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What is Adaptive Control?

“In everyday language, 'to adapt' means to change a 
behavior to conform to new circumstances.  

Intuitively, an adaptive controller is thus a controller 
that can modify its behavior in response to changes 
in the dynamics of the process and the character of 

the disturbances.”

-Astrom & Wittenmark Adaptive Control, 1995



  

●Many physical systems experience 
perturbations or there are unmodeled dynamics 
in the systems.

●These occurrences can often affectively be 
modeled by a white noise perturbation.

●Examples show that noise may have a 
stabilizing or a destabilizing effect.



  

Significance

● Industrial Models can often be described as controlled 
systems.

● System's behavior depends on the parameters and the fact 
that the value of the parameters is unknown makes the 
system unknown.

● Some crucial information concerning the system is not 
available to the controller and this information should be 
learned during the system's performance.

● The described problem is the problem of adaptive control.



  

Identification and Adaptive Control

Adaptive Control Problem:
Identification and Control

Solution to the Adaptive Control Problem:
Strong consistency of the family of estimates

&
Self-optimality of an adaptive control that uses the family of 

estimates

The general approach to adaptive control that is described 
here exhibits a splitting or separation of identification and 

adaptive control.



  

Identification:

Estimators used:
●Maximum likelihood
●Least Squares
●Weighted Least Squares

For some cases, the weighted least squares estimator 
is strongly consistent while the least squares 
estimator is not.



  

Important Issues for Identification

● Strong consistency

● Recursivity

● Rate of convergence

● Asymptotic behavior of estimators



  

Adaptive Control

The adaptive control constructed by the so-called 
certainty equivalence principle, that is the optimal 
stationary control, is computed by replacing the 

unknown parameter values by the current estimates 
of these values.



  

Important Issues for Adaptive Control

● Self-tuning property

Asymptotically the adaptive control using the estimate of the 
unknown parameter is as good as the optimal control if we 
knew the system (the optimal stationary controls as 
continuous functions of unknown parameters).

● Self-optimizing property

The family of average costs converges to the optimal average 
costs.

● Numerical computations for adaptive control



  

Focus on Identification and Adaptive Control of 
Continuous-Time Stochastic Systems

● Many models evolve in continuous time.

● It is important for the study of discrete time models 
when the sampling rates are large and for the 
analysis of numerical and round-off errors.

● Stochastic calculus provides powerful tools: 
stochastic integral, Ito's differential, martingales.



  

Stochastic Adaptive Control Problems as 
Applications of the Stochastic Control 

Theory

We use the certainty equivalence control as an 
adaptive control, so we need the optimal control 

given explicitly or the nearly optimal control.



  

Illustrative Example

Stochastic Adaptive Control for an Investment Model 
with Transaction Fees.

Consider a model where an investor has the choice to 
invest in two assets: a bond B with a fixed rate of 
growth r and a stock S whose growth is governed by 
a Brownian motion with drift μ and variance σ2.  The 
investor controls his asset by transferring money 
between the stock and the bond.



  

Control Problem

Let U(t), Z(t) denote the total amount of money 
transferred from S to B at time t.  (U(0) = Z(0) = 0)  

The processes S and B are described by

Where                is a standard Brownian motion.

dB t =rB t dt dU t −dZ t 

dS t =S t [− 2
/2]dt S t dW t dZ t −dU t 

W t  , t0



  

Let Y(t) = S(t) + B(t) be the total wealth of the investor at time 
t.

Goal:  Find a pair of optimal controls (U*, Z*) such that the 
expected rate of growth

is maximized.

J y U , Z =E [ lim
t ∞

inf ln
Y t 

t
]



  

Identification Problem:

Find μ and σ based on available observations.

Adaptive Control Problem:

Construct the certainty equivalence adaptive control.

The stochastic adaptive control problem was solved.  The 
solution was computed numerically.



  

The Stochastic Control problem

Example 2: Portfolio Selection and Consumption Model

Let X(t), t ≥ 0 be the wealth at time t of an individual who invests 
his wealth in two types of assets: the safe asset with return rate r 
and the risky asset with average return rate α.  The wealth X(t) 
changes according to the stochastic differential equation

U
1
(t) : fraction of wealth invested in risky assets at time t

U
2
(t) : consumption rate at time t

r, α,      constants with r < α,       > 0
W(t), t ≥ 0 : real-valued Wiener process

dX t =r 1−U t  X t dtU 1t  X t dt  dt dW  t −U 2t dt

 



  

The controls are naturally constrained as 0 ≤ U
1
(t) ≤ 1 and 

U
2
(t) ≥ 0

The stochastic control problem is to maximize the expected 
discounted total utility

where F(u) = uφ with 0 < φ < 1 is the utility function and ρ > 0 
is the discount rate.

