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Programme

1. Optimal asset allocation - an overview.
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Optimal Asset Allocation

An Overview
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Outline

1. Dynamic portfolio theory.

2. Markowitz model.

3. Model errors.

4. Estimation errors.

5. Pitfalls of the Markowitz model.
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Dynamic portfolio optimization

The market:

One ”risk-free” asset with a constant rate of return r.

n risky assets with the return vector R.

Returns of risky assets follow a multivariate normal
distribution with expected returns E[R] and covariance
matrix Σ.
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Dynamic portfolio optimization - cont.
The problem:
Given initial wealth at time t, Wt, find the investment strategy
which secures optimal consumption in subsequent time
moments Ct, Ct+1, . . . , CT .

The investment strategy is characterized by the vector of
portfolio weights, w, with n elements as the weights of n risky
assets. Then (1 − w11) denotes the weight of the risk-free
asset (11 is a vector of ones).
The consumption optimality is characterized by an investor’s
utility function U – the objective of the investor is to maximize
the expected utility of consumption up to time T

max
C,w

E[U(Ct, Ct+1, . . . , CT )]
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Dynamic portfolio optimization - cont.

Under self-financing assumption and for a large class of utility
functions the solution is:

w
∗ = AM + BH

where
AM is the myopic component and is the demand of the risky
asset due to its risk premium,
BH is the intertemporal hedging component and represents
the hedge against future changes in the investment due to the
stochastic character of the market.
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Dynamic optimization - conclusions

Dynamic optimization is the superior asset allocation
technique.

But dynamic optimization . . . is too complex.

No known large commercial applications.
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Dynamic optimization - conclusions

Simple example – stock-bond-cash mix in G7 countries, state
variables affect only expected returns.

Stock returns in each country depend on 3 state
variables.

Bond returns in each country depends on 3 state
variables.

In addition, international equity market can be described
by 5 state variables and the same is true about
international bond market.

Conclusion: we have 15 risky assets and approx. 50 state
variables !

Andrzej Palczewski, Optimal Asset Allocation – p. 9



Assets allocation in practice

In the investment industry asset allocation is essentially
a single-period strategy.

One-period strategy corresponds to the myopic part AM of the
dynamic strategy.

The result:

In practice, we operate with suboptimal portfolios (the
intertemporal hedging component is neglected).
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Assets allocation in practice, cont.

What is one-period optimization ?

This is the Markowitz return/risk (mean/variance) optimization

max
wi





∑

i

wiµi −
γ

2

∑

i,j

wiΣijwj





subject to
∑

i wi = 1,
where
wi are asset weights in portfolio,
γ is the investor’s risk aversion.
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Markowitz model – the solution

Efficient frontier
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Markowitz model in use

To get ”correct” optimal portfolios from the Markowitz model
we have to feed the model with good data:

Expected (future) mean returns.

Covariance of expected (future) returns.

In practice, we estimate future returns from historical (past)
data !

Andrzej Palczewski, Optimal Asset Allocation – p. 13



Markowitz model in use – cont.

Where come the errors from ?

Past returns are not good predictions of future returns.

We estimate the mean and the covariance matrix from
past data under the assumption that the distribution of
returns is normal and constant in time (model error).

We estimate the moments of the return distribution from a
finite sample (estimation error).
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Markowitz model in use – cont.

In finance, the past is not a good forecast of the (near) future.

Historic mean returns do not forecast future mean
returns.

Historic covariance matrix predicts quite well future
covariance matrix.

Explanation: like in the Black-Scholes model.
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Conclusions:

We have to find the way to forecast future mean returns
(more in subsequent lectures).

We can retain historic covariance matrix as good data for
optimization.
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Model errors

Stylized facts:

1. Multivariate return series show little auto-correlation and
cross-correlation, but are not i.i.d. variables.

2. Series of squares of returns show profound evidence of
cross-correlation and auto-correlation.

3. Conditional mean returns are close to zero.

4. Volatility and correlation between series vary over time.

5. Return distributions show high kurtosis and ”heavy tails”.
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Model errors – cont.

How to minimize model errors ?

Enlarge the class of admissible distributions (elliptic
distributions).

Use technique of nonlinear analysis of time series
(GARCH).

Use adequate estimators and long time series.

Drawback: to predict correctly mean return, you need 50 years
of monthly data (Merton) !
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Estimation errors

Jobson and Korkie experiment:

20 assets with multivariate normal distribution with mean
and covariance derived from the real data of New York
Stock Exchange during the period December 1949 to
December 1975.

These mean and covariance are taken to be the true
moments of the distribution.

From this distribution independent sets of hypothetical
returns are simulated.

From every set of simulated returns one computes
estimates of the mean-variance efficient frontier.

Obtained frontiers are compared to the true frontier.
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Estimation errors – cont.

Brandt(2005)

Efficient frontiers for 250 independent estimates – T is the
number of monthly simulated returns. Solid line is the true
frontier.

