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The Model

Default Time

• The default time τ is a non-negative random variable on (Ω,G, Q).

• Note that Q is the statistical probability measure.

• The filtration generated by the default process Ht = 11{τ≤t} is
denoted by H.

• We set G = F ∨ H, so that Gt = Ft ∨Ht for every t ∈ R+, where
F = (Ft)t∈R+ is a reference filtration.

• We define the processes Ft and Gt as

Ft = Q{τ ≤ t | Ft}

and
Gt = 1 − Ft = Q{τ > t | Ft}.
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Hazard Process

• The process Γ, given as

Γt = − ln(1 − Ft) = − lnGt

is the F-hazard process under the statistical probability Q.

• We shall assume that the F-hazard process is absolutely continuous:
Γt =

∫ t

0
γu du.

• Hence, the compensated default process

Mt = Ht −
∫ t∧τ

0

γu du = Ht −
∫ t

0

Uu du,

is a G-martingale under Q, where we denote Ut = γt11{t<τ}.
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Hypothesis (H). We assume throughout that any F-martingale under Q

is also a G-martingale under Q.

• Hypothesis (H) is satisfied if a random time τ is defined through
the canonical construction.

• If the representation theorem holds for the filtration F and a finite
family Zi, i ≤ n, of F-martingales then, under Hypothesis (H), it
holds also for the filtration G and with respect to the G-martingales
Zi, i ≤ n and M .

Remark. Hypothesis (H) is not invariant with respect to an equivalent
change of a probability measure, in general.
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Prices of Traded Assets

• Let Y 1, Y 2, Y 3 be semimartingales on (Ω,G, G, Q). We interpret Y i
t

as the cash price at time t of the ith traded asset in the market
model M = (Y 1, Y 2, Y 3; Φ), where Φ stands for the class of all
self-financing trading strategies.

• We postulate that the process Y i is governed by the SDE

dY i
t = Y i

t−
(
μi dt + σi dWt + κi dMt

)
, i = 1, 2, 3,

with Y i
0 > 0.

• Here W is a one-dimensional Brownian motion and M is the
compensated martingale of the default process H.
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Assumptions

• We assume that κi ≥ −1 and κ1 > −1 so that Y 1
t > 0 for every

t ∈ R+. This assumption allows us to take the first asset as a
numeraire.

• Note that the constant coefficient κ1 > −1 corresponds to a
fractional recovery of market value for the first asset.

• In general, we do not assume that a risk-free security exists. Hence
we do not refer to the theory involving the risk-neutral probability
associated with the choice of a savings account as a numeraire.
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Change of Numéraire

• An equivalent martingale measure Q∗ is characterized by the
property that the relative prices Y i(Y 1)−1, i = 1, 2, 3, are
Q∗-martingales.

• We will derive the dynamics for the process Y i,1 = Y i(Y 1)−1 for
i = 2, 3.

• From Itô’s formula, we first obtain

d

(
1

Y 1
t

)
=

1
Y 1

t−

(
−μ1 + σ2

1 + Ut

(
1

1 + κ1
− 1 + κ1

))
dt

− 1
Y 1

t−

(
σ1dWt +

κ1

1 + κ1
dMt

)
.
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Dynamics of Relative Prices

Consequently, the Itô’s integration by parts formula yields the following
dynamics for the processes Y i,1

dY i,1
t = Y i,1

t−

{(
μi − μ1 − σ1(σi − σ1) − Ut(κi − κ1)

κ1

1 + κ1

)
dt

+ (σi − σ1) dWt +
κi − κ1

1 + κ1
dMt

}
.
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Equivalent Martingale Measure

• By assumption, Q∗ is equivalent to the statistical probability Q on
(Ω,GT ) and such that Y i,1, i = 2, 3 are Q∗-martingales.

• Kusuoka (1999) showed that any probability equivalent to Q on
(Ω,GT ) is defined by means of its Radon-Nikodým density process η

satisfying the SDE

dηt = ηt−
(
θt dWt + ζt dMt

)
, η0 = 1,

where θ and ζ are G-predictable processes satisfying mild technical
conditions (in particular, ζt > −1 for t ∈ [0, T ]).

• Since M is stopped at τ , we may and do assume that ζ is stopped
at τ .
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Radon-Nikodým Density

We define Q∗ by setting

dQ∗

dQ
= ηT = ET (θW )ET (ζM), Q-a.s.

