EMS SCHOOL

Risk Theory and Related Topics

Bedlewo, Poland. september 29th- october 8th, 2008

Enlargement of filtrations and Credit Risk

Tomasz R. Bielecki, IIT, Chicago Nicole El Karoui, Ying Jiao, Ecole Polytecnique Monique Jeanblanc, Yann Le Cam, University of Evry Marek Rutkowski, University of New South Wales, Sydney Let **F** be a given filtration and **G** be a larger filtration, i.e., $\mathcal{F}_t \subset \mathcal{G}_t$, $\forall t$.

Questions:

1) Find conditions such that any **F**-martingale $M^{\mathbf{F}}$ remains a **G**-semi-martingale.

2) Under these conditions, find the canonical decomposition of $M^{\mathbf{F}}$ as a **G**-semimartingale:

$$M_t^{\mathbf{F}} = M_t^{\mathbf{G}} + A_t$$

where A is a **G**-predictable process with bounded variation and $M^{\mathbf{G}}$ a **G**-martingale.

We shall study three cases of enlargement of filtrations

Immersion of filtration where F-martingales remain G-martingales

Initial enlargement where *L* is a given random variable and $\mathcal{G}_t = \mathcal{F}_t^{(L)} := \mathcal{F}_t \lor \sigma(L)$

Progressive enlargement where τ is a given random time and $\mathcal{G}_t = \mathcal{F}_t^{\tau} := \mathcal{F}_t \lor \mathcal{H}_t$ where $(\mathcal{H}_t, t \ge 0)$ is the natural filtration of the process $H_t = \mathbb{1}_{\{\tau \le t\}}$ **Immersion property**

The filtration \mathbf{F} is said to be **immersed** in \mathbf{G} if any (square-integrable) \mathbf{F} -martingale is a \mathbf{G} -martingale. It is also referred to as the (\mathcal{H}) hypothesis.

In the particular case of progressive enlargement, hypothesis (\mathcal{H}) is equivalent to

$$\mathbb{P}(\tau \le t | \mathcal{F}_t) = \mathbb{P}(\tau \le t | \mathcal{F}_\infty)$$

In particular,

$$F_t := \mathbb{P}(\tau \le t | \mathcal{F}_t)$$

is increasing.

If the sub-martingale

$$F_t := \mathbb{P}(\tau \le t | \mathcal{F}_t)$$

is increasing, then for any **F**-martingale m, the process $(m_{t \wedge \tau}, t \geq 0)$ is a local \mathcal{F}^{τ} -martingale.

This is equivalent to: for any bounded \mathcal{F} -martingale m, $\mathbb{E}(m_{\tau}) = m_0$.

Initial enlargements

Let **F** be a Brownian filtration generated by W and $\mathcal{F}_t^{(L)} = \mathcal{F}_t \vee \sigma(L)$. Let $\lambda_t(\omega, dx)$ be the family of regular conditional distribution,

$$\lambda_t(\cdot, A) = \mathbb{E}(\mathbb{1}_{\{L \in A\}} | \mathcal{F}_t)$$

(Jacod's criterion.) Suppose that, for each t, $\lambda_t(\omega, dx) \ll \eta(dx)$ where η is the law of L. Then, every F- martingale X is an $\mathbf{F}^{(L)}$ -semi-martingale.

Moreover, if $\lambda_t(\omega, dx) = f_t(\omega, x)\eta(dx)$, then any **F**-martingale X admits the decomposition

$$X_t = \widetilde{X}_t + \int_0^t \frac{d\langle f(L; \cdot), X \rangle_s}{f_s(L)}$$

where \widetilde{X} is an $\mathbf{F}^{(L)}$ -martingale.

Grorud and Pontier result

Let

$$d\mathbb{Q}|_{\mathcal{F}_T^{(L)}} = 1/f_T(L) \, d\mathbb{P}|_{\mathcal{F}_T^{(L)}}$$

Then, L and $(W_t, t \leq T)$ are independent under \mathbb{Q} .

Progressive enlargement

Let τ be a random time on $(\Omega, \mathbf{F}, \mathbb{P})$ and $\mathbf{G} = \mathbf{F} \vee \mathbf{H} = \mathbf{F}^{\tau}$. The supermartingale $G_t = \mathbb{P}(\tau > t | \mathcal{F}_t)$ admits a Doob-Meyer decomposition as $G_t = Z_t - A_t$.