Andrzej Palczewski, Optimal Asset Allocation – p. 20



Estimation errors – cont.

DeMiguel and Nogales experiment:

4 assets with independent normal returns with mean
return 12% and standard deviation 16%.

From this distribution 140 hypothetical monthly returns
are simulated.

First 120 returns (i.e. returns with number 1,2,. . . , 120)
are used to estimate the mean-variance optimal portfolio.

Then the sample window is shifted by 1 (i.e. returns with
number 2,3,. . . , 121 are used) and the optimal portfolio
calculated.

Repeating this procedure we obtain 20 different portfolios.
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Estimation errors – cont.

DeMiguel&Nogales(2007)

Portfolio weights for minimal variance portfolio.
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Estimation errors – cont.

DeMiguel&Nogales(2007)

Portfolio weights for investor’s risk aversion γ = 1.
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Estimation errors – cont.

DeMiguel&Nogales(2007)

Portfolio weights for minimal variance portfolio (different
scaling).
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Pitfalls of the Markowitz model

Portfolios are not well diversified.

When investors impose no constraints, asset weights in
the optimized portfolios almost always ordain large short
positions in many assets.

When constraints rule out short positions, the models
often prescribe ”corner” solutions with zero weights in
many assets, as well as unreasonably large weights in
the assets of small capitalization.
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Conclusion

Mean-variance optimizers are,
in a fundamental sense,

”estimation-error maximizers”.
(Michaud)
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Improving

Markowitz Optimization
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Outline

1. Resampling.

2. Robust estimators.

3. Robust optimization.
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Introduction

The Markowitz mean-variance optimization is by far the most
common formulation of the portfolio choice problem, despite
all inconveniences mentioned earlier.

The Markowitz model yields two important economic insights:

the effect of diversification,

the fact that higher returns can only be achieved by taking
on more risk.

These are the reasons why investors keep with the model
trying to diminish its drawbacks.
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Resampling

Resampling has been introduced by Michaud (1998) and is
the subject of U.S. Patent.

The goal of resampling is the reduction of efficient portfolios
sensitivity to data.
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Resampling – practical receipt

1. Take a sample P0 of historic returns. Estimate from this
sample mean returns µ0 and covariance matrix Σ0.

2. Assume that the sample P0 is the realization of a set of
i.i.d. random variables. Make the assumption on the
distribution of these variables, for instance assuming
normality, and set the estimated parameters as the true
parameters that determine the distribution of the returns

N(µ0,Σ0).

3. From the above distribution generate a new sample P1 (of
same length as P0), estimate its mean returns µ1 and
covariance matrix Σ1 and solve the optimization problem
to obtain efficient frontier.
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Resampling – practical receipt

4. On the given efficient frontier choose m efficient portfolios
of equally spaced target expected returns starting from
minimal variance portfolio to portfolio with maximal return.

5. For every of m portfolios find asset’s weights w1i,
i = 1, . . . ,m, where index 1 indicates that w1i are weights
for sample P1.

6. Generate a new sample and repeat steps 3 to 5 for a
large number Q of Monte Carlo simulations (Q should be
of order 1000–10000).
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Resampling – practical receipt

7. Use wqi to calculate resampled weights

wi =
1

Q

Q
∑

q=1

wqi, i = 1, . . . ,m.

8. Recover the resampled efficient frontier from weights wi.

9. Choose the efficient allocation on the resampled efficient
frontier.
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Robust estimators
Robust estimators, known for about 40 years, are estimators
which eliminate outliers and estimate correct values for
location and dispersion of true data.
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Robust estimators

Popular robust estimators:

M-estimators (Huber, Maronna).

Stahel-Donoho estimators (Donoho, Stahel).

MVE and MCD estimators (Rousseeuw).

Main drawback
Huge numerical complexity, particularly acute for financial
data (long time series of multidimensional data).

Breakthrough
FastMCD algorithm of Rousseeuw and Van Driessen (1999).
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Robust estimators

State of the art:

Robust estimators are successfully applied in finance.

Robust estimators improve stability of optimal portfolios.

For simulated data estimated parameters are not very
close to true values.

See for instance the mentioned paper of DeMiguel and
Nogales.
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Robust optimization

Robust optimization aims at determining a portfolio allocation
w such that the opportunity cost is minimal for all values of
parameters (mean and covariance for the Markowitz model) in
a given uncertainty range.

For the standard Markowitz problem

w = argmax
w

{

w
T µ | w

T Σw ≤ v
}

,

the robust optimization counterpart reads

w = argmax
w

{

min
µ∈Θµ

w
T µ | max

Σ∈ΘΣ

w
T Σw ≤ v,

}

where Θµ and ΘΣ are uncertainty sets for µ and Σ.
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Robust optimization

Possible specifications for the uncertainty sets:

Elliptical set for expected values, known covariance
(Ceria&Stubbs).

Box set for expected values, elliptical set for covariance
(Goldfarb&Iyengar).

