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Let F be a given filtration and G be a larger filtration, i.e., Ft ⊂ Gt, ∀t.
Questions:
1) Find conditions such that any F-martingale MF remains a
G-semi-martingale.

2) Under these conditions, find the canonical decomposition of MF as a
G-semimartingale:

MF
t = MG

t +At

where A is a G-predictable process with bounded variation and MG a
G-martingale.
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We shall study three cases of enlargement of filtrations

Immersion of filtration where F-martingales remain G-martingales

Initial enlargement where L is a given random variable and
Gt = F (L)

t := Ft ∨ σ(L)

Progressive enlargement where τ is a given random time and
Gt = F τ

t := Ft ∨Ht where (Ht, t ≥ 0) is the natural filtration of the
process Ht = 11{τ≤t}
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Immersion property
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The filtration F is said to be immersed in G if any (square-integrable)
F-martingale is a G-martingale. It is also referred to as the (H)
hypothesis.

In the particular case of progressive enlargement, hypothesis (H) is
equivalent to

P(τ ≤ t|Ft) = P(τ ≤ t|F∞)

In particular,
Ft := P(τ ≤ t|Ft)

is increasing.
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If the sub-martingale
Ft := P(τ ≤ t|Ft)

is increasing, then for any F-martingale m, the process (mt∧τ , t ≥ 0) is
a local Fτ -martingale.

This is equivalent to: for any bounded F-martingale m, E(mτ ) = m0 .
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Initial enlargements

Let F be a Brownian filtration generated by W and F (L)
t = Ft ∨ σ(L).

Let λt(ω, dx) be the family of regular conditional distribution,

λt(·, A) = E(11{L∈A}|Ft)

(Jacod’s criterion.) Suppose that, for each t, λt(ω, dx) << η(dx)
where η is the law of L. Then, every F- martingale X is an
F(L)-semi-martingale.
Moreover, if λt(ω, dx) = ft(ω, x)η(dx), then any F-martingale X admits
the decomposition

Xt = X̃t +
∫ t

0

d〈f(L; ·), X〉s
fs(L)

where X̃ is an F(L)-martingale.
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Grorud and Pontier result

Let
dQ|F(L)

T

= 1/fT (L) dP|F(L)
T

Then, L and (Wt, t ≤ T ) are independent under Q.
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Progressive enlargement

Let τ be a random time on (Ω,F,P) and G = F ∨ H = Fτ . The
supermartingale Gt = P(τ > t|Ft) admits a Doob-Meyer decomposition
as Gt = Zt −At.

Then, if X is an F-martingale, the process Xτ defined as

Xτ
t = Xt∧τ

is a G-semi-martingale and its G-decomposition is

Xτ
t = X̃t +

∫ t∧τ

0

d〈X,G〉s
Gs−

where X̃ is a G-martingale (Jeulin’s result).

10



The random time τ is honest if τ is equal, on {τ < t} to an
Ft-measurable random variable. In particular, τ is F∞-measurable.

Example: if X is a transient diffusion, the last passage time Λa is
honest.

A key point is the following description of Fτ -predictable processes: if τ
is honest, and if Z is an Fτ -predictable process, then there exist two
F-predictable processes z and z̃ such that

Zt = zt11{τ>t} + z̃t11{τ≤t} .
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We assume that τ is honest and avoids F-stopping times.

Then, if X is an F-local martingale, there exists an Fτ -local martingale
X̃ such that

Xt = X̃t +
∫ t∧τ

0

d〈X,G〉s
Gs−

−
∫ t

t∧τ

d〈X,G〉s
1 −Gs−

.
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Initial times

Let (Ω,F,P) be a given filtered probability space, τ a random time and

Ht = 11τ≤t

Let G = F ∨ H where Ht = σ(Hs, s ≤ t) and, for any (t, θ),

Gt(θ) = P(τ > θ|Ft)

the conditional survival process.

We assume that Gt := Gt(t) is continuous.
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The positive random time τ is called an initial time if it satisfies
Jacod’s criterion. Then,

Gt(θ) = P(τ > θ|Ft) =
∫ ∞

θ

ft(u)η(du) .

From Gs(θ) = E(Gt(θ)|Fs) for any s ≤ t, it follows that for any u ≥ 0,
(ft(u))t is a non-negative F-martingale.