I U =E y∫∞
s

e− t F [U 2t ]dt , y=W s 



  

The Stochastic Adaptive Control 
Problem

Example 3: Portfolio Selection and Consumption Model

Consider the situation described in example 2.  For the adaptive 
control problem, it is assumed that α is an unknown parameter 
such that

The adaptive control procedure in this setting is to define the 
control at a time t, that is, the portfolio selection and the 
consumption rate, using the optimal infinite-time control, where 
the estimate at time t of the unknown parameter is used for the 
unknown parameter. 

 ∈ [a1 , a2] with r  a1



  

Stochastic Adaptive Control Problem 
was Solved in Cases Where:

●  Parameters are constants

●  Parameters are functions of time

●  Parameters are random

●  Parameters are stochastic processes



  

Weighted Least Squares and Continuous 
Time Adaptive LQG Control

●  Linear Gaussian control problem with ergodic, 
quadratic cost functional is probably the most well 
known ergodic control problem.

● It is a basic problem to solve for stochastic adaptive 
control since the optimal control can be easily 
computed and the existence and invariant measure 
follows directly from the stability of the optimal 
system.



  

●  Problem is solved using only the natural assumptions of 
controllability and observability.

● Weighted least squares scheme is used to obtain the 
convergence of the family of estimates (self convergence).

● Scheme is modified by a random regularization to obtain the 
uniform controllability and observability of the family of 
estimates.

● A diminishing excitation white noise is used to obtain strong 
consistency.

● Excitation is sufficient to include the identification of 
unknown deterministic linear systems.



  

●  The approach eliminates some other assumptions 
that have previously been used that are unnecessary 
for the control problem for a known system and are 
often difficult to verify.

● The approach eliminates the need for random 
switching or resetting which often occurred in 
previous work.



  

Weighted Least Squares Identification

Let (X(t), t ≥ 0) be the process that satisfies the 
stochastic differential equation

or

where

dX t =AX t dtBU t dtDdW t 

dX t =T
t dtDdwt 

T=[A , B ] ,t =[ X t 
U t ]



  

Is an Rp – valued standard Wienar process, and (U(t),   
t ≥ 0) is a control from a family that is specified.

The random variables are defined on a fixed complete 
proabbility space (Ω, F, P) and there is a filtration 
(F

t 
,  t ≥ 0) defined on this space.  It is assumed that 

A, B are unknown.

X 0=X 0 , X t ∈Rn ,U t ∈Rm , W t  , t≥0



  

A family of weighted least squares (WLS) estimates

is given by:

Where Θ(0) is arbitrary, P(0) > 0 is arbitrary and

t  , t≥0

d  t =a t P t t dX T
t −t  t dt

dP t =−a t Pt t T
t P t dt

a t =1 / f t 

t =e∫ t
0
∣ s∣2 ds



  

The ergodic cost functional is used

where (U(t), t ≥ 0) is an admissible control, Q
1
 ≥ 0,    

Q
2
 ≥ 0.

We assume that (A, B) is controllable and that (A, 
Q

1

1/2) is observable.

J U =lim sup
T ∞

∫T
0

[X T
t Q1 X t UT

t Q2 U t ]dt

f ∈F={
f A f : R tRt , f is slowly increasing

∫∞
c

dx
xf x

∞ for some c≥0 }



  

Controllability

Controllability & Observability are highly desirable is 
a system, say one given by:

The above system is controllable when you can steer 
the system from an arbitrary initial point to an 
arbitrary final point.

(A,B) is controllable ↔ rank [B AB ... An-1B] = n

xk1=AxkBuk yk=Hx k



  

Observability

The above system is observable when an arbitrary 
initial point can be determined as a function of the 
observable data points.

(H,A) is observable   ↔

(A,B) is controllable  ↔  (BT, AT) is  observable.

rank [
H
HA
⋮

HAn−1]=n



  

Adaptive Control:  The diminishing excited lagged 
certainty equivalence control is used.

Identification:  To obtain the strong consistency for 
the family of estimates, a diminishing excitation is 
added to the adaptive control.

The complete solution to the adaptive control problem 
with the most natural assumptions.

Solution to the Adaptive Control Problem for 
Stochastic Continuous Time Linear and some Non-
linear Systems has been obtained.