Box set for expected values, box set for covariance
(Tütüncü&Koenig).
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Instead of summary

DeMiguel, Garlappi and Uppal ”How inefficient is the 1/N
portfolio strategy ?” (2007):

We have compared the performance of fourteen models of
optimal asset allocation relative to that of the benchmark 1/N
policy . . . we find that of the various optimizing models in the
literature there is no single model that consistently delivers a
Sharpe ratio or a certainty-equivalent return that is higher than
that of the 1/N portfolio, . . .

):
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The Black-Litterman Model
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Outline

1. Shrinkage estimators.

2. Black-Litterman assumptions and data.

3. CAPM (equilibrium returns).

4. Black-Litterman formula and its derivation.

5. Understanding the Black-Litterman formula.

6. Black-Litterman model in practice.
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Shrinkage

Shrinkage estimators, called also Bayes-Stein estimators, are
derived within Bayesian statistics. They are constructed as a
convex combination of sample estimator X̄ and a given
reference point X0

X̂ = δX0 + (1 − δ)X̄.

Here X0 can be thought as a Bayesian prior and X̄ plays the
role of an observation.

Shrinkage estimators are known in portfolio analysis quite a
long time (Jobson&Korkie, Frost&Savarino, Jorion).
As has been shown by Jorion using shrinkage estimators can
improve optimization procedure. But the result depends very
much on the choice of X0.
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Black-Litterman assumptions

Use the Markowitz mean-variance optimization.

Feed the model with ”good data”.

Historic covariances are appropriate for estimating
portfolio risk.

Historic means are ”bad data”.
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BL assumptions – cont.

To get correct ”expected mean returns” use
market equilibrium returns,

investor’s views on future market behavior,

The core of the BL model is the method of joining the
above data to obtain ”good” expected returns – modified
expected returns.

This is achieved by the BL formula.

Andrzej Palczewski, Black-Litterman Model – p. 47



BL assumptions – cont.

To obtain modified expected returns Black and Litterman have
made the following assumptions:

There exists ”market equilibrium”. In equilibrium all
rational investors chose the same portfolio (market
portfolio).

Applying CAPM to the market portfolio we can calculate
”equilibrium returns”.

Equilibrium returns are the first order approximations to
true expected returns.

Equilibrium returns are modified by investor’s views to get
modified expected returns.
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Black-Litterman data

To use the BL model we need the following data:

market portfolio, weights wi of assets in the portfolio,

covariance matrix Σ of historic returns,

vector of investor’s views q,

array P of views allocation (details will be given),

matrix Ω of views covariances.
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CAPM

CAPM is used to obtain equilibrium returns for assets in
market portfolio.

In principle we can think of every asset as being in the
market portfolio (eventually with zero weight).
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CAPM – assumptions

1. Investors are risk averse with same risk aversion.

2. Investors optimize their portfolios using MV optimization
(Markowitz).

3. Investors have same investment horizon.

4. The market is ideal: no constrains on borrowing and
lending, no taxes, no transaction costs.

5. Risk-free rate is well defined.
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Capital Asset Pricing Model

Let R̂ be a random variable describing returns of a certain
optimal portfolio.

(CAPM ) Let random variable ζi describe the returns of asset i,
then

E(ζi) − r = βi(E(R̂) − r),

where

βi =
Cov(ζi, R̂)

V ar(R̂)

and r is risk-free rate.
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CAPM – conclusions

Excess return asset i = βi ∗ excess return portfolio R̂

To obtain asset’s excess return(µi) we have to find portfolio R̂,
such that:

we can estimate coefficient βi, i.e. covariance of portfolio
R̂ with asset i,

we can estimate excess return of portfolio R̂,

portfolio R̂ is from the efficient frontier, i.e. is optimal for
certain risk aversion coefficient.
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Market portfolio
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Market portfolio – cont.
When we know the picture from the previous slide all is done.
But we don’t.
What we know:

risk-free rate r,

market portfolio RM ,

we know how to calculate βi

βi =
Cov(ζi, RM )

V ar(RM )

From the CAPM formula we can obtain excess return µi for
asset i

µi − r ≡ E(ζi) − r = βi(E(RM ) − r)

But we don’t know E(RM )!
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Calculating market return E(RM)

Market portfolio wM is the solution of the optimization problem

w
T µ −

γ

2
w

T Σw −→ max .

We know wM and Σ but we don’t know µ and γ.

When we know one of these values we can calculate the other
one by reverse optimization.

γ is the market risk aversion which can be estimated from the
Sharpe ratio.
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Sharpe ratio

Portfolio mean return: µp

Portfolio variance: σ2
p

Sharpe ratio:

SR =
mean return

standard deviation
=

µp

σp

When the portfolio is the solution to the optimization problem
with risk aversion γ then

γ =
SR

σp
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Calculating E(RM) – cont.