The Doob-Meyer decomposition of Gt(t) is

Gt = Gt(t) = G0(t) +
∫ t

0

gs(s)dWs −
∫ t

0

fs(s)η(ds)

where Gt(θ) = G0(θ) +
∫ t

0
gs(θ)dWs.
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• Under the condition that the initial time τ avoids the F-stopping
times, there is equivalence between F is immersed in G and for any
u ≥ 0, the martingale (ft(u), t ≥ 0) is constant after u.
• Let (Kt(u))t≥0 be a family of F -predictable processes indexed by
u ≥ 0. Then

E (Kt(τ)| Ft) =
∫ ∞

0

Kt(u)ft(u)η (du) (∗)

• If X is an F-martingale

Yt = Xt −
∫ t∧τ

0

d 〈X,G〉s
Gs

−
∫ t

t∧τ

d 〈X, f·(θ; ·)〉s
f(θ; s)

∣∣∣∣
θ=τ

∈ M(G).
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Proof. We prove that X̂ is a G-martingale. Let us consider a
Gs-measurable random variable of the form Fsh(τ ∧ s) with Fs a
bounded Fs-measurable random variable and h : R+ → R a bounded
Borel function. Then,

E

(
Fsh(τ ∧ s)

(
X̂t − X̂s

))
= E

(
Fsh(τ)1τ≤s

(
X̂t − X̂s

))
+E

(
Fsh(s)1s<τ

(
X̂t − X̂s

))
= a+ b

and we can compute each part of the right hand side member:
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Computation of a = E

(
Fsh(τ)1τ≤s

(
X̂t − X̂s

))
, s < t.

On {τ ≤ s}, t ∧ τ = s ∧ τ = τ hence

1τ≤s

(∫ t∧τ

0

d 〈X,G〉u
Gu

−
∫ s∧τ

0

d 〈X,G〉u
Gu

)
= 0,

and it follows that

a = E (Fsh(τ)1τ≤s (Xt −Xs))−E

(
Fsh(τ)1τ≤s

(∫ t

s

d〈X, f·(θ)〉u
fu(θ)

|θ=τ

))
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We prove that a = 0

E (Fsh(τ)1τ≤s (Xt −Xs)) = E

(
Fs (Xt −Xs)

∫ s

0

h(θ)ft(θ)η(dθ)
)

=
∫ s

0

h(θ)E (Fs (Xtft(θ) −Xsfs(θ))) η(dθ)

=
∫ s

0

h(θ)E
(
Fs

∫ t

s

d 〈X, f·(θ)〉v
)
η(dθ)

where the first equality comes from a conditioning w.r.t. Ft, the second
from the martingale property of f·(θ), and the third from integration by
parts and the fact that X and f·(θ) are martingales.
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Moreover, for dKv(θ) = d 〈X, f·(θ)〉v /fv(θ)

E

(
Fsh(τ)1τ≤s

∫ t

s

dKv(τ)
)

= E

(
Fs

∫ s

0

h(θ)
∫ t

s

dKv(θ)ft(θ)η(dθ)
)

=
∫ s

0

h(θ)E
(
Fs

∫ t

s

fv(θ)dKv(θ)
)
η(dθ)

where the first equality comes from (*) applied to the F-predictable
process indexed by u Ju

t = h(u)1u≤s

∫ t

s
dKv(u) (Fs is Ft-measurable)

and the second from the martingale property of f·(θ)

Hence, a = 0.
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b : We rewrite b as

b = E (Fsh(s)1s<τ (Xt −Xt∧τ )) + E (Fsh(s)1s<τ (Xt∧τ −Xs))

−E

(
Fsh(s)1s<τ

∫ t∧τ

s

d 〈X,G〉u
Gu

)
− E

(
Fsh(s)1s<τ

∫ t

t∧τ

d〈X, f·(τ)〉u
fu(τ)

)
.