  

Stochastic Control Theory recently focuses on 
Identification and Control of stochastic systems 
with a noise modeled by a Fractional Brownian 
Motion.



  

In the recent paper (T. Duncan, B. Pasik-Duncan), an adaptive 
control problem for a scalar linear stochastic control system 
perturbed by a fractional Brownian motion with the Hurst 

parameter H in (1/2, 1) is solved.  A necessary ingredient of 
a self-optimizing adaptive control is the corresponding 
optimal control for the known system.  It seems that the 

optimal control problem has only been solved for a scalar 
system.  In the solution of the adaptive control problem, a 
strongly consistent family of estimators of the unknown 

parameter are given and a certainty equivalence control is 
shown to be self-optimizing in an L2(P) sense.  It seems that 
this paper is the initial work on the adaptive control of such 

systems.



  

Standard Fractional Brownian Motion

(B(t), t ≥ 0) is a standard fractional Brownian motion 
with H     (0, 1) if it is a Gaussian process with 
continuous sample paths that satisfies

for all s, t  

∈

∈ ℜ.

E [B t ]=0

E [B s Bt ]=
1
2
t 2H

s2H
−∣t−s∣2H





  

Standard Fractional Brownian Motion

Three properties of FBM:

1. Self- similarity
if a > 0, then (B(at), t ≥ 0) and (aHB(t), t ≥ 0) have the 

same probability law,

2.  Long-range dependence for H

3.  pth variation is nonzero and finite only for p = 1/H. 

∈ 1/2, 1

r H n=E [ B 1−B 0Bn1−Bn]

∑
n=1

∞

rH n=∞



  

Since a (standard) fractional Brownian motion B with 
the Hurst parameter H ≠ ½ is not a semimaritngale, 
the stochastic calculus for a Brownian motion, or 
more generally for a continuous square integrable 
martingale, is not applicable.  However, a stochastic 
calculus for a fractional Brownian motion 
particularly for H     (½, 1) has been developed 
which preserves some of the properties for the (Itô) 
stochastic calculus for Brownian motion.

∈



  

The linear-quadratic control problem is reviewed.  Let 
(X(t), t ≥ 0) be the real-valued process that satisfies 
the stochastic differential equation

(1)

where X
0
 is a constant, (B(t), t ≥ 0) is a standard 

fractional Brownian motion with the Hurst 
parameter H       (½, 1), α

0
       [a

1
, a

2
] where a

2
 < 0, 

b            \ {0}.∈

∈ ∈
ℜ

dX t =0 X t dtbU t dtdB t 

X t =X 0



  

For t ≥ 0, let F
t
  be the P-completion of the sub-σ algebra 

σ(B(u), 0 ≤ u ≤ t).  The family of sub-σ algebras (F
t
, t ≥ 0) is 

called the filtration associated with (B(t), t ≥ 0).  Let (U(t), t 
≥ 0) be a process adapted to (F

t
 t ≥ 0).  It is known that he 

filtration generated by (X(t), t ≥ 0) is the same as the 
filtration generated by (B(t), t ≥ 0).  The process U is 
adapted to the filtration (F

t
, t ≥ 0) such that (1) has one and 

only one solution.



  

Consider the optimal control problem where the state X 
satisfies (1) and the ergodic (or average cost per unit time) 
cost function J is

where q > 0 and r > 0 are constants.  The family U  of 
admissible controls is all (F

t
) adapted processes such that (1) 

has one and only one solution.

J U  = lim sup
T∞

∫T
0

qX 2t rU 2t dt



  

To introduce some notation, recall the well-known 
solution with H = ½, that is (B(t), t ≥ 0) is a standard 
Brownian motion.  An optimal control is U* given by

where (X*(t), t ≥ 0) is the solution of (1) with the 
control U*, ρ

0
 is the unique positive solution of the 

scalar algebraic Riccati equation

U *
t =

−b
r
0 X *

t 

b2

r


2
−2a −q=0



  

So

Furthermore, 

0=
r

b2 [00]

0=0
2


b2

r
q

J U *
=0 a.s.



  

The following result is given in Kleptsyna et al. And 
solves the analogous problem for H      (½, 1).

