ in the Radon-Nikodym density of Q* with respect to Q satisfy the

following equations

po — p1 + (02 —01) (0 — 01)

Ct—/il

_ _ 0, — _
Ho — U1 +(02 01)( t 01)+W("62 /431) 1+ ry
Ct—/il

_ _ 0, — 1 —
pU3 — p1 + (03 01)( t 01) +7( /‘31) 1+ ry

This leads to the following result.

26
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Martingale Measure

Proposition 3 The pair (0,() satisfies the following equations, for
t <,
0:a = ora+c, (ya = rk1va— (1+ k1)b.

Moreover, fort > T,
Uo — 1 + (0'2 — 0'1)(975 — 0'1) = 0.
Let a # 0, 01 # 02 and v > b/a. Then the unique solution is

— 1 b
. MQ)?Ct:/il—( )
01 — 09 ya

The model M = (Y1, Y2, Y3, ®) is arbitrage-free, complete, and has the

Markov property under the unique martingale measure Q™.

> —1.

C
(9t = ﬂ{tST} (0'1 -+ a)+ﬂ{t>7} <0‘1 —
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Example B : Extension of the Black-Scholes Model

e Assume that the asset Y'! is risk-free, the asset Y2 # Y1 is
default-free, and Y3 is a defaultable asset with zero recovery, so
that

dy,t = rY'dt,
Yy} = Y7 (p2dt+ o2 dWr),
dYy = Y7 (psdt+ o3dW, — dMy).

e This corresponds to the following conditions:

0'1:%120, m1 =T, 0'2#0, /ﬁ',Q:O, /ﬁ)3:—1.
Hence a = —o9 # 0. Assume, in addition, that
03
vy>bla=1r—pu3— —(r— pus).
02
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Example B (Continued)

e Then we obtain

— b 1
g =" 'LLQ, C:——:—(,ug—r—g(,ug—r))>—1.
02 ya-o 02

e Consequently, we have under the unique martingale measure Q*

dy,: = rY!dt,
dY? = Yf(rdt—l—ag d/Wt>,
dY? = Y2 (rdt+o3dW, — dMy).

e We do not assume here that b = 0; if this holds then ( = 0, as in
Example A.

e In Case B, the risk-neutral default intensity 7 and the statistical

default intensity « are different, in general,
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Stopped Trading

e Suppose that the recovery payoff at the time of default is
exogenously specified in terms of some economic factors related to
the prices of traded assets (e.g. credit spreads).

e The valuation problem for a defaultable claim is reduced to finding
its pre-default value, and it is natural to search for a replicating

strategy up to default time only.

e [t thus suffices to examine the stopped model in which asset prices

and all trading activities are stopped at time 7.

e In this case, we search for a pair (4, () of real numbers satisfying

0a = o010+ c,

(ya = ki1yva — (1+ Kk1)b.
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Case of Stopped Trading

e If a # 0 then the unique solution (6, () to the above pair of
equations is

(1+rK1)b
va

6:0'1—|—E, (=K1 — > —1,
a

where the last inequality holds provided that v > b/a.

e As expected, in the stopped model, we obtain the unique martingale

measure Q* for any choice of recovery coefficients xo and k3.

e In the case of stopped trading, hedging of a contingent claim after

the default time 7 is not considered.
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Case A: Pricing PDEs and Hedging
Pricing PDEs
Contingent Claim

Let us now discuss the PDE approach in a model in which the prices of

all three primary assets are non-vanishing.

e It is natural to focus on the case when the market model
M = (Y1 Y2 Y? ®) is complete and arbitrage-free.

e Therefore, we shall work under the assumptions of part (i) in the

proposition on the existence of a martingale measure.

e We are interested in the valuation and hedging of a generic

contingent claim with maturity 7" and the terminal payoff
Y =G}, YA Y2 Hr).

e The technique derived for this case can be easily applied to a

defaultable claim that is subject to a fairly general recovery scheme.
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Risk-Neutral Price

e Let a #% 0 and b = 0, and let Q* be the unique martingale measure

associated with the numeraire Y!. Then
dQ* B
dQ -

where 6 and ¢ are explicitly known.