Using Jeulin’s formula before default, we have

E (Fsh(s)1s<τ (Xt∧τ −Xs)) = E (Fsh(s)1s<τ (Xt∧τ −Xs∧τ ))

= E

(
Fsh(s)1s<τ

∫ t∧τ

s

d〈X,G〉u
Gu

)
,

and it follows

b = E (Fsh(s)1s<τ (Xt −Xt∧τ )) − E

(
Fsh(s)1s<τ

∫ t

t∧τ

d〈X, f·(τ)〉u
fu(τ)

)
= E (Fsh(s)1s<τ≤t (Xt −Xτ )) − E

(
Fsh(s)1s<τ≤t

∫ t

τ

d〈X, f·(τ)〉u
f(τ, u)

)
.
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Moreover, we can write the decomposition:

E (Fsh(s)1s<τ≤tXτ ) = E

(
Fsh(s)

∫
v∈]s,t]

XvdHv

)

= E

(
Fsh(s)

∫
v∈]s,t]

XvdAv

)

= E

(
Fsh(s)

∫
v∈]s,t]

Xvfv(v)η(dv)

)
where the second equality comes from the definition of the predictable
dual projection, and the third from the computation of the Doob Meyer
decomposition of G.
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It follows

b = E

(
Fsh(s)Xt

∫
v∈]s,t]

ft(v)η(dv)

)
− E

(
Fsh(s)

∫
v∈]s,t]

Xvfv(v)η(dv)

)

−E

(
Fsh(s)

∫
v∈]s,t]

∫
u∈]v,t]

d 〈X, f·(v)〉u
fu(v)

ft(v)η(dv)

)

= E

(
Fsh(s)

∫
v∈]s,t]

(
(Xtft(v) −Xvfv(v)) −

∫
u∈]v,t]

d 〈X, f·(v)〉u
)
η(dv)

)
where the second equality comes from integration by parts formula.

The proof is done.
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Example: “Cox-like” construction. Here
• λ is a non-negative F-adapted process, Λt =

∫ t

0
λsds

• Θ is a given r.v. independent of F∞ with unit exponential law
• V is a F∞ -measurable non-negative random variable
• τ = inf{t : Λt ≥ ΘV }.

For any θ and t,

Gt(θ) = P(τ ≥ θ|Ft) = P(Λθ ≤ ΘV |Ft) = P

(
exp−Λθ

V
≥ e−Θ

∣∣∣∣Ft

)
.

Let us denote exp(−Λt/V ) = 1 − ∫ t

0
ψsds, with

ψs = (λs/V ) exp−
∫ s

0

(λu/V ) du,

and define γ(s; t) = E (ψs| Ft). Then, ft(s) = γt(s)/γ0(s).
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HJM model

Assume that for any θ > 0, the process (Gt(θ), 0 ≤ t) satisfies

dGt(θ)
Gt(θ)

= Ψ(t, θ)dWt

where Ψ(t, θ) is an F-adapted process which is differentiable with
respect to θ. Similar as in the interest rate modelling, we define the

forward rate γt(θ) = − ∂
∂θ lnGt(θ). If, in addition, ψ(t, θ) =

∂

∂θ
Ψ(t, θ) is

bounded, then we have

1. Gt(θ) = G0(θ) exp
(∫ t

0
Ψ(s, θ)dWs − 1

2

∫ t

0
|Ψ(s, θ)|2ds

)
2. γt(θ) = γ0(θ) −

∫ t

0
ψ(s, θ)dWs +

∫ t

0
ψ(s, θ)Ψ(s, θ)∗ds.

3. Gt = exp
(
− ∫ t

0
γs(s)ds+

∫ t

0
Ψ(u, u)dWu − 1

2

∫ t

0
|Ψ(u, u)|2du

)
.
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From Grorud and Pontier result

One can start with a model such that, under P0, τ and F∞ are
independent.
Let f∞(u) be a family of non negative F∞-measurable r.vs. such that∫∞
0
f∞(u)η(du) = 1 where η is a probability law on IR+. Let

ft(u) = E0(f∞(u)|Ft).
There exists a probability space (Ω̂,Q) and a random variable τ such
that

(i) The law of τ is η
(ii) The restriction of Q to F∞ is P

(iii) Q(τ > θ|Ft) =
∫∞

θ
ft(u)η(du)

28



In order to have a family of non negative F∞-measurable r.vs. such
that

∫∞
0
f∞(u)η(du) = 1 : start with a family of densities on R+,

ϕ(α, u) where α is a parameter and set f∞(u) = ϕ(X,u) for some
F∞-measurable r.v.
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Let Gt = LF
t e

− ∫ t
0 λF

sη(ds) be the multiplicative decomposition of G.