We find γ by knowledgable guess:

Market risk aversion can be obtain from the Sharpe ratio:

γ =
SR

market portfolio std dev.

to estimate Sharpe ratio we can use the rule of
thumb: for stock SR = 0.5, for bond SR = 1,
this rule requires an empirical correction (experience).

Market risk aversion can be estimated comparing implied
asset returns with historical returns and investor’s views.
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Equilibrium returns

choose assets and the market portfolio of these assets
wM ,

calculate covariance matrix Σ and variance of the market
portfolio,

select the value of market risk aversion γ,

find the market portfolio mean return µM ,

calculate coefficients βi,

using CAPM calculate equilibrium asset returns

µi − r = βi(µM − r)

In the vector form

µ = γΣwM
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International market

Calculating equilibrium returns for investments on
international market is much more involved:

we have to take into account currency hedging,

covariance matrix Σ is calculated for hedged excess
returns,

to calculate equilibrium returns we have to use
International Capital Asset Pricing Model ICAPM (Black,
Solnik).
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Investor’s views

Investor expresses views on assets mean returns.

Investor’s views are of two types:
absolute view,

relative view.

Absolute views specify the assets expected returns.

Relative views specify the differences between expected
returns of two or more assets.

Andrzej Palczewski, Black-Litterman Model – p. 61



Investor’s views cont.

From investor’s views we construct 3 objects:

vector of investor’s views q – each entry is the expected
excess return of an asset or the difference of expected
excess returns of two or more assets,

”pick” matrix P of investor’s views – each row
corresponds to one view, each column to one asset,

covariance matrix of views Ω.
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Matrix P

Matrix P is build according to the following rules:

number of rows is equal to the number of views,

number of columns is equal to the number of assets,

when the view is an absolute view on asset X, then in its
row in column corresponding to asset X we put 1, all
other columns contain 0,

when the view is a relative view on instruments X and Y ,
then in its row in columns corresponding to assets X and
Y we put numbers between −1 and 1 which sum is equal
zero.
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Matrix P cont.

Which numbers should appear in a row corresponding to a
relative view:

Black and Litterman suggests
1 and −1 (1 for asset with higher return and −1 for
asset with lower return),
for 2 pairs of instruments suggested weights are
(0.5, 0.5,−0.5,−0.5). This means that we put equal
weights for all instruments.

Drobetz proposes for group of instruments weights which
are proportional to instrument’s capitalization (still
keeping sum equal to zero)
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Matrix P example

We have 3 assets A, B, C. Investor’s views:

1. Asset A will have an absolute excess return of 3.5%.

2. Asset B will outperform asset C by 1.5%.

For these views we construct ”pick” matrix P

P =

[

1 0 0

0 1 −1

]

,

and vector q

q =

[

3.5

1.5

]

.
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Matrix Ω
Matrix Ω expresses the investor confidence in views.
Black and Litterman suggests diagonal matrix which for n
views has the form

Ω =







σ2
1 0 · · · 0
... . . . ...
0 · · · 0 σ2

n






.

The diagonal elements are calculated from the formula

σ2
i = piΣpT

i ,

where

pi – a row of matrix P for i-th view,

Σ – asset’s covariance matrix.
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Matrix Ω cont.

View’s confidence is proportional to the variance of asset
to which the view corresponds.

A diagonal Ω corresponds to the assumption that the
deviations of expected returns from the means
representing each view are independent.

We can additionally quantify views confidence level by
specifying parameter τ which measures views strength.
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Parameter τ

τ measures overall confidence level of views. Its value is a
subject of constant discussion among experts

For Black and Litterman τ should be close to zero (they
used τ = 0.025).

Bevan and Winkelmann suggest to choose τ such that
the information ratio will be smaller than 2.

Satchell and Scowcroft claim that τ should be close to 1.
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Matrix Ω cont.

Another suggested choice of Ω (Meucci)

Ω = PΣPT .
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Black-Litterman formula

µ =
(

(τΣ)−1 + PT Ω−1P
)−1 (

(τΣ)−1µeq + PT Ω−1q
)

,

where

µ – vector of modified expected returns,

µeq – vector of equilibrium returns,

Σ – covariance matrix of equilibrium returns,

P , Ω and τ – defined as before.
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Black-Litterman formula cont.

Alternative expression

µ = µeq + ΣPT (Ω/τ + PΣPT )−1(q − Pµeq).

The Black-Litterman formula for Ω = PΣPT and matrix P of full
range

µ = (1 + τ)−1
(

µeq + τ(PTP )−1PT q
)

,

This is the shrinkage operator for mean.
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BL formula derivation

Let

fµ – probability distribution a priori of expected returns,

fq|µ – conditional probability distribution of investor’s
views given expected returns,

fµ|q – probability distribution a posteriori of expected
returns given investor’s views.

Then the Black-Litterman formula is derived from the Bayes
formula

fµ|q(µ) =
fq|µ(q)fµ(µ)

∫

fq|µ(q)fµ(µ)dµ
.
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BL formula derivation cont.