Er(OW)Er(CM)

o If Y(V})~! is Q*-integrable then the risk-neutral price of Y equals,
for every t € [0,T],

m(Y) = YEq-((Y7) 'Y [Gy)
- Y;l EQ* ((Y%>_1G(Y%7YI%7YI§7HT) ‘ }/t17}/t27}/tS7Ht)

where the second equality is a consequence of the Markov property
of (Y1, Y2, Y3 H) under Q*.
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Pricing PDEs: Case A

Proposition 4 Let the price processes Y, i = 1,2, 3 satisfy
dY} =Y\ (i dt + o; AW, + k; dM,)

with k; > —1 fort=1,2,3. Assume that a # 0 and b = 0. Then the

risk-neutral price (YY) of the claim Y equals
Tt (Y) - Il{t<T}C(t7 Y;tla Yfa Y;tga O) + ﬂ{tZT}C(tv Y;tlv }/;527 YtSv 1)
for some function
C:[0,T] xRS x {0,1} — R.

Assume that for h =0 and h =1 the function C(-,h) : [0,T] x R3 — R
belongs to the class C*([0,T] x R3, R).
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Pricing PDEs: Case A

Then the functions C(-,0) and C(-,1) solve the following PDEs:

3 3
1
0, C(+,0) + E a — v£;)yi0;C(+,0) + 9 E 0i0;Yiy;0i;C(+,0) — aC(-,0)
1=1

i =1
+ (Ot y1 (14 K1), y2(1 + k2), y3(1 + K3), 1) = C(t,y1,2,93,0)] =0

and

3
1
8750( + aZyzﬁ C —1— 5 Z Jiajyiyj&-j(](-, 1) — OéC(', 1) =0

1=1 1,7=1

where a = p; + 0; =, subject to the terminal conditions

C(T7 y17y27y370) — G(y17y27y370)7 C(Ta Yi,Y2,Ys3, 1) — G(ylay%yi’n 1)
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Comments

e The valuation problem splits into two pricing PDEs, which are

solved recursively.

— In the first step, we solve the PDE satisfied by the post-default
pricing function C'(-,1).

— Next, we substitute this function into the first PDE, and we
solve it for the pre-default pricing function C(-,0).

e The assumption that we deal with only three primary assets and
the coefficients are constant can be easily relaxed, but a general
result is too heavy to be stated here.

e Observe that the real-world default intensity v under Q, rather
than the risk-neutral default intensity 7 under Q*, enters the
valuation PDE.
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Black and Scholes PDE
e We consider the set-up of Example A, with a # 0 and b = 0.

e Let Y = G(Y?) for some function G : R — R such that Y (Y})~! is
Q*-integrable.

e It is possible to show that m;(Y) = C(t,Y}?).

e The two valuation PDEs of Proposition A2 reduce to a single PDE

1
875(] -+ (,LLQ — O'Q@)?JQ@QC + 5033/38226' — (/12 — 0'29)0 =0

with 0 = (?“ — /12)/0'2.

e After simplifications, we obtain the classic Black and Scholes PDE

1
8tC -+ rygﬁgC -+ §0§y§8220 —rC = 0.
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Trading Strategies

e Recall that ¢ = (¢!, ¢?, ¢?) is a self-financing strategy if the
processes ¢!, ¢?, ¢> are G-predictable and the wealth process

Vi(®) = ¢r Y, + 07Y72 + @Yy

satisfies
dVi(9) = ¢y dYy + ¢f AV + ¢} Yy

e We say that ¢ replicates a contingent claim Y if Vp(¢) =Y. If ¢ is
a replicating strategy for a claim Y then, for t € [0, T,

m(Y) = ¢V, + @1V + )Y,

e To find a replicating strategy, we combine the sensitivities of the
valuation function C' with respect to primary assets with the jump
AC,; = C; — Cy_ associated with default event.
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Hedging with Sensitivities and Jumps

Proposition 5 Under the present the assumptions, the claim
G(YF, Y2 Y2 Hr) is replicated by ¢ = (¢*, ¢*, ¢°), where the
components ¢, i = 2,3, are given in terms of the valuation functions

C'(-,0) and C(-,1):