Then, if X is an **F**-martingale, the process X^{τ} defined as

$$X_t^\tau = X_{t \wedge \tau}$$

is a G-semi-martingale and its G-decomposition is

$$X_t^{\tau} = \widetilde{X}_t + \int_0^{t \wedge \tau} \frac{d \langle X, G \rangle_s}{G_{s-1}}$$

where \widetilde{X} is a **G**-martingale (Jeulin's result).

The random time τ is **honest** if τ is equal, on $\{\tau < t\}$ to an \mathcal{F}_t -measurable random variable. In particular, τ is \mathcal{F}_∞ -measurable. Example: if X is a transient diffusion, the last passage time Λ_a is honest.

A key point is the following description of \mathbf{F}^{τ} -predictable processes: if τ is honest, and if Z is an \mathbf{F}^{τ} -predictable process, then there exist two **F**-predictable processes z and \tilde{z} such that

$$Z_t = z_t 1\!\!1_{\{\tau > t\}} + \widetilde{z}_t 1\!\!1_{\{\tau \le t\}}.$$

We assume that τ is honest and avoids **F**-stopping times.

Then, if X is an **F**-local martingale, there exists an \mathbf{F}^{τ} -local martingale \widetilde{X} such that

$$X_t = \widetilde{X}_t + \int_0^{t \wedge \tau} \frac{d\langle X, G \rangle_s}{G_{s-}} - \int_{t \wedge \tau}^t \frac{d\langle X, G \rangle_s}{1 - G_{s-}} \,.$$

Initial times

Let $(\Omega, \mathbf{F}, \mathbb{P})$ be a given filtered probability space, τ a random time and

 $H_t = 1_{\tau \le t}$

Let $\mathbf{G} = \mathbf{F} \vee \mathbf{H}$ where $\mathcal{H}_t = \sigma(H_s, s \leq t)$ and, for any (t, θ) ,

 $G_t(\theta) = \mathbb{P}(\tau > \theta | \mathcal{F}_t)$

the conditional survival process.

We assume that $G_t := G_t(t)$ is continuous.

The positive random time τ is called an **initial time** if it satisfies Jacod's criterion. Then,

$$G_t(\theta) = \mathbb{P}(\tau > \theta | \mathcal{F}_t) = \int_{\theta}^{\infty} f_t(u) \eta(du)$$

From $G_s(\theta) = \mathbb{E}(G_t(\theta)|\mathcal{F}_s)$ for any $s \leq t$, it follows that for any $u \geq 0$, $(f_t(u))_t$ is a non-negative \mathbb{F} -martingale.

The Doob-Meyer decomposition of $G_t(t)$ is

$$G_t = G_t(t) = G_0(t) + \int_0^t g_s(s) dW_s - \int_0^t f_s(s) \eta(ds)$$

where $G_t(\theta) = G_0(\theta) + \int_0^t g_s(\theta) dW_s$.

• Under the condition that the initial time τ avoids the \mathbb{F} -stopping times, there is equivalence between \mathbb{F} is immersed in \mathbb{G} and for any $u \geq 0$, the martingale $(f_t(u), t \geq 0)$ is constant after u.

• Under the condition that the initial time τ avoids the F-stopping times, there is equivalence between F is immersed in G and for any $u \ge 0$, the martingale $(f_t(u), t \ge 0)$ is constant after u.

• Let $(K_t(u))_{t\geq 0}$ be a family of \mathbb{F} -predictable processes indexed by $u\geq 0$. Then

$$\mathbb{E}\left(\left.K_{t}(\tau)\right|\mathcal{F}_{t}\right) = \int_{0}^{\infty} K_{t}(u)f_{t}(u)\eta\left(du\right) \qquad (*)$$

• Under the condition that the initial time τ avoids the F-stopping times, there is equivalence between F is immersed in G and for any $u \ge 0$, the martingale $(f_t(u), t \ge 0)$ is constant after u.