What we know

fµ(µ) = N(µeq, τΣ),

fq|µ ∼ N(Pµ,Ω).

From the Bayes formula we obtain

fµ|q ∼ N(µ̂,Ψ),

where µ̂ is given by the Black-Litterman formula (we can also
derive the formula for covariance matrix Ψ).
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BL in use

select the market (assets, time series of assets returns),

choose the market portfolio (strategic benchmark),

estimate covariance matrix,

calculate equilibrium returns (choose market price of risk
γ),

collect views

calculate modified returns from BL formula (choose
confidence level for views τ ),

solve the optimization problem and find the investment
portfolio.
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Choosing marketγ

Equilibrium risk premium for different γ

Sector Weights γ = 1 γ = 2.5 γ = 5 γ = 7.5 Hist.

SL 2.89% 3.07% 7.69% 15.37% 23.06% 5.61%

SM 3.89% 2.21% 5.52% 11.03% 16.55% 12.75%

SH 2.21% 2.04% 5.11% 10.22% 15.33% 14.36%

BL 59.07% 2.62% 6.55% 13.10% 19.64% 9.72%

BM 23.26% 2.18% 5.44% 10.88% 16.32% 10.59%

BH 8.60% 1.97% 4.91% 9.83% 14.74% 10.44%

Brandt(2005)

”S” and ”B” refer to stock capitalization: small and big.
”L”, ”M” and ”H” refer to book-to-market ratio: low, medium and
high.
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Choosing marketγ

Risk premia for different Sharpe ratio.

Assets(bond) Views γ = 20 γ = 30 γ = 35 γ = 40 γ = 50

USD 1.89 1.14 1.71 1.99 2.28 2.85

GBP 3.06 0.84 1.26 1.47 1.69 2.11

CHF 2.89 0.62 0.93 1.08 1.24 1.55

AUD -1.47 0.33 0.5 0.58 0.66 0.83

NOK -2.08 0.64 0.96 1.12 1.28 1.59

JPY -0.46 0.23 0.35 0.41 0.47 0.59

EUR 1.39 0.9 1.36 1.58 1.81 2.26

SR 0.43 0.65 0.76 0.87 1.08
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Choosingτ

Portfolio weights as the function of τ

assets portfolio weights

(bond) τ = 0 τ = 0.05 τ = 0.1 τ = 0.15 τ = 0.2 τ = 0.3

USD 45.74 46.25 46.7 47.06 47.36 47.78

GBP 5.52 8.49 10.98 13.37 15.68 20.06

CHF 4.1 7.91 10.74 13.45 16.05 20.96

AUD 1.28 0 0 0 0 0

NOK 2.13 0 0 0 0 0

JPY 16.34 14.29 11.62 9.18 6.92 2.88

EUR 24.89 23.07 19.97 16.94 14 8.32
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Black-Litterman model – the solution
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Markowitz model – the solution
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Improved Estimation

of the Covariance Matrix
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Outline

1. Covariance matrix estimation errors.

2. Understanding covariance matrix.

3. Improving covariance estimates:

(a) Factor models;
(b) PCA analysis.

4. Shrinkage estimators.

5. GARCH.
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Estimating covariance

We have claimed in the previous lecture that covariance
estimators produce correct data and the main problem is with
risk premia.

This is true only to a certain extend.

To obtain good estimates of covariance we need

clean data (no outliers),

long time series,

data from stationary distribution (normal at best).

None of these conditions is fulfilled for financial data !
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Estimating covariance cont.

DeMiguel and Nogales experiment again:

4 assets with independent normal returns with mean
return 12% and standard deviation 16%.

From this distribution 140 hypothetical monthly returns
are simulated, 2 outliers have been artificially inserted.

First 120 returns (i.e. returns with number 1,2,. . . , 120)
are used to estimate the mean-variance optimal portfolio.

Then the sample window is shifted by 1 (i.e. returns with
number 2,3,. . . , 121 are used) and the optimal portfolio
calculated.

Repeating this procedure we obtain 20 different portfolios.
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Estimating covariance cont.
The effect of outliers

DeMiguel&Nogales(2007)

Portfolio weights for minimal variance portfolio (only
covariance matrix influence the result).
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Estimating covariance cont.
Why small errors in covariance estimates produce big
changes in portfolio composition?

Simplest MV optimization

max
w

{

w
T µ −

γ

2
w

T Σw | w
T 11 = 1

}

,

gives the solution

w
∗ =

1

c
Σ−111 +

1

γ
Σ−1

(

µ −
a

c
11
)

,

where
a = 11T Σ−1µ, c = 11T Σ−111.

w
∗ depends on Σ−1 !
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Understanding covariance matrix
Spectral decomposition of Σ:

Λ – diagonal matrix of eigenvalues λ1, λ2, . . . , λn of Σ.

Q – orthogonal matrix with columns being eigenvectors
e1, e2, . . . , en of Σ.