Any cadlag process Y G is a G-martingale if and only if there exist an
F-adapted cadlag process Y and an Ft ⊗ B(R+)-optional process Yt(.)
such that Y G

t = Yt11{τ>t} + Yt(τ)11{τ≤t} and that

1. (YtGt +
∫ t

0
Ys(s)fs(s)η(ds), t ≥ 0) or equivalently

(LF
t [Yt +

∫ t

0
(Ys(s) − Ys)λF

sη(ds)], t ≥ 0) is an F-local martingale;

2. ((Yt(θ) − Yθ(θ))ft(θ), t ≥ θ) is an F-martingale on [θ, ζθ).
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Application to credit risk
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Let τ be the default time, F the reference filtration and G = F ∨ H.
Assume that

Gθ
t = P (τ > θ|Ft) =

∫ ∞

θ

ft(u)du

We also assume that Gt(t) is continuous. Then the process

Mt = Ht −
∫ t

0

λG
s ds

where

λG
t = 11t<τ λ

F
t = 11t<τ

ft(t)
Gt(t)

= 11t<τ
ft(t)∫∞

t
ft(u)du

.

is a G-martingale.

32



Assume that S̃ = (S̃t, t ≤ T ) is an Rn+2 valued process constructed on
(Ω,A,P), S0 denoting the saving accounts, and G is the natural
filtration generated by S̃.

We emphasize that P is a probability measure defined on A.

We denote by ΘG
P (S̃) the set of G-e.m.ms, i.e., the set of probability

measures Q defined on A, equivalent to P on A, such that the
discounted process (S̃t/S

0
t , t ≤ T ) is a (G,Q)-local martingale.

In what follows, we assume that S0 ≡ 1.
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Assume that F is the natural filtration of the Rn+1-valued process S
and that this market is complete. Let P∗ be an e.m.m. (the restriction
of P∗ to F is unique) For every X ∈ M (G,P∗), there exists two
G-predictable process β and γ such that

dXt = γtdŜt + βtdMt.

There exists a probability Q ∈ ΘG
P∗(S) such that immersion property

holds under Q
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If the market generated by S is incomplete, we assume that the market
chooses an e.m.m. P∗. We assume that a default sensitive asset Sn+2 is
traded.

There exists a unique G-e.m.m. Q ∈ΘG
P∗

(
S̃
)
, that preserves FT , i.e.,

EQ (XT ) = E∗ (XT ) ,

for any XT ∈ L2 (FT ) .
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Valuation of Single-Name CDSs

Let us now examine the valuation of single-name CDSs under the
assumption that the interest rate equals zero.

We consider the CDS
• with the constant spread κ,
• which delivers δ(τ) at time τ if τ < T , where δ1 is a

deterministic function.
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The value of the CDS is

St = 11t<τE(δ(τ)11t<τ≤T − κ((T ∧ τ) − t)|Gt)

= 11t<τ
1

Gt(t)

∫ T

t

(δ(u)ft(u) −Gt(u)κ) du
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Recall that

Gt = Gt
t = Gt

0 +
∫ t

0

gs(s)dWs +
∫ t

0

fs(s)η(ds)

The dynamics of a CDS can be obtained in a closed form

dSt(κ) = r(t)St(κ) dt− St−(κ) dMt + (κ− ft(t)
Gt(t)

δ(t))(1 −Ht)dt

+(1 −Ht)σt(T )
(
dWt − gt(t)

Gt(t)
dt
)
.

If immersion property holds, then gt(t) = 0, otherwise

Wt∧τ −
∫ t∧τ

0

gs(s)
Gs(s)

ds

is a G-martingale
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Several Defaults

For any t1, t2, t ≥ 0, we assume that the density process
(ft(t1, t2), t ≥ 0) of (τ1, τ2) exists, i.e.

Gt(t1, t2) = P(τ1 > t1, τ2 > t2|Ft) =
∫ ∞

t1

du1

∫ ∞

t2

du2 ft(u1, u2).

