WORKSHOP and EMS SUMMER SCHOOL IN APPLIED MATHEMATICS:
LINEAR AND NONLINEAR WAVE PROPAGATION.
THEORY AND APPLICATIONS

21 – 27 June, 2009
The Mathematical Research and Conference Center, Będlewo, Poland

Cosponsored by the Centre for Advanced Studies Warsaw University of Technology

The wave propagation problems have contributed not only to the development of the theory of partial differential equations but they also stimulated creation of new fields of analysis as for example microlocal analysis. Geometrical optics stemming at the beginning from the asymptotics of linear problems appeared to be applicable also to nonlinear problems e.g. to the analysis of asymptotic solutions of convection-reaction-diffusion equations. Wave propagation problems are also strongly related to various applications: from physics, chemistry and engineering to biology and medicine e.g. calcium waves in living cells. To facilitate the exchange of ideas, in addition to the school, we organize at the same time a workshop. The lectures will start from June 22.

Organizing Committee: Ferruccio Colombini (E-mail), Zbigniew Peradzyński (E-mail), Vitaly Volpert (E-mail)

Local Organizing Committee: B. Kaźmierczak, T. Lipniacki, Z. Peradzyński, K. Piechór, P. Rybka, D. Wrzosek.

Scientific Committee: P. Biler (Poland), F. Colombini (Italy), Y. Giga (Japan), L. Górniewicz (Poland), K. P. Hadeler (Germany), D. Hilhorst (France), S. Kamin (Israel), A. Palczewski (Poland), Z. Peradzyński (Poland), S. Petrovskii (UK), Ł. Stettner (Poland), V. Volpert (France).

Expected lecturers: P. Biler (Poland), E. C. M. Crooks (UK), M. Falcke (Germany), L. Górniewicz (Poland), K. P. Hadeler (Germany), D. Hilhorst (France), S. Kamin (Israel), A. Palczewski (Poland), S. Petrovskii (UK), R. Rudnicki (Poland), P. Rybka (Poland), K. Sobczyk (Poland), J.-C. Tsai (Taiwan).

PROGRAM OF THE SCHOOL

  1. PARABOLIC EQUATIONS AND REACTION-DIFFUSION SYSTEMS
    1. Introduction to Parabolic Equations and Systems
    2. Propagation Phenomena for Reaction-Diffusion Equations
    3. Nonlocal phase transitions and waves
    4. Asymptotic Solutions to Parabolic Equations (Limit of Vanishing Diffusion)
    5. Travelling Waves in Population Dynamics and Ecology
    6. Asymptotic methods in combustion
    7. Combustion and Detonation
    8. Reaction-Diffusion-Convection Equations and Waves
    9. Waves in biological systems (calcium waves)
  2. STOCHASTIC PROBLEMS IN WAVE PROPAGATION
    1. Introduction to stochastic PDE's
    2. Stochastic wave propagation
    3. Population dynamics and stochastic models in population dynamics
  3. OTHER ASPECTS
    1. Topological Methods in analysis of PDE's
    2. Fractal diffusion equations

 

If you intend to participate in the conference, please fill in the registration form.

Financial support for a limited number of (mainly young) researchers is possible.