3
¢t2 = CLQQ ((/ﬁ)g —ml)(Zain_ﬁiC—alC) (0'30'1)(AC/£10)>

1=1
3
1 7
¢§ — CLY?_ ((/ig — lil)(izg 1 ath_(“)L-C — O'1C) — (0'2 — O'1)(AC — /ilc)>

and ¢ equals

3
or = (V)T (G =Y oivd).
1=2
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Example A: Extension of the Black-Scholes Model

e Assume that the asset Y'! is risk-free, the asset Y2 # Y1 is
default-free, and Y° is a defaultable asset with non-zero recovery,
so that

Ay, = rY!dt,
dY? = Y;Q (/LQ dt + 092 th),
dY? = Y7 (psdt+o5dWy + ks dMy)

with o9 7é 0 and k3 7& 0, k3 > —1.

e We may assume, without loss of generality, that C' does not depend
explicitly on the variable y;.

e Assume that a = g9k3 # 0 and o2(r — pu3) = o3(r — ). The
following result combines and adapts previous results to the present

situation.
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Example A: Pricing PDEs

Corollary 1 The arbitrage price of a claimY = G(Y2, Y3, Hr) can be
represented as m(Y) = C(t, Y2, Y3, Hy), where C(t,y2,ys3,0) satisfies

oC(-,0) + 7“92320( 0) + y3(r — k37v)93C(-,0) —rC(-,0)

|
+5 Z 0;059:9;0i;C(,0) + v(C(t, y2, y3(1 + K3), 1) — C(t,y2,93,0)) =0
i j=2

with C(T,y2,vy3,0) = G(y2,y3,0), and C(t,ys2,ys3, 1) satisfies

0:C(t,y2,y3,1) +1y20:C (T, y2,y3,1) + rys03C (¢, y2,y3,1) —rC(t,y2,¥3,1)

1
+3 .ZQ 009950 C(t, y2,y3,1) = 0
1,]—

with C(T7 Y2,Ys, 1) — G(y27 Yys, 1)
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Example A: Hedging

Corollary 2 The replicating strategy for Y equals ¢ = (gbl, b2, gb3),

where
3 . .
o = (Y)™! <Ct — Zsbmz) ,
i=2

3
1
¢ = </<63 Z 0y 0;0(t, Y2, Y2 Hy )

2
o9Kk3Y,
235t — =2

— 0'3(0(15,}/;2_,1/;53_(1 + /433)7 1) - C(tath—a}/tS—?O)))’

1
Qb? — /{3}/3 (O(ta Y;EQ—: Y;ﬁ?)—(l T ’%3)7 1) o C(ta Y;Q—a }/t3—7 0))
t—
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Example A: Survival Claim

e By a survival claim we mean a claim of the form Y = ll;>7m X,
where an Fp-measurable random variable X represents the
promised payoff.

e In other words, a survival claim is a contract with zero recovery in

the case of default prior to maturity 7.

e We assume that the promised payoff has the form X = G(YZ,Y3?),
where Y7 is the (pre-default) value of the ith asset at time T.

e It is obvious that the pricing function C(-,1) is now equal to zero,

and thus we are only interested in the pre-default pricing function

(-, 0).
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Example A: Survival Claim

Corollary 3 The pre-default pricing function C(-,0) of a survival
clatm of the form Y = ]1{T>T}G(YT2, Y2) solves the PDE

o C(, )+7”?sz720( 0) + y3(r — k37y)03C(-,0)

1
+3 Z 0i0;4iY;05;C(,0) — (r +7)C(-,0) =0

iyj=2
with C(T,vy2,y3,0) = G(y2,y3). The components ¢* and ¢> of a
replicating strateqy ¢ are given by the following expressions

2 1

3
5= (533 Y 00(.0) ~ 0:C(.0)). 6} = -
1=2

K302Y %
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Case B: Pricing PDEs and Hedging
Pricing PDEs
Case B: Defaultable Asset with Zero Recovery
Standing assumptions:

e We now assume that the prices Y! and Y? are strictly positive, but
k3 = —1 so that Y3 is a defaultable asset with zero recovery.

o Of course, the price Y;> vanishes after default, that is, on the set
{t > 1}.

e We assume here that a # 0 and o7 # 09, but we no longer postulate
that b = 0.

e We still assume that v > b/a, however. Let us denote

¢ p1 — K2
o = o=, B = — op————.
a 01 — 09
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Valuation PDEs: Case B

Proposition 6 Let the price processes Y, i =1,2,3, satisfy
dY; =Y} (widt + o; AWy + k; dM,)

with k; > —1 fort1=1,2 and k3 = —1. Assume that

CL#O, 0'1750'2, *y>b/a,.