• Let $(K_t(u))_{t\geq 0}$ be a family of \mathbb{F} -predictable processes indexed by $u\geq 0$. Then

$$\mathbb{E}\left(\left.K_{t}(\tau)\right|\mathcal{F}_{t}\right) = \int_{0}^{\infty} K_{t}(u)f_{t}(u)\eta\left(du\right) \qquad (*)$$

• If X is an \mathbb{F} -martingale

$$\widehat{X}_t := X_t - \int_0^{t \wedge \tau} \frac{d \langle X, G \rangle_s}{G_s} - \int_{t \wedge \tau}^t \left. \frac{d \langle X, f_{\cdot}(\theta) \rangle_s}{f_s(\theta)} \right|_{\theta = \tau} \in \mathcal{M}(\mathbb{G}).$$

Proof. We prove that \widehat{X} is a **G**-martingale. Let us consider a \mathcal{G}_s -measurable random variable of the form $F_sh(\tau \wedge s)$ with F_s a bounded \mathcal{F}_s -measurable random variable and $h : \mathbb{R}^+ \to \mathbb{R}$ a bounded Borel function. Then,

$$\mathbb{E}\left(F_{s}h(\tau \wedge s)\left(\widehat{X}_{t} - \widehat{X}_{s}\right)\right) = \mathbb{E}\left(F_{s}h(\tau)1_{\tau \leq s}\left(\widehat{X}_{t} - \widehat{X}_{s}\right)\right) \\ + \mathbb{E}\left(F_{s}h(s)1_{s < \tau}\left(\widehat{X}_{t} - \widehat{X}_{s}\right)\right) \\ = a + b$$

and we can compute each part of the right hand side member:

Computation of
$$a = \mathbb{E}\left(F_s h(\tau) \mathbb{1}_{\tau \leq s}\left(\widehat{X}_t - \widehat{X}_s\right)\right), \quad s < t.$$

On $\{\tau \leq s\}, t \wedge \tau = s \wedge \tau = \tau$ hence

$$1_{\tau \leq s} \left(\int_0^{t \wedge \tau} \frac{d \langle X, G \rangle_u}{G_u} - \int_0^{s \wedge \tau} \frac{d \langle X, G \rangle_u}{G_u} \right) = 0,$$

and it follows that

$$a = \mathbb{E}\left(F_s h(\tau) \mathbf{1}_{\tau \le s} \left(X_t - X_s\right)\right) - \mathbb{E}\left(F_s h(\tau) \mathbf{1}_{\tau \le s} \left(\int_s^t \frac{d\langle X, f_{\cdot}(\theta) \rangle_u}{f_u(\theta)}|_{\theta = \tau}\right)\right)$$

We prove that a = 0

$$\mathbb{E} \left(F_s h(\tau) \mathbf{1}_{\tau \leq s} \left(X_t - X_s \right) \right) = \mathbb{E} \left(F_s \left(X_t - X_s \right) \int_0^s h(\theta) f_t(\theta) \eta(d\theta) \right)$$
$$= \int_0^s h(\theta) \mathbb{E} \left(F_s \left(X_t f_t(\theta) - X_s f_s(\theta) \right) \right) \eta(d\theta)$$
$$= \int_0^s h(\theta) \mathbb{E} \left(F_s \int_s^t d \left\langle X, f_\cdot(\theta) \right\rangle_v \right) \eta(d\theta)$$

where the first equality comes from a conditioning w.r.t. \mathcal{F}_t , the second from the martingale property of $f_{\cdot}(\theta)$, and the third from integration by parts and the fact that X and $f_{\cdot}(\theta)$ are martingales. Moreover, for $dK_v(\theta) = d \langle X, f_{\cdot}(\theta) \rangle_v / f_v(\theta)$

$$\mathbb{E}\left(F_{s}h(\tau)1_{\tau\leq s}\int_{s}^{t}dK_{v}(\tau)\right) = \mathbb{E}\left(F_{s}\int_{0}^{s}h(\theta)\int_{s}^{t}dK_{v}(\theta)f_{t}(\theta)\eta(d\theta)\right)$$
$$= \int_{0}^{s}h(\theta)\mathbb{E}\left(F_{s}\int_{s}^{t}f_{v}(\theta)dK_{v}(\theta)\right)\eta(d\theta)$$

where the first equality comes from (*) applied to the \mathbb{F} -predictable process indexed by $u J_t^u = h(u) \mathbb{1}_{u \leq s} \int_s^t dK_v(u)$ (F_s is F_t -measurable) and the second from the martingale property of $f_{\cdot}(\theta)$