Then the processes Ŵ and M̂ given by, for t ∈ [0, T ],

Ŵt = Wt −
∫ t

0

θu du,

M̂t = Mt −
∫ t

0

Uuζu du = Ht −
∫ t

0

Uu(1 + ζu) du = Ht −
∫ t

0

Ûu du,

where Ûu = Uu(1 + ζu), are G-martingales under Q∗.
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Martingale Condition

Proposition 1 Processes Y i,1, i = 2, 3 are Q∗-martingales if and only
if drifts in their dynamics, when expressed in terms of Ŵ and M̂ ,
vanish.

Hence the following equalities hold for i = 2, 3 and every t ∈ [0, T ]

Y i,1
t−

{
μ1 − μi + (σ1 − σi)(θt − σ1) + Ut(κ1 − κi)

ζt − κ1

1 + κ1

}
= 0.

Equivalently, we have for i = 2, 3, on the set Y i,1
t− �= 0,

μ1 − μi + (σ1 − σi)(θt − σ1) + Ut(κ1 − κi)
ζt − κ1

1 + κ1
= 0.
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Case A: Strictly Positive Primary Assets

Case A: standing assumptions:

• We postulate that κ1 > −1 so that Y 1 > 0.

• We assume, in addition, that κi > −1 for i = 2, 3, so that the price
processes Y 2 and Y 3 are strictly positive as well.

15



Martingale Condition

• From the general theory of arbitrage pricing, it follows that the
market model M is complete and arbitrage-free if there exists a
unique solution (θ, ζ) such that the process ζ > −1.

• Since Y i,1 > 0, we search for processes (θ, ζ) such that for i = 2, 3

θt(σ1−σi)+ζtUt
κ1 − κi

1 + κ1
= μi−μ1 +σ1(σ1−σi)+Ut(κ1−κi)

κ1

1 + κ1
.
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Martingale Condition

Since Ut = γ11{t≤τ}, we deal here with four linear equations.

• For t ≤ τ :

θt(σ1 − σ2) + ζtγ
κ1 − κ2

1 + κ1
= μ2 − μ1 + σ1(σ1 − σ2) + γ

(κ1 − κ2)κ1

1 + κ1
,

θt(σ1 − σ3) + ζtγ
κ1 − κ3

1 + κ1
= μ3 − μ1 + σ1(σ1 − σ3) + γ

(κ1 − κ3)κ1

1 + κ1
.

• For t > τ :

θt(σ1 − σ2) = μ2 − μ1 + σ1(σ1 − σ2),

θt(σ1 − σ3) = μ3 − μ1 + σ1(σ1 − σ3).

• The first (the second, resp.) pair of equations is referred to as the
pre-default (post-default, resp.) no-arbitrage condition.
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Notation

To solve explicitly these equations, we find it convenient to write

a = det A, b = det B, c = det C,

where A, B and C are the following matrices:

A =

⎡⎣ σ1 − σ2 κ1 − κ2

σ1 − σ3 κ1 − κ3

⎤⎦ , B =

⎡⎣ σ1 − σ2 μ1 − μ2

σ1 − σ3 μ1 − μ3

⎤⎦ ,

C =

⎡⎣ κ1 − κ2 μ1 − μ2

κ1 − κ3 μ1 − μ3

⎤⎦ .
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Auxiliary Lemma

Lemma 1 The pair (θ, ζ) satisfies the following equations

θta = σ1a + c,

ζtUta = κ1Uta − (1 + κ1)b.

In order to ensure the validity of the second equation after the default
time τ (i.e., on the set {Ut = 0}), we need to impose an additional
condition, b = 0, or more explicitly,

(σ1 − σ2)(μ1 − μ3) − (σ1 − σ3)(μ1 − μ2) = 0.

If this holds, then we obtain the following equations

θta = σ1a + c,

ζtUta = κ1Uta.
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Existence of a Martingale Measure

Proposition 2 (i) If a �= 0 and b = 0 then the unique martingale
measure Q∗ has the Radon-Nikodým density of the form

dQ∗

dQ
= ET (θW )ET (ζM),

where the constants θ and ζ are given by

θ = σ1 +
c

a
, ζ = κ1 > −1,

and where we write, for t ∈ [0, T ],

Et(θW ) = exp
(
θWt − 1

2
θ2t
)

Et(ζM) =
(
1 + 11{τ≤t}ζ) exp

(− ζγ(t ∧ τ)
)
.
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Existence of a Martingale Measure (Continued)

(ii) If a �= 0 and b = 0 then the model M = (Y 1, Y 2, Y 3; Φ) is
arbitrage-free and complete. Moreover, the process (Y 1, Y 2, Y 3, H) has
the Markov property under Q∗.