Theorem 1
Let (U*(t), t ≥ 0) be the control given by

∈

U
*
t =

−b
r
0[X

*
t V

*
t ]

V *
 t =∫ t

o
0V *

s ds∫ t
o
[ k t , s−1] dX *

s −0 X*
s −bU *

 sds

V *
 t =∫∞

t
e−0 s−t dB s | t 



  

Where (X*(t), t ≥ 0) is the solution of (1) with the 
admissible control (U*(t), t ≥ 0) and

k t , s=−cH
−1 s1 /2−H d

ds
∫ t

s
 r−s1/2−H

 r , rdr

 t , s =est∫∞
t

e0 KH  , sd 

K H t , s=H 2H−1∫
s

r H−1 /2
 r−sH −3/2 dr



  

Where c
H
 is a constant that only depends on H, u

a
(s) = 

sa for s ≥ 0, IH - ½ is the fractional integral, I½-H is the 
fractional derivative and (W(t), t ≥ 0) is a standard 
Brownian motion (Wiener process) associated with 
(B(t), t ≥ 0).

B s | t =E [B s| F t ]=Bt ∫ t
0

u1 /2−H  I t
1/2−H

I s
H−1/21 t , s dB

B s | t =B t ∫ t
0

u1/2−H  I S
H−1 /2 uH −1 /2 1t , sdW



  

Then the control U* is optimal in U  and the optimal 
cost is

where

J U *
= a.s.

=
q2H1

20
2H [1

00

0−0

sin H ]



  

If α
0
 is unknown, then it is important to find a family of 

strongly consistent estimators of the unknown parameter α
0
 

in (1).  A method is used by Duncan and P.D. That is called 
pseudo-least squares because it uses the least squares 
estimate for α

0
 assuming H = ½, that is, B is a standard 

Brownian motion in (1).  It is shown that the family of 
estimators (   (t), t ≥ 0) is strongly consistent for H            
(½, 1) where

 ∈

t =0

∫ t
0

X 0
s dB s 

∫ t
0
 X 0

 s2 ds

dX 0
t =0 X 0

 t dtdBt 

X 0
0=X 0





  

This family of estimators can be obtained from (1) by 
removing the control term.  The family of estimators 
   is modified here using the fact that  α

0
        [a

1
, a

2
] 

as

for t ≥ 0.      (0) is chosen arbitrarily in [a
1
, a

2
].  

∈



t = t 1[a 1,a 2]
 t a1 1−∞ ,a1 

 t a2 1a 2,∞
 t 





  

For the optimal control (U*(t), t ≥ 0), the 
corresponding solution (X*(t), t ≥ 0) can be 
expressed as

where

X*
t =e−0 t X0∫ t

0
e−0 t−s 

[−00V
*
 sdsdB  s]

dX *
t =0 X *

t dt−
b2

r
0[ X *

 t V *
 t ]dtdBt 

.=−0 X *
t dt−00V

*
t dtdB t 



  

An adaptive control (U^(t), t ≥ 0), is obtained from 
the certainty equivalence principle, that is, at time t, 
the estimate α(t) is assumed to be the correct value 
of the parameter.  Thus the stochastic equation for 
the system (1) with the control U^ is

 

dX ^ t =0−t −t  X ^ t dt−
bt 

r
V ^ t dtdB t 

dX ^ t =−0−t −t  X ^ dt−t t V ^ t dtdB t 

X ^ 0=X 0



  

Where t = 2
t 

b2

r
q

U ^ t =
−bt 

r
[X ^ t V ^ t ]

t =
r

b2 [ t t ]



  

And

and     denotes the use of     instead of δ
0
 in    .  Note 

that δ(t) ≥ -α(t) + c for some c > 0 and all t ≥ 0 so 
that

V ^ t =∫ t
0

 s V ^  sds

∫ t
0

[ k  t , s−1] [dX ^  s− s X ^  sds−bU ^  sds]

:=∫ t
0
 s V ^  sds∫ t

0
[ k t , s−1][dB s 0−t  X ^ s ds ]

t =t  t −0

k  k

0−t −t −c



  

The solution of the stochastic equation is

The following result states that the adaptive control 
(U^(t), t ≥ 0) is self-optimizing in L2(P), that is, the 
family of average costs converge in L2(P) to the 
optimal average cost.

X ^ t =e
−∫ t

0


X0∫ t
0

e
−∫ t

0


[− s  sV ^  sdsdBs ]



  

Theorem 2

Let (α(t), t ≥ 0) be the family of estimators of α
0
, let 

(U^(t), t ≥ 0) be the associated adaptive control, and let 
(X^(t), t ≥ 0) be the solution with the control U^.  Then

where λ is given above.

lim
t∞

1
t

E∫ t
0

∣U * s−U ^  s∣
2
ds=0

lim
t∞

1
t

E∫ t
0

∣X *  s−X ^  s∣
2
ds=0

lim
t∞

1
t

E∫ t
0
q X ^ s 2r U * s 2ds=