Σ = QΛQT

Small eigenvalues of Σ create troubles.

Even small errors can give large changes in small
eigenvalues.

Small eigenvalues of Σ correspond to large eigenvalues
of Σ−1.

For financial data eigenvalues of covariance matrix can
differ by several orders of magnitude.
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Covariance matrix – geometric picture

Optimization utility function

f(w) = w
T µ −

γ

2
w

tΣw.

Geometric picture for 2 assets.
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Utility surface

Utility surface (green) is an elliptic paraboloid.
Red is the plane w1 + w2 = 1.
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Optimal solution

X

X is the optimal solution.
It is obtained by the intersection of the utility surface with the

plane w1 + w2 = 1.
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Contours (levels) of utility function
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Levels are ellipses.
The point of tangency between an ellipse and the line

w1 + w2 = 1 is the optimal solution.

Andrzej Palczewski, Covariance Matrix Estimation – p. 92



Levels of utility function

An ellipse is described by the length and direction of semiaxis.

Relation between covariance matrix Σ and the levels (ellipses)
of the utility function:

Eigenvectors are directions of semiaxis.

Eigenvalues are inverse-proportional to the length of
semiaxis.
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Levels of utility function
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Small change in eigenvectors gives small change in portfolio.
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Levels of utility function
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Very small eigenvalue gives a long cigar.
In this case portfolio is very sensitive to small changes in

eigenvectors.
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Covariance matrix estimates – conclusions
When covariance matrix eigenvalues are of similar
magnitude small estimation errors don’t produce
substantial changes in the optimal portfolio composition.

When covariance matrix eigenvalues differ substantially
even small errors in estimation can change optimal
portfolios completely.

A small eigenvalue means the small variance of the
corresponding asset (assets mix). Adding or subtracting
even large amount of this asset doesn’t change the value
of the utility function. This explains one of the sources of
portfolio instability.

Putting ”no short sale” constrain improves stability.

When the vortex of the utility surface is far away from the
origin this also improves stability (this is in particular the
case of the Black-Litterman model).
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Factor models
Factor models assume that the returns are generated by
specific factors.
The most important single factor is the market. The single
factor model is then CAPM:

E(R) = α + βRM + ǫ.

The covariance matrix for this model is given by the
expression

ΣR = σ2
MββT + Σǫ

where σ2
M is the market variance and Σǫ is the diagonal

covariance matrix of uncorrelated residuals.
For the market of N assets we have to estimate 2N + 1
parameters, which is much less than for the sample
covariance matrix (N(N + 1)/2 parameters).
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Principal Component Analysis (PCA)

Make the spectral decomposition of the covariance matrix

Σ = λ1e1eT
1 + · · · + λneneT

n .

Neglect small eigenvalues in the decomposition

Σ ≈ S = λ1e1eT
1 + · · · + λkekeT

k , k < n.

Perform optimization with covariance matrix Σ replaced
by S (beware, S is singular).

Choice of k based on stochastic matrix theory
(Bengsson&Holst).
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Shrinkage

Shrinkage estimators are constructed as a convex
combination of sample covariance matrix Σ and a given matrix
F

δF + (1 − δ)Σ.

Here F can be thought as a Bayesian prior and Σ plays the
role of an observation.

The choice of F is the fundamental difficulty of this approach.
The following possibilities are popular:

1. Identity matrix.

2. Principal Component Model.

3. Main diagonal of the sample covariance matrix.

4. Factor models (in particular one-factor CAPM).
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Shrinkage cont.

Shrinkage intensity δ (results of Ledoit&Wolf):

Shrinkage intensity tends to zero as sample size T goes
to infinity.

Asymptotically optimal choice is given by δ ≈ κ/T with
constant κ.

The paper of Ledoit&Wolf provides a consistent estimator
for κ.
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Which prior ?

All earlier mentioned possibilities has been used. Also
combinations of some or all of them.

Known empirical tests:

Shrinkage to identity (Ledoit&Wolf).

Shrinkage to market (Ledoit&Wolf, Bengsson&Holst).

Shrinkage to single factor PC (Bengsson&Holst).

Shrinkage to diagonal (AP).

Mix of sample, diagonal and market (Bengsson&Holst).

Mix of sample, diagonal and PC (Bengsson&Holst, AP).
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Estimation of covariance – conclusions

There is no single estimator eliminating all sources of errors.

Use several estimators which you trust and understand.

The portfolio selection process should take into account the
optimization results for different estimators.
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GARCH

GARCH is the must.

When you have to eliminate volatility clustering you have to
use GARCH in some form.
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GARCH

GARCH is the must.

When you have to eliminate volatility clustering you have to
use GARCH in some form.

To learn ”how to do” we need another series of lectures.
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GARCH

GARCH is the must.

When you have to eliminate volatility clustering you have to
use GARCH in some form.

To learn ”how to do” we need another series of lectures.