(iii) If a = 0 and b = 0 then a solution (θ, ζ) exists provided that c = 0
and the uniqueness of a martingale measure Q∗ fails to hold. In this
case, the model M = (Y 1, Y 2, Y 3; Φ) is arbitrage-free, but it is not
complete.

(iv) If b �= 0 then a martingale measure fails to exist and consequently
the model M = (Y 1, Y 2, Y 3; Φ) is not arbitrage-free.
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Example A: Extension of the Black-Scholes Model

• Assume that the asset Y 1 is risk-free, the asset Y 2 �= Y 1 is
default-free, and Y 3 is a defaultable asset with non-zero recovery,
so that

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
μ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
μ3 dt + σ3 dWt + κ3 dMt

)
.

• We thus have σ1 = κ1 = 0, μ1 = r, σ2 �= 0, κ2 = 0, and
κ3 �= 0, κ3 > −1.

• Therefore,
a = σ2κ3 �= 0, c = κ3(r − μ2),

and the equality b = 0 holds if and only if

σ2(r − μ3) = σ3(r − μ2).
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Example A (Continued)

• It is easy to check that

θ =
r − μ2

σ2
, ζ = 0,

and thus under the martingale measure Q∗ we have (irrespective of
whether σ3 > 0 or σ3 = 0)

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
r dt + σ2 dŴt

)
,

dY 3
t = Y 3

t−
(
r dt + σ3 dŴt + κ3 dMt

)
.

• Since ζ = 0 the risk-neutral default intensity γ̂ coincides here with
the statistical default intensity γ. This implies the equality M̂ = M .
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Case B: Defaultable Asset with Zero Recovery

Case B: standing assumptions:

• We postulate that κi > −1 for i = 1, 2 and κ3 = −1.

• This implies that the price of a defaultable asset Y 3 vanishes after
τ , and thus the findings of the preceding section are no longer valid.
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Martingale Condition

• Since Y 3 jumps to zero at τ , the first equality in the martingale
condition

μ2 − μ1 + (σ2 − σ1)(θt − σ1) + Ut(κ2 − κ1)
ζt − κ1

1 + κ1
= 0

should still be satisfied for every t ∈ [0, T ].

• The second equality in the martingale condition

μ3 − μ1 + (σ3 − σ1)(θt − σ1) + Ut(κ3 − κ1)
ζt − κ1

1 + κ1
= 0

is required to hold on the set {τ > t} only (i.e. when Ut = γ).
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Martingale Condition

Lemma 2 Under the present assumptions, the unknown processes θ

and ζ in the Radon-Nikodým density of Q∗ with respect to Q satisfy the
following equations

μ2 − μ1 + (σ2 − σ1)(θt − σ1) = 0, for t > τ,

μ2 − μ1 + (σ2 − σ1)(θt − σ1) + γ(κ2 − κ1)
ζt − κ1

1 + κ1
= 0, for t ≤ τ,

μ3 − μ1 + (σ3 − σ1)(θt − σ1) + γ(−1 − κ1)
ζt − κ1

1 + κ1
= 0, for t ≤ τ.

This leads to the following result.
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Martingale Measure

Proposition 3 The pair (θ, ζ) satisfies the following equations, for
t ≤ τ ,

θta = σ1a + c, ζtγa = κ1γa − (1 + κ1)b.

Moreover, for t > τ ,

μ2 − μ1 + (σ2 − σ1)(θt − σ1) = 0.

Let a �= 0, σ1 �= σ2 and γ > b/a. Then the unique solution is

θt = 11{t≤τ}
(
σ1 +

c

a

)
+11{t>τ}

(
σ1 − μ1 − μ2

σ1 − σ2

)
, ζt = κ1− (1 + κ1)b

γa
> −1.

The model M = (Y 1, Y 2, Y 3; Φ) is arbitrage-free, complete, and has the
Markov property under the unique martingale measure Q∗.
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Example B : Extension of the Black-Scholes Model

• Assume that the asset Y 1 is risk-free, the asset Y 2 �= Y 1 is
default-free, and Y 3 is a defaultable asset with zero recovery, so
that

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
μ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
μ3 dt + σ3 dWt − dMt

)
.