Hence, a = 0.

b: We rewrite b as

$$b = \mathbb{E}\left(F_{s}h(s)1_{s<\tau}\left(X_{t}-X_{t\wedge\tau}\right)\right) + \mathbb{E}\left(F_{s}h(s)1_{s<\tau}\left(X_{t\wedge\tau}-X_{s}\right)\right) \\ -\mathbb{E}\left(F_{s}h(s)1_{s<\tau}\int_{s}^{t\wedge\tau}\frac{d\langle X,G\rangle_{u}}{G_{u}}\right) - \mathbb{E}\left(F_{s}h(s)1_{s<\tau}\int_{t\wedge\tau}^{t}\frac{d\langle X,f_{\cdot}(\tau)\rangle_{u}}{f_{u}(\tau)}\right)$$

Using Jeulin's formula before default, we have

$$\mathbb{E}\left(F_{s}h(s)\mathbf{1}_{s<\tau}\left(X_{t\wedge\tau}-X_{s}\right)\right) = \mathbb{E}\left(F_{s}h(s)\mathbf{1}_{s<\tau}\left(X_{t\wedge\tau}-X_{s\wedge\tau}\right)\right)$$
$$= \mathbb{E}\left(F_{s}h(s)\mathbf{1}_{s<\tau}\int_{s}^{t\wedge\tau}\frac{d\langle X,G\rangle_{u}}{G_{u}}\right),$$

and it follows

$$b = \mathbb{E} \left(F_s h(s) \mathbb{1}_{s < \tau} \left(X_t - X_{t \wedge \tau} \right) \right) - \mathbb{E} \left(F_s h(s) \mathbb{1}_{s < \tau} \int_{t \wedge \tau}^t \frac{d \langle X, f_{\cdot}(\tau) \rangle_u}{f_u(\tau)} \right)$$
$$= \mathbb{E} \left(F_s h(s) \mathbb{1}_{s < \tau \le t} \left(X_t - X_\tau \right) \right) - \mathbb{E} \left(F_s h(s) \mathbb{1}_{s < \tau \le t} \int_{\tau}^t \frac{d \langle X, f_{\cdot}(\tau) \rangle_u}{f(\tau, u)} \right).$$

Moreover, we can write the decomposition:

$$\mathbb{E}(F_{s}h(s)1_{s<\tau\leq t}X_{\tau}) = \mathbb{E}\left(F_{s}h(s)\int_{v\in]s,t]}X_{v}dH_{v}\right)$$
$$= \mathbb{E}\left(F_{s}h(s)\int_{v\in]s,t]}X_{v}dA_{v}\right)$$
$$= \mathbb{E}\left(F_{s}h(s)\int_{v\in]s,t]}X_{v}f_{v}(v)\eta(dv)\right)$$

where the second equality comes from the definition of the predictable dual projection, and the third from the computation of the Doob Meyer decomposition of G.

It follows

$$b = \mathbb{E}\left(F_{s}h(s)X_{t}\int_{v\in]s,t]}f_{t}(v)\eta(dv)\right) - \mathbb{E}\left(F_{s}h(s)\int_{v\in]s,t]}X_{v}f_{v}(v)\eta(dv)\right)$$
$$-\mathbb{E}\left(F_{s}h(s)\int_{v\in]s,t]}\int_{u\in]v,t]}\frac{d\langle X, f_{\cdot}(v)\rangle_{u}}{f_{u}(v)}f_{t}(v)\eta(dv)\right)$$
$$= \mathbb{E}\left(F_{s}h(s)\int_{v\in]s,t]}\left((X_{t}f_{t}(v) - X_{v}f_{v}(v)) - \int_{u\in]v,t]}d\langle X, f_{\cdot}(v)\rangle_{u}\right)\eta(dv)\right)$$

where the second equality comes from integration by parts formula. The proof is done.