Let

Gt(t1, t2) = G0(t1, t2) +
∫ t

0

gs(t1, t2)dWs
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The process

M1
t = H1

t −
∫ t∧τ1∧τ2

0

λ̃1
u du−

∫ t∧τ1

t∧τ1∧τ2

λ1|2
u (τ2)du,

is a G-martingale. Here

λ̃i
t = −∂iGt(t, t)

Gt(t, t)
, i = 1, 2 λ

1|2
t (s) = − ft(t, s)

∂2Gt(t, s)
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Valuation of Single-Name CDSs

Let us now examine the valuation of single-name CDSs under the
assumption that the interest rate equals zero.

We consider the CDS
• with the constant spread κ,
• which delivers δ(τ1) at time τ1 if τ1 < T , where δ1 is a

deterministic function.

The value S(κ1) of this CDS, computed in the filtration G, i.e., taking
care on the information on the second default contained in that
filtration, is computed in two successive steps.
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On the set t < τ(1) = τ1 ∧ τ2, the ex-dividend price of the CDS equals

St(κ) = S̃t(κ) =
1

Gt(t, t)

(
−
∫ T

t

δ(u)∂1Gt(u, t) du− κ

∫ T

t

Gt(u, t) du

)
.

On the event {τ2 ≤ t < τ1}, we have that

St(κ)
1

∂2Gt(t, τ2)

(
−
∫ T

t

δ(u)ft(u, τ2) du− κ

∫ T

t

∂2Gt(u, τ2) du

)
.
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t
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)
.

On the event {τ2 ≤ t < τ1}, we have that

S1
t (κ) =

1
∂2Gt(t, τ2)

(
−
∫ T

t

δ(u)ft(u, τ2) du− κ

∫ T

t

∂2Gt(u, τ2) du

)
.
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Price Dynamics of Single-Name CDSs

By applying the Itô-Wentzell theorem, we get

Gt(u, t) = G0(u, 0) +
∫ t

0

gs(u, s) dWs +
∫ t

0

∂2Gs(u, s) ds

Gt(t, t) = G0(0, 0) +
∫ t

0

gs(s, s) dWs +
∫ t

0

(∂1Gs(s, s) + ∂2Gs(s, s)) ds.
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If immersion property holds between F and G, the dynamics of the
process S̃(κ) are

dS̃t(κ) =
(
− λ̃1

t δ(t) + κ+ λ̃tS̃t(κ) − λ̃2
tSt|2(κ)

)
dt+ σt(T ) dWt

where

σt(T ) = − 1
Gt(t, t)

(∫ T

t

(
δ(u) ∂1gt(u, t) + κgt(u, t)

)
du

)

St|2(κ) =
1

∂2Gt(t, t)

(
−
∫ T

t

δ(u)ft(u, t) du− κ

∫ T

t

∂2Gt(u, t) du

)
.

45



The cumulative price (with Bt = ert the price of the savings account)

Sc
t (κ) = St(κ) +Bt

∫
]0,t]

B−1
u dDu

where

Dt = Dt(κ, δ, T, τ1) = δ(τ1)11{τ1≤t} − κ(t ∧ (T ∧ τ1))

satisfies, on [0, T ∧ τ(1)],

dSc
t (κ) = (δ(t) − S̃t(κ)) dM̂1

t + (St|2(κ) − S̃t(κ)) dM̂2
t + σt(T )dWt .
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On τ1 > t > τ2

dSt = σ
1|2
t (T )dWt + (δ(t)λ1|2

t (τ2) − κ+ Ŝtλ
1|2
t (τ2))dt

where

σ
1|2
t (T ) = −

∫ T

t

δ(u)∂1∂2gt(u, τ2)du− κ

∫ T

t

∂2gt(u, τ2)du

λ1|2(t, s) = − ft(t, s)
∂2Gt(t, s)
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In the general setting, the dynamics of the process S̃1(κ) (the
predefault-price) are

dS̃t(κ) =
1

Gt(t, t)

[
δ(t)∂1Gt(t, t) + κGt(t, t)

−(∂1Gt(t, t) + ∂2Gt(t, t)
)
S̃t(κ)

−
∫ T

t

(
δ(u)ft(u, t) + κ∂2Gt(u, t)

)
du

]
dt

+σt(T ) (dWt − gt(t, t)
Gt(t, t)

dt)

with

σt(T ) = − 1
Gt(t, t)

(∫ T

t

(
δ(u) ∂1gt(u, t) + κgt(u, t)

)
du+ gt(t, t)S̃t(κ)

)
.
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