Sorry
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Performance Analysis
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Outline

1. Tactical asset allocation.

2. Performance evaluation.

3. Performance measures.

4. Performance attribution.

5. Performance appraisal.
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Tactical asset allocation

Tactical asset allocation refers to active strategies which seek
to enhance performance by shifting the asset mix in response
to the changing patterns reward in the capital markets.

We speak about tactical allocation, when we have already
decided about strategic asset allocation for a long period of
time (benchmark or benchmarks) and are now looking for
short-time opportunities to add value.
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Tactical asset allocation, cont.

Tactical asset allocation is a three-step process:

forecasting assets expected returns (making bets),

building optimal portfolios,

testing their performance.

Performance of TAA means always comparison of the tactical
(short-living) portfolio with the benchmark.
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Efficient market hypothesis

Strong hypothesis states that all currently known
information is already reflected in security prices.

There is no additional information available to active
managers to use in generating exceptional returns.
Active returns are completely random.

Semistrong hypothesis states that all publicly known
information is already reflected in security prices.

Active management skill is insider trading.

Weak hypothesis states that only previous price-based
information is reflected in security prices.

This rules out technical analysis but would allow for skillful
active management based on fundamental and economic
analysis.
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Performance goals

The goal of performance analysis is to distinguish skilled
from unskilled investment management (separate skill
from luck).

Return-based performance analysis is the simplest
method for analyzing return and risk.

Portfolio-based performance analysis is a more
sophisticated way to distinguish skill and luck.

Performance analysis is most valuable to the client when
there is an ex ante agreement on the manager’s goals.

Performance analysis is valuable to the manager in that it
lets the manager see which management decisions are
compensated and which are not.
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Performance evaluation
Performance evaluation can be separated into three
components:

Performance measurement.

The core of performance evaluation is the measurement of
portfolio performance in comparison to the benchmark.
Various measures of performance have been introduced and
used. They focus on measuring portfolio return and risk
and/or the trade-off between these two characteristics.

Performance attribution.

Managers and clients need to understand how the total
performance was reached. Performance attribution attributes
major investment decision taken by the manager to the
portfolio performance. To quantify performance attribution,
detailed calculations need to be performed.
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Performance evaluation, cont.

Performance appraisal.

Clients wish to know if their managers possess true
management skills. Performance appraisal formulates some
judgment on the investment manager’s skills. It requires to
look at performance over longer horizons, taking into account
the risk borne.
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Performance evaluation, cont.

The performance appraisal should answer the following
questions:

Has the manager provided a good risk-adjusted
performance over a long-run horizon?

How does the manager compare with a peer group
(universe of managers)?

Is the performance due to luck, higher risk taken, or true
investment skills?

Is there evidence of unusual expertise and added value in
a particular market?
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Skill and luck

The fundamental goal of performance analysis is to separate
skill from luck.

skill
lu

ck

blessedinsufferable

doomed forlorn
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Methods of performance analysis
Return-based analysis.

Return-based analysis is a top-down approach to attribute
returns to components. This analysis is performed ex post
based on realized returns of the portfolio and benchmark. The
approach is based on CAPM and statistical analysis of the
manager’s added value.

Portfolio-based analysis.

Portfolio-based performance analysis is a bottom-up
approach, attributing returns to many components based on
the ex ante portfolio holdings and giving managers credit for
returns along these components. This allows the analysis not
only of whether the manager has added value, but also of
whether she has added value along dimensions agreed upon
ex ante. In addition, portfolio-based analysis gives tools for
analyzing ex ante separate bets.
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Performance measures

Many performance measures are developed from the CAPM
relation

µ̂i = βiE(R̂M ),

where

µ̂i is the excess return of asset i,

E(R̂M ) is the excess return of market portfolio
(benchmark).
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Return

Return is the simplest and most obvious performance
measure.

Return means always excess return

excess return = return − risk-free rate

Return can be calculated using different formulas:
arithmetic average, geometric average, average log
return etc.

As a performance measure we can take:
total return of the portfolio,
active return: return of the portfolio over return of the
benchmark.
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Sharpe ratio

Let B be the benchmark portfolio and µ̂B,t its excess return at
period t.
Let TAA be a tactical portfolio with excess return µ̂TAA,t.

SR = Sharpe Ratio = µ̂T AA,t

σ̂T AA,t

where
σ̂TAA,t is the standard deviation of excess returns of portfolio
TAA.
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Alpha (Jensen’s alpha)

Regression of µ̂TAA,t against µ̂B,t gives

µ̂TAA,t = αt + βtµ̂B,t + ǫt.

The intercept in this relation which is the excess return due to
active decisions is known as alpha.

This alpha is called the realized or historical alpha and is used
to evaluate menager’s skills.
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Alpha, cont.

For short time series of alphas a good approximation is

αt = µ̂TAA,t − µ̂B,t.

This alpha can be used also in ex ante estimates.

Alpha calculated for a single period is to volatile for revealing
the skill of the manager.