Example: "Cox-like" construction. Here

- λ is a non-negative \mathbb{F} -adapted process, $\Lambda_t = \int_0^t \lambda_s ds$
- Θ is a given r.v. independent of \mathcal{F}_{∞} with unit exponential law
- V is a \mathcal{F}_{∞} -measurable non-negative random variable
- $\tau = \inf\{t : \Lambda_t \ge \Theta V\}.$

Example: "Cox-like" construction. Here

- λ is a non-negative \mathbb{F} -adapted process, $\Lambda_t = \int_0^t \lambda_s ds$
- Θ is a given r.v. independent of \mathcal{F}_{∞} with unit exponential law
- V is a \mathcal{F}_{∞} -measurable non-negative random variable
- $\tau = \inf\{t : \Lambda_t \ge \Theta V\}.$

For any θ and t,

$$G_t(\theta) = \mathbb{P}(\tau \ge \theta | \mathcal{F}_t) = \mathbb{P}(\Lambda_{\theta} \le \Theta V | \mathcal{F}_t) = \mathbb{P}\left(\exp -\frac{\Lambda_{\theta}}{V} \ge e^{-\Theta} | \mathcal{F}_t \right).$$

Let us denote $\exp(-\Lambda_t/V) = 1 - \int_0^t \psi_s ds$, with

$$\psi_s = (\lambda_s/V) \exp{-\int_0^s (\lambda_u/V) \, du},$$

and define $\gamma_t(s) = \mathbb{E}(\psi_s | \mathcal{F}_t)$. Then, $f_t(s) = \gamma_t(s) / \gamma_0(s)$.

HJM model

Assume that for any $\theta > 0$, the process $(G_t(\theta), 0 \le t)$ satisfies

$$\frac{dG_t(\theta)}{G_t(\theta)} = \Psi(t,\theta)dW_t$$

where $\Psi(t,\theta)$ is an \mathbb{F} -adapted process which is differentiable with respect to θ . Similar as in the interest rate modelling, we define the forward rate $\gamma_t(\theta) = -\frac{\partial}{\partial \theta} \ln G_t(\theta)$. If, in addition, $\psi(t,\theta) = \frac{\partial}{\partial \theta} \Psi(t,\theta)$ is bounded, then we have

1.
$$G_t(\theta) = G_0(\theta) \exp\left(\int_0^t \Psi(s,\theta) dW_s - \frac{1}{2} \int_0^t |\Psi(s,\theta)|^2 ds\right)$$

2.
$$\gamma_t(\theta) = \gamma_0(\theta) - \int_0^t \psi(s,\theta) dW_s + \int_0^t \psi(s,\theta) \Psi(s,\theta)^* ds.$$

3.
$$G_t = \exp\left(-\int_0^t \gamma_s(s) ds + \int_0^t \Psi(u,u) dW_u - \frac{1}{2} \int_0^t |\Psi(u,u)|^2 du\right).$$

From Grorud and Pontier result

One can start with a model such that, under \mathbb{P}^0 , τ and \mathcal{F}_{∞} are independent.

Let $f_{\infty}(u)$ be a family of non negative \mathcal{F}_{∞} -measurable r.vs. such that $\int_{0}^{\infty} f_{\infty}(u)\eta(du) = 1$ where η is a probability law on \mathbb{R}^{+} . Let $f_{t}(u) = \mathbb{E}^{0}(f_{\infty}(u)|\mathcal{F}_{t}).$ There exists a probability space $(\widehat{\Omega}, \mathbb{Q})$ and a random variable τ such that

> (i) The law of τ is η (ii) The restriction of \mathbb{Q} to \mathcal{F}_{∞} is \mathbb{P} (iii) $\mathbb{Q}(\tau > \theta | \mathcal{F}_t) = \int_{\theta}^{\infty} f_t(u) \eta(du)$

In order to have a family of non negative \mathcal{F}_{∞} -measurable r.vs. such that $\int_0^{\infty} f_{\infty}(u)\eta(du) = 1$: start with a family of densities on \mathbb{R}^+ , $\varphi(\alpha, u)$ where α is a parameter and set $f_{\infty}(u) = \varphi(X, u)$ for some \mathcal{F}_{∞} -measurable r.v. Let $G_t = L_t^{\mathbb{F}} e^{-\int_0^t \lambda_s^{\mathbb{F}} \eta(ds)}$ be the multiplicative decomposition of G. Any cadlag process $Y^{\mathbb{G}}$ is a \mathbb{G} -martingale if and only if there exist an \mathbb{F} -adapted cadlag process Y and an $\mathcal{F}_t \otimes \mathcal{B}(\mathbb{R}^+)$ -optional process $Y_t(.)$ such that $Y_t^{\mathbb{G}} = Y_t \mathbb{1}_{\{\tau > t\}} + Y_t(\tau) \mathbb{1}_{\{\tau \le t\}}$ and that