• This corresponds to the following conditions:

σ1 = κ1 = 0, μ1 = r, σ2 �= 0, κ2 = 0, κ3 = −1.

Hence a = −σ2 �= 0. Assume, in addition, that

γ > b/a = r − μ3 − σ3

σ2
(r − μ2).
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Example B (Continued)

• Then we obtain

θ =
r − μ2

σ2
, ζ = − b

γa
=

1
γ

(
μ3 − r − σ3

σ2
(μ2 − r)

)
> −1.

• Consequently, we have under the unique martingale measure Q∗

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
r dt + σ2 dŴt

)
,

dY 3
t = Y 3

t−
(
r dt + σ3 dŴt − dM̂t

)
.

• We do not assume here that b = 0; if this holds then ζ = 0, as in
Example A.

• In Case B, the risk-neutral default intensity γ̂ and the statistical
default intensity γ are different, in general,
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Stopped Trading

• Suppose that the recovery payoff at the time of default is
exogenously specified in terms of some economic factors related to
the prices of traded assets (e.g. credit spreads).

• The valuation problem for a defaultable claim is reduced to finding
its pre-default value, and it is natural to search for a replicating
strategy up to default time only.

• It thus suffices to examine the stopped model in which asset prices
and all trading activities are stopped at time τ .

• In this case, we search for a pair (θ, ζ) of real numbers satisfying

θa = σ1a + c,

ζγa = κ1γa − (1 + κ1)b.
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Case of Stopped Trading

• If a �= 0 then the unique solution (θ, ζ) to the above pair of
equations is

θ = σ1 +
c

a
, ζ = κ1 − (1 + κ1)b

γa
> −1,

where the last inequality holds provided that γ > b/a.

• As expected, in the stopped model, we obtain the unique martingale
measure Q∗ for any choice of recovery coefficients κ2 and κ3.

• In the case of stopped trading, hedging of a contingent claim after
the default time τ is not considered.
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Case A: Pricing PDEs and Hedging

Pricing PDEs

Contingent Claim

Let us now discuss the PDE approach in a model in which the prices of
all three primary assets are non-vanishing.

• It is natural to focus on the case when the market model
M = (Y 1, Y 2, Y 3; Φ) is complete and arbitrage-free.

• Therefore, we shall work under the assumptions of part (i) in the
proposition on the existence of a martingale measure.

• We are interested in the valuation and hedging of a generic
contingent claim with maturity T and the terminal payoff
Y = G(Y 1

T , Y 2
T , Y 3

T , HT ).

• The technique derived for this case can be easily applied to a
defaultable claim that is subject to a fairly general recovery scheme.
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Risk-Neutral Price

• Let a �= 0 and b = 0, and let Q∗ be the unique martingale measure
associated with the numeraire Y 1. Then

dQ∗

dQ
= ET (θW )ET (ζM)

where θ and ζ are explicitly known.

• If Y (Y 1
T )−1 is Q∗-integrable then the risk-neutral price of Y equals,

for every t ∈ [0, T ],

πt(Y ) = Y 1
t EQ∗

(
(Y 1

T )−1Y
∣∣Gt

)
= Y 1

t EQ∗
(
(Y 1

T )−1G(Y 1
T , Y 2

T , Y 3
T , HT )

∣∣Y 1
t , Y 2

t , Y 3
t , Ht

)
where the second equality is a consequence of the Markov property
of (Y 1, Y 2, Y 3, H) under Q∗.
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Pricing PDEs: Case A

Proposition 4 Let the price processes Y i, i = 1, 2, 3 satisfy

dY i
t = Y i

t−
(
μi dt + σi dWt + κi dMt

)
with κi > −1 for i = 1, 2, 3. Assume that a �= 0 and b = 0. Then the
risk-neutral price πt(Y ) of the claim Y equals

πt(Y ) = 11{t<τ}C(t, Y 1
t , Y 2

t , Y 3
t , 0) + 11{t≥τ}C(t, Y 1

t , Y 2
t , Y 3

t , 1)

for some function

C : [0, T ] × R3
+ × {0, 1} → R.