We have to smooth alpha by averaging over several periods
and annualize it.
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Tracking error

Tracking error is the standard deviation of portfolio excess
returns over benchmark excess returns

TEt =

√

√

√

√

1

N − 1

N
∑

t=1

(

(µ̂TAA,t − µ̂B,t) −
1

N

N
∑

t=1

(µ̂TAA,t − µ̂B,t)

)2

.

The above definition of tracking error can be applied for
manager’s skills evaluation.
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Tracking error, cont.

In ex ante evaluation tracking error is replaced by active risk .

Let wB,t be asset’s weights in the benchmark portfolio B and
wTAA,t asset’s weights in tactical portfolio TAA.

Let Σ be the covariance matrix of assets in both portfolios.
Then the active risk (tracking error) is defined as follows

TEt = (wTAA,t − wB,t)
T Σ(wTAA,t − wB,t).
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Information ratio

IR = Information Ratio = alpha
tracking error

IRY = Annualized IR = annualized alpha
annualized tracking error

Alpha and tracking error depend on the aggressiveness of the
manager.

Information ratio is more or less aggressiveness independent.
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Hit ratio

Hit ratio is a parameter which can be evaluated only ex post
after collecting the long time series of manager’s results.

HR = Hit Ratio = number of periods the manager adds value
number of all periods

In this measure the degree of success is ignored and only the
frequency of success is measured.
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Hit ratio, cont.

60% is already a very good result for the hit ratio.
On the other hand only 100% hit ratio can guarantee that the
manager adds value.

If alpha is normally distributed with the mean being the
arithmetic average alpha and standard deviation being the
tracking error then

HR = 1 − Φ(−IR),

where Φ(x) is a cumulative distribution function of standard
normal distribution N(0, 1).
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Performance measures – summary

Return measures:
Return.
Jensen’s alpha.

Risk measures:
Tracking error.
Active risk.

Risk adjusted measures:
Sharpe ratio.
Information ratio.
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Performance attribution

Performance attribution looks at the portfolio return over a
single period and attributes it to factors.

We are not limited in choosing factors. They can be sector,
industry or market indexes, but also investment themes such
as value or momentum. In portfolios of limited size factors can
be just single assets.

For large portfolios we can distinguish the following steps in
performance attribution:
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Performance attribution, cont.

Security selection.

This is a manager’s ability to isolate returns of the various
segments (factors).

Asset allocation.

This is a manager’s ability to pick individual assets, after
controlling for the segments (factors).

Market (benchmark) timing.

Benchmark timing is an active management decision to vary
the managed portfolio’s beta with respect to the benchmark. If
we believe that the benchmark will do better than usual, then
beta is increased. If we believe the benchmark will do worst
than usual, then the beta should be decreased.
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Risk allocation

The total risk can be decomposed into the various risk
exposures. This leads to a better understanding of the total
risk borne.

The total risk is the result of decisions at two levels:

The absolute risk allocation to each asset class.

This is the asset allocation approach, in which the risk of each
asset class is measured using benchmarks.

The active risk allocation in each asset class.

This is the risk budgeted to generate alphas in each asset
class.

A risk decomposition can be quite complex, because risks are
correlated and, hence, non additive.
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Performance attribution – example

Alpha and tracking error are characteristics of the whole
tactical portfolio.

For medium size portfolio we can split both these measures
into contributions coming from single assets.

On the next slide you will see an example of such split (all
values are expressed in bp).
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Performance attribution – example
Assets active risk attr. return

AS1 0.48 1.81

AS2 1.74 6.5

AS3 2.4 8.79

AS4 7.55 27.62

AS5 2.53 7.54

AS6 9.54 28.19

AS7 -19.89 -50.17

AS8 17.07 41.42

AS9 84.17 111.04

AS10 -7.51 -4.86

AS11 -0.86 -3.04

Portfolio 129.58 184.13
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Performance appraisal
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Realized alpha may result from the level of risk taken by the
manager, rather than from true investment skills.
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Performance appraisal, cont.

Because short-term results can be due to luck, rather then
skills, a long horizon must be used.

For normal market, variance of IR has the following
approximation

V ar(IR) ≈
1

Y
,

where Y is the number of years of observations.

It implies that to determine with high confidence (95%) that a
manager belongs in the top quantile (IR = 0.5) requires

16 years of observations !
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Performance appraisal, cont.
How to distinguish skills from luck?

Probability of positive alpha in a given period of time
for a manager with an information ratio IR = 0.5.

No of years probability (in %)

0.1 56

1 70

2 75

3 80

5 87

10 94

Hence, even for top managers there is 20% chance that in a
3-year horizon they will have negative realized alpha.
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Performance appraisal, cont.

Compare two managers, A and B.

Over a 5-years period they achieved the following cumulative
return (measured over benchmark):
manager A – 16%
manager B – 20%

Based on this limited set of information, whom would you
prefer?
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Performance appraisal, cont.

Grinold&Kahn(2000)
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