- 1. $(Y_tG_t + \int_0^t Y_s(s)f_s(s)\eta(ds), t \ge 0)$ or equivalently $(L_t^{\mathbb{F}}[Y_t + \int_0^t (Y_s(s) - Y_s)\lambda_s^{\mathbb{F}}\eta(ds)], t \ge 0)$ is an \mathbb{F} -local martingale;
- 2. $((Y_t(\theta) Y_{\theta}(\theta))f_t(\theta), t \ge \theta)$ is an \mathbb{F} -martingale on $[\theta, \zeta^{\theta})$.

Application to credit risk

Let τ be the default time, **F** the reference filtration and $\mathbf{G} = \mathbf{F} \lor \mathbf{H}$. Assume that

$$G_t^{\theta} = P(\tau > \theta | \mathcal{F}_t) = \int_{\theta}^{\infty} f_t(u) du$$

We also assume that $G_t(t)$ is continuous. Then the process

$$M_t = H_t - \int_0^t \lambda_s^{\mathbf{G}} ds$$

where

$$\lambda_t^{\mathbb{G}} = \mathbb{1}_{t < \tau} \, \lambda_t^{\mathbb{F}} = \mathbb{1}_{t < \tau} \, \frac{f_t(t)}{G_t(t)} = \mathbb{1}_{t < \tau} \, \frac{f_t(t)}{\int_t^{\infty} f_t(u) du}.$$

is a **G**-martingale.

Assume that $\widetilde{S} = (\widetilde{S}_t, t \leq T)$ is an \mathbb{R}^{n+2} valued process constructed on $(\Omega, \mathcal{A}, \mathbb{P}), S^0$ denoting the saving accounts, and \mathbb{G} is the natural filtration generated by \widetilde{S} .

We emphasize that \mathbb{P} is a probability measure defined on \mathcal{A} .

We denote by $\Theta_{\mathbb{P}}^{\mathbb{G}}(\widetilde{S})$ the set of \mathbb{G} -e.m.ms, i.e., the set of probability measures \mathbb{Q} defined on \mathcal{A} , equivalent to \mathbb{P} on \mathcal{A} , such that the discounted process $(\widetilde{S}_t/S_t^0, t \leq T)$ is a (\mathbb{G}, \mathbb{Q}) -local martingale.

In what follows, we assume that $S^0 \equiv 1$.

Assume that \mathbf{F} is the natural filtration of the \mathbb{R}^{n+1} -valued process Sand that this market is complete. Let \mathbb{P}^* be an e.m.m. (the restriction of \mathbb{P}^* to \mathbf{F} is unique) For every $X \in \mathcal{M}(\mathbb{G}, \mathbb{P}^*)$, there exists two \mathbb{G} -predictable process β and γ such that

$$dX_t = \gamma_t d\widehat{S}_t + \beta_t dM_t.$$

There exists a probability $\mathbb{Q} \in \Theta_{\mathbb{P}^*}^{\mathbb{G}}(S)$ such that immersion property holds under \mathbb{Q}

If the market generated by S is incomplete, we assume that the market chooses an e.m.m. \mathbb{P}^* . We assume that a default sensitive asset S^{n+2} is traded.

There exists a unique \mathbb{G} -e.m.m. $\mathbb{Q} \in \Theta_{\mathbb{P}^*}^{\mathbb{G}} (\widetilde{S})$, that preserves \mathcal{F}_T , i.e., $\mathbb{E}^{\mathbb{Q}} (X_T) = \mathbb{E}^* (X_T)$,

for any $X_T \in L^2(\mathcal{F}_T)$.

Valuation of Single-Name CDSs

Let us now examine the valuation of single-name CDSs under the assumption that the interest rate equals zero.

We consider the CDS

• with the constant spread κ ,

• which delivers $\delta(\tau)$ at time τ if $\tau < T$, where δ_1 is a deterministic function.

