
COMBINATORIAL K-THEORY
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1. Introduction

Let X be a non-singular quasi-projective variety. The Grothendieck ring K(X)
of X is defined as the free abelian group generated by isomorphism classes [F ] of
algebraic vector bundles on X , modulo the relations [F ] = [F ′] + [F ′′] whenever
there exists a short exact sequence 0 → F ′ → F → F ′′ → 0. Multiplication is given
by the tensor product, [F1] · [F2] = [F1 ⊗ F2].

If Y ⊂ X is a closed subvariety, we can find a locally free resolution

0 → Fn → Fn−1 → · · · → F1 → F0 → OY → 0

of the structure sheaf of Y . The Grothendieck class of Y is defined as

[OY ] =
n∑

i=0

(−1)i[Fi] ∈ K(X) .

Suppose Z is another closed subvariety of X . In intersection theory one studies
the geometry of the intersection Y ∩ Z. This can be done using (Chow) cohomol-
ogy by examining the product [Y ] · [Z] ∈ H∗