Assume that for h = 0 and h = 1 the function C(·, h) : [0, T ] × R3
+ → R

belongs to the class C1,2([0, T ] × R3
+, R).
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Pricing PDEs: Case A

Then the functions C(·, 0) and C(·, 1) solve the following PDEs:

∂tC(·, 0) +
3∑

i=1

(α − γκi)yi∂iC(·, 0) +
1
2

3∑
i,j=1

σiσjyiyj∂ijC(·, 0) − αC(·, 0)

+ γ
[
C(t, y1(1 + κ1), y2(1 + κ2), y3(1 + κ3), 1) − C(t, y1, y2, y3, 0)

]
= 0

and

∂tC(·, 1) + α

3∑
i=1

yi∂iC(·, 1) +
1
2

3∑
i,j=1

σiσjyiyj∂ijC(·, 1) − αC(·, 1) = 0

where α = μi + σi
c
a , subject to the terminal conditions

C(T, y1, y2, y3, 0) = G(y1, y2, y3, 0), C(T, y1, y2, y3, 1) = G(y1, y2, y3, 1).
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Comments

• The valuation problem splits into two pricing PDEs, which are
solved recursively.

– In the first step, we solve the PDE satisfied by the post-default

pricing function C(·, 1).

– Next, we substitute this function into the first PDE, and we
solve it for the pre-default pricing function C(·, 0).

• The assumption that we deal with only three primary assets and
the coefficients are constant can be easily relaxed, but a general
result is too heavy to be stated here.

• Observe that the real-world default intensity γ under Q, rather
than the risk-neutral default intensity γ̂ under Q∗, enters the
valuation PDE.
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Black and Scholes PDE

• We consider the set-up of Example A, with a �= 0 and b = 0.

• Let Y = G(Y 2
T ) for some function G : R → R such that Y (Y 1

T )−1 is
Q∗-integrable.

• It is possible to show that πt(Y ) = C(t, Y 2
t ).

• The two valuation PDEs of Proposition A2 reduce to a single PDE

∂tC + (μ2 − σ2θ)y2∂2C +
1
2
σ2

2y2
2∂22C − (μ2 − σ2θ)C = 0

with θ = (r − μ2)/σ2.

• After simplifications, we obtain the classic Black and Scholes PDE

∂tC + ry2∂2C +
1
2
σ2

2y2
2∂22C − rC = 0.
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Trading Strategies

• Recall that φ = (φ1, φ2, φ3) is a self-financing strategy if the
processes φ1, φ2, φ3 are G-predictable and the wealth process

Vt(φ) = φ1
t Y

1
t + φ2

t Y
2
t + φ3

t Y
3
t

satisfies
dVt(φ) = φ1

t dY 1
t + φ2

t dY 2
t + φ3

t dY 3
t .

• We say that φ replicates a contingent claim Y if VT (φ) = Y . If φ is
a replicating strategy for a claim Y then, for t ∈ [0, T ],

πt(Y ) = φ1
t Y

1
t + φ2

t Y
2
t + φ3

t Y
3
t .

• To find a replicating strategy, we combine the sensitivities of the
valuation function C with respect to primary assets with the jump
ΔCt = Ct − Ct− associated with default event.
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Hedging with Sensitivities and Jumps

Proposition 5 Under the present the assumptions, the claim
G(Y 1

T , Y 2
T , Y 3

T , HT ) is replicated by φ = (φ1, φ2, φ3), where the
components φi, i = 2, 3, are given in terms of the valuation functions
C(·, 0) and C(·, 1):

φ2
t =

1
aY 2

t−

(
(κ3 − κ1)

( 3∑
i=1

σiY
i
t−∂iC − σ1C

)
− (σ3 − σ1)(ΔC − κ1C)

)

φ3
t =

1
aY 3

t−

(
(κ2 − κ1)

( 3∑
i=1

σiY
i
t−∂iC − σ1C

)
− (σ2 − σ1)(ΔC − κ1C)

)

and φ1 equals

φ1
t = (Y 1

t )−1
(
Ct −

3∑
i=2

φi
tY

i
t

)
.
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Example A: Extension of the Black-Scholes Model

• Assume that the asset Y 1 is risk-free, the asset Y 2 �= Y 1 is
default-free, and Y 3 is a defaultable asset with non-zero recovery,
so that

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
μ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
μ3 dt + σ3 dWt + κ3 dMt

)
with σ2 �= 0 and κ3 �= 0, κ3 > −1.

• We may assume, without loss of generality, that C does not depend
explicitly on the variable y1.