The value of the CDS is

$$S_t = \mathbb{1}_{t < \tau} \mathbb{E}(\delta(\tau) \mathbb{1}_{t < \tau \le T} - \kappa((T \land \tau) - t) | \mathcal{G}_t)$$
$$= \mathbb{1}_{t < \tau} \frac{1}{G_t(t)} \int_t^T (\delta(u) f_t(u) - G_t(u) \kappa) du$$

Recall that

$$G_t = G_t^t = G_0^t + \int_0^t g_s(s) dW_s + \int_0^t f_s(s) \eta(ds)$$

The dynamics of a CDS can be obtained in a closed form

$$dS_{t}(\kappa) = r(t)S_{t}(\kappa) dt - S_{t-}(\kappa) dM_{t} + (\kappa - \frac{f_{t}(t)}{G_{t}(t)}\delta(t))(1 - H_{t})dt + (1 - H_{t})\sigma_{t}(T) \left(dW_{t} - \frac{g_{t}(t)}{G_{t}(t)} dt\right).$$

If immersion property holds, then $g_t(t) = 0$, otherwise

$$W_{t\wedge\tau} - \int_0^{t\wedge\tau} \frac{g_s(s)}{G_s(s)} ds$$

is a **G**-martingale

Several Defaults

For any $t_1, t_2, t \ge 0$, we assume that the density process $(f_t(t_1, t_2), t \ge 0)$ of (τ_1, τ_2) exists, i.e.

$$G_t(t_1, t_2) = \mathbb{P}(\tau_1 > t_1, \tau_2 > t_2 | \mathcal{F}_t) = \int_{t_1}^{\infty} du_1 \int_{t_2}^{\infty} du_2 f_t(u_1, u_2).$$

Let

$$G_t(t_1, t_2) = G_0(t_1, t_2) + \int_0^t g_s(t_1, t_2) dW_s$$

The process

$$M_t^1 = H_t^1 - \int_0^{t \wedge \tau_1 \wedge \tau_2} \widetilde{\lambda}_u^1 \, du - \int_{t \wedge \tau_1 \wedge \tau_2}^{t \wedge \tau_1} \lambda_u^{1|2}(\tau_2) \, du,$$

is a **G**-martingale. Here

$$\widetilde{\lambda}_t^i = -\frac{\partial_i G_t(t,t)}{G_t(t,t)}, i = 1, 2 \quad \lambda_t^{1|2}(s) = -\frac{f_t(t,s)}{\partial_2 G_t(t,s)}$$

Valuation of Single-Name CDSs

Let us now examine the valuation of single-name CDSs under the assumption that the interest rate equals zero.

We consider the CDS

• with the constant spread κ ,

• which delivers $\delta(\tau_1)$ at time τ_1 if $\tau_1 < T$, where δ_1 is a deterministic function.

The value $S(\kappa_1)$ of this CDS, computed in the filtration **G**, i.e., taking care on the information on the second default contained in that filtration, is computed in two successive steps.

On the set $t < \tau_{(1)} = \tau_1 \wedge \tau_2$, the ex-dividend price of the CDS equals

$$S_t(\kappa) = \widetilde{S}_t(\kappa) = \frac{1}{G_t(t,t)} \left(-\int_t^T \delta(u) \partial_1 G_t(u,t) \, du - \kappa \int_t^T G_t(u,t) \, du \right).$$

On the set $t < \tau_{(1)} = \tau_1 \wedge \tau_2$, the ex-dividend price of the CDS equals

$$S_t(\kappa) = \widetilde{S}_t(\kappa) = \frac{1}{G_t(t,t)} \left(-\int_t^T \delta(u) \partial_1 G_t(u,t) \, du - \kappa \int_t^T G_t(u,t) \, du \right).$$

On the event $\{\tau_2 \leq t < \tau_1\}$, we have that

$$S_t^1(\kappa) = \frac{1}{\partial_2 G_t(t,\tau_2)} \left(-\int_t^T \delta(u) f_t(u,\tau_2) \, du - \kappa \int_t^T \partial_2 G_t(u,\tau_2) \, du \right).$$

Price Dynamics of Single-Name CDSs

By applying the Itô-Wentzell theorem, we get

$$G_t(u,t) = G_0(u,0) + \int_0^t g_s(u,s) \, dW_s + \int_0^t \partial_2 G_s(u,s) \, ds$$

$$G_t(t,t) = G_0(0,0) + \int_0^t g_s(s,s) \, dW_s + \int_0^t (\partial_1 G_s(s,s) + \partial_2 G_s(s,s)) \, ds.$$