Consider a contingent claim Y with maturity date T and the terminal
payoff G(Y4A, Y2, Y2 Hr).

In addition, we postulate that the pricing functions C(-,0) and C(-,1)
belong to the class CH2([0,T] x R3,R).
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Pricing PDEs: Case B

Proposition 7 Then the pre-default pricing function C(t,y1,y2,ys3,0)
satisfies the pre-default PDE

3 3
1
0:C(-,0) + Y (o — vk:)y0;C(-,0) + 5 } ~ 0i05yiy;0;;C(-,0)
i=1 i =1

b
n (7 _ 5) [C(t,y1 (1 + k1), y2(1 + £2),0,1) — Ct, 41, Y2, y3, 0)]

_ (041 + mé)(}(.,()) )

a

subject to the terminal condition

C(T,y1,Y2,v3,0) = G(y1, y2,93,0).
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Pricing PDEs: Case B

Proposition 8 The post-default pricing function C(t,y1,y2,1) solves
the post-default PDE

2
1
®C (1) + Zﬁzyza C(,1)+ 5 Z 0;0;9:Y;0;;C(-, 1) — 51C(, 1) =0

ij=1

subject to the terminal condition

C(T,y1,92,1) = G(y1,¥2,0,1).

The components of the replicating strategy ¢ are given by the general

formulae.
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Example B (Continued)

e We assume that the processes Y1, Y? Y3 satisfy

dy,! = rY!dt,
dYt2 — }/t2 (/12 dt + 09 th),
Ay, = Y (usdt+ o5dW, — dM,).

e Let us write 7 = r +7, where

N b 03
=90+ =y- =vtus—rt (=) >0

stands for the default intensity under Q*.

e The quantity 7 is interpreted as the credit-risk adjusted short-term

rate.

e Straightforward calculations show that the following corollary is

valid.
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Example B: Pricing PDEs

Corollary 4 Assume that 01 = k1 = ko =0, k3 = —1 and

o
v >bja=r—ps— —(r— p).
02
Then C(-,0) satisfies the PDE

0:C(t,y2,y3,0) + ry202C(t, y2,y3,0) + 1y305C(t, Y2, ys3,0) — rC(t, y2, y3,0)

3
1 ~
+ 5 E O-zajyzyjﬁzjc(ta Y2, Y3, O) + 70(t7 Y2, 1) — 07
i,J=2

with C(T, y2,vys3,0) = G(y2,y3,0), and the function C(-,1) solves
1
8tC(t, Y2, ].) + Tyg(‘?gC(t, Y2, 1) + 503?;%8226(75, Yo, 1) — ?“C(t, Y2, ].) — O,

with C(T,y2,1) = G(y2,0,1).
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Example B: Survival Claim

For a survival claim, we have C'(-,1) = 0, and thus we obtain following

results.

Corollary 5 The pre-default pricing function C(-,0) of a survival
claim Y = N~ G(YZ,Y}) solves the following PDE:

0:C(t,y2,y3,0) + ry202C(t, y2,y3,0) + 1y305C(t, Y2, y3,0)

3
1 _
+5 2 0103y 0;C(t 2,3, 0) — TC (L, y2, 45, 0) = 0
i,j=2

with the terminal condition C(T,y2,y3,0) = G(y2,y3).
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Corollary B2 (Continued)

Corollary 6 The components ¢* and ¢> of the replicating strateqy are,
for every t < T,

3
1 .
6 = i (e AC Y Y2 0) 4 osC(t Y Y 0))
t— =2
1
QS? — Y—30(t7Y;52—7)/t3—70)
t—

e We have ¢?Y? = C(t,Y,2,Y;? ,0) for every t € [0,T]. Hence the
following relationships holds, for every ¢t < 7,

GY2 = C(t, YA Y2,0), oY+ ¢7Y2=0.

e The last equality is a special case of a balance condition introduced
in Bielecki et al. (2006) in a semimartingale set-up.
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