• Assume that a = σ2κ3 �= 0 and σ2(r − μ3) = σ3(r − μ2). The
following result combines and adapts previous results to the present
situation.
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Example A: Pricing PDEs

Corollary 1 The arbitrage price of a claim Y = G(Y 2
T , Y 3

T , HT ) can be
represented as πt(Y ) = C(t, Y 2

t , Y 3
t , Ht), where C(t, y2, y3, 0) satisfies

∂tC(·, 0) + ry2∂2C(·, 0) + y3(r − κ3γ)∂3C(·, 0) − rC(·, 0)

+
1
2

3∑
i,j=2

σiσjyiyj∂ijC(·, 0) + γ
(
C(t, y2, y3(1 + κ3), 1) − C(t, y2, y3, 0)

)
= 0

with C(T, y2, y3, 0) = G(y2, y3, 0), and C(t, y2, y3, 1) satisfies

∂tC(t, y2, y3, 1) + ry2∂2C(t, y2, y3, 1) + ry3∂3C(t, y2, y3, 1) − rC(t, y2, y3, 1)

+
1
2

3∑
i,j=2

σiσjyiyj∂ijC(t, y2, y3, 1) = 0

with C(T, y2, y3, 1) = G(y2, y3, 1).
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Example A: Hedging

Corollary 2 The replicating strategy for Y equals φ = (φ1, φ2, φ3),
where

φ1
t = (Y 1

t )−1

(
Ct −

3∑
i=2

φi
tY

i
t

)
,

φ2
t =

1
σ2κ3Y 2

t−

(
κ3

3∑
i=2

σiyi∂iC(t, Y 2
t−, Y 3

t−, Ht−)

− σ3

(
C(t, Y 2

t−, Y 3
t−(1 + κ3), 1) − C(t, Y 2

t−, Y 3
t−, 0)

))
,

φ3
t =

1
κ3Y 3

t−

(
C(t, Y 2

t−, Y 3
t−(1 + κ3), 1) − C(t, Y 2

t−, Y 3
t−, 0)

)
.
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Example A: Survival Claim

• By a survival claim we mean a claim of the form Y = 11{τ>T}X,
where an FT -measurable random variable X represents the
promised payoff.

• In other words, a survival claim is a contract with zero recovery in
the case of default prior to maturity T .

• We assume that the promised payoff has the form X = G(Y 2
T , Y 3

T ),
where Y i

T is the (pre-default) value of the ith asset at time T .

• It is obvious that the pricing function C(·, 1) is now equal to zero,
and thus we are only interested in the pre-default pricing function
C(·, 0).
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Example A: Survival Claim

Corollary 3 The pre-default pricing function C(·, 0) of a survival
claim of the form Y = 11{τ>T}G(Y 2

T , Y 3
T ) solves the PDE

∂tC(·, 0) + ry2∂2C(·, 0) + y3(r − κ3γ)∂3C(·, 0)

+
1
2

3∑
i,j=2

σiσjyiyj∂ijC(·, 0) − (r + γ)C(·, 0) = 0

with C(T, y2, y3, 0) = G(y2, y3). The components φ2 and φ3 of a
replicating strategy φ are given by the following expressions

φ2
t =

1
κ3σ2Y 2

t−

(
κ3

3∑
i=2

σiY
i
t−∂iC(·, 0) − σ3C(·, 0)

)
, φ3

t = −C(·, 0)
κ3Y 3

t−
.
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Case B: Pricing PDEs and Hedging

Pricing PDEs

Case B: Defaultable Asset with Zero Recovery

Standing assumptions:

• We now assume that the prices Y 1 and Y 2 are strictly positive, but
κ3 = −1 so that Y 3 is a defaultable asset with zero recovery.

• Of course, the price Y 3
t vanishes after default, that is, on the set

{t ≥ τ}.
• We assume here that a �= 0 and σ1 �= σ2, but we no longer postulate

that b = 0.

• We still assume that γ > b/a, however. Let us denote

αi = μi + σi
c

a
, βi = μi − σi

μ1 − μ2

σ1 − σ2
.
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Valuation PDEs: Case B

Proposition 6 Let the price processes Y i, i = 1, 2, 3, satisfy

dY i
t = Y i

t−
(
μidt + σi dWt + κi dMt

)
with κi > −1 for i = 1, 2 and κ3 = −1. Assume that

a �= 0, σ1 �= σ2, γ > b/a.

Consider a contingent claim Y with maturity date T and the terminal
payoff G(Y 1

T , Y 2
T , Y 3

T , HT ).