If immersion property holds between **F** and **G**, the dynamics of the process $\widetilde{S}(\kappa)$ are

$$d\widetilde{S}_t(\kappa) = \left(-\widetilde{\lambda}_t^1 \delta(t) + \kappa + \widetilde{\lambda}_t \widetilde{S}_t(\kappa) - \widetilde{\lambda}_t^2 S_{t|2}(\kappa)\right) dt + \sigma_t(T) \, dW_t$$

where

$$\sigma_t(T) = -\frac{1}{G_t(t,t)} \left(\int_t^T \left(\delta(u) \,\partial_1 g_t(u,t) + \kappa g_t(u,t) \right) du \right)$$

$$S_{t|2}(\kappa) = \frac{1}{\partial_2 G_t(t,t)} \left(-\int_t^T \delta(u) f_t(u,t) \,du - \kappa \int_t^T \partial_2 G_t(u,t) \,du \right)$$

The cumulative price (with $B_t = e^{rt}$ the price of the savings account)

$$S_t^c(\kappa) = S_t(\kappa) + B_t \int_{]0,t]} B_u^{-1} dD_u$$

where

$$D_t = D_t(\kappa, \delta, T, \tau_1) = \delta(\tau_1) \mathbb{1}_{\{\tau_1 \le t\}} - \kappa(t \land (T \land \tau_1))$$

satisfies, on $[0, T \wedge \tau_{(1)}]$,

$$dS_t^c(\kappa) = (\delta(t) - \widetilde{S}_t(\kappa)) d\widehat{M}_t^1 + (S_{t|2}(\kappa) - \widetilde{S}_t(\kappa)) d\widehat{M}_t^2 + \sigma_t(T) dW_t.$$

On $\tau_1 > t > \tau_2$

$$dS_t = \sigma_t^{1|2}(T)dW_t + (\delta(t)\lambda_t^{1|2}(\tau_2) - \kappa + \hat{S}_t\lambda_t^{1|2}(\tau_2))dt$$

where

$$\sigma_t^{1|2}(T) = -\int_t^T \delta(u)\partial_1\partial_2 g_t(u,\tau_2)du - \kappa \int_t^T \partial_2 g_t(u,\tau_2)du$$
$$\lambda^{1|2}(t,s) = -\frac{f_t(t,s)}{\partial_2 G_t(t,s)}$$

In the general setting, the dynamics of the process $\widetilde{S}^1(\kappa)$ (the predefault-price) are

$$\begin{split} d\widetilde{S}_t(\kappa) &= \frac{1}{G_t(t,t)} \Bigg[\delta(t) \partial_1 G_t(t,t) + \kappa G_t(t,t) \\ &- \big(\partial_1 G_t(t,t) + \partial_2 G_t(t,t) \big) \widetilde{S}_t(\kappa) \\ &- \int_t^T \big(\delta(u) f_t(u,t) + \kappa \partial_2 G_t(u,t) \big) \, du \Bigg] dt \\ &+ \sigma_t(T) \left(dW_t - \frac{g_t(t,t)}{G_t(t,t)} dt \right) \end{split}$$

with

$$\sigma_t(T) = -\frac{1}{G_t(t,t)} \left(\int_t^T \left(\delta(u) \,\partial_1 g_t(u,t) + \kappa g_t(u,t) \right) du + g_t(t,t) \widetilde{S}_t(\kappa) \right).$$

References References

Mansuy, R. and Yor, M. Random times and (enlargement of) Filtrations in a Brownian Setting, Springer 2006.

Grorud, A. and Pontier, M. Asymmetrical information and incomplete markets. IJTAF, 4, 285-302 (2001).

Jeanblanc, M. and Le Cam, Y., *Progressive enlargement of filtration with initial times*, Preprint.

El Karoui, N., Jeanblanc, M. and Jiao, Y., *Dynamical Modelling of Successive Defaults*, Preprint.

Bielecki, T., Jeanblanc, M. and Rutkowski, M., *Pricing and hedging of* first to-default contracts and credit default indexes, Preprint.