In addition, we postulate that the pricing functions C(·, 0) and C(·, 1)
belong to the class C1,2([0, T ] × R3

+, R).
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Pricing PDEs: Case B

Proposition 7 Then the pre-default pricing function C(t, y1, y2, y3, 0)
satisfies the pre-default PDE

∂tC(·, 0) +
3∑

i=1

(αi − γκi)yi∂iC(·, 0) +
1
2

3∑
i,j=1

σiσjyiyj∂ijC(·, 0)

+
(
γ − b

a

)[
C(t, y1(1 + κ1), y2(1 + κ2), 0, 1) − C(t, y1, y2, y3, 0)

]
−
(
α1 + κ1

b

a

)
C(·, 0) = 0

subject to the terminal condition

C(T, y1, y2, y3, 0) = G(y1, y2, y3, 0).
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Pricing PDEs: Case B

Proposition 8 The post-default pricing function C(t, y1, y2, 1) solves
the post-default PDE

∂tC(·, 1) +
2∑

i=1

βiyi∂iC(·, 1) +
1
2

2∑
i,j=1

σiσjyiyj∂ijC(·, 1) − β1C(·, 1) = 0

subject to the terminal condition

C(T, y1, y2, 1) = G(y1, y2, 0, 1).

The components of the replicating strategy φ are given by the general
formulae.
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Example B (Continued)

• We assume that the processes Y 1, Y 2, Y 3 satisfy

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
μ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
μ3 dt + σ3 dWt − dMt

)
.

• Let us write r̂ = r + γ̂, where

γ̂ = γ(1 + ζ) = γ − b

a
= γ + μ3 − r +

σ3

σ2
(r − μ2) > 0

stands for the default intensity under Q∗.

• The quantity r̂ is interpreted as the credit-risk adjusted short-term

rate.

• Straightforward calculations show that the following corollary is
valid.
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Example B: Pricing PDEs

Corollary 4 Assume that σ1 = κ1 = κ2 = 0, κ3 = −1 and

γ > b/a = r − μ3 − σ3

σ2
(r − μ2).

Then C(·, 0) satisfies the PDE

∂tC(t, y2, y3, 0) + ry2∂2C(t, y2, y3, 0) + r̂y3∂3C(t, y2, y3, 0) − r̂C(t, y2, y3, 0)

+
1
2

3∑
i,j=2

σiσjyiyj∂ijC(t, y2, y3, 0) + γ̂C(t, y2, 1) = 0,

with C(T, y2, y3, 0) = G(y2, y3, 0), and the function C(·, 1) solves

∂tC(t, y2, 1) + ry2∂2C(t, y2, 1) +
1
2
σ2

2y2
2∂22C(t, y2, 1) − rC(t, y2, 1) = 0,

with C(T, y2, 1) = G(y2, 0, 1).
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Example B: Survival Claim

For a survival claim, we have C(·, 1) = 0, and thus we obtain following
results.

Corollary 5 The pre-default pricing function C(·, 0) of a survival
claim Y = 11{τ>T}G(Y 2

T , Y 3
T ) solves the following PDE:

∂tC(t, y2, y3, 0) + ry2∂2C(t, y2, y3, 0) + r̂y3∂3C(t, y2, y3, 0)

+
1
2

3∑
i,j=2

σiσjyiyj∂ijC(t, y2, y3, 0) − r̂C(t, y2, y3, 0) = 0

with the terminal condition C(T, y2, y3, 0) = G(y2, y3).
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Corollary B2 (Continued)

Corollary 6 The components φ2 and φ3 of the replicating strategy are,
for every t < τ ,

φ2
t =

1
σ2Y 2

t−

( 3∑
i=2

σiY
i
t−∂iC(t, Y 2

t−, Y 3
t−, 0) + σ3C(t, Y 2

t−, Y 3
t−, 0)

)
,

φ3
t =

1
Y 3

t−
C(t, Y 2

t−, Y 3
t−, 0).

• We have φ3
t Y

3
t− = C(t, Y 2

t−, Y 3
t−, 0) for every t ∈ [0, T ]. Hence the

following relationships holds, for every t < τ ,

φ3
t Y

3
t = C(t, Y 2

t , Y 3
t , 0), φ1

t Y
1
t + φ2

t Y
2
t = 0.

• The last equality is a special case of a balance condition introduced
in Bielecki et al. (2006) in a semimartingale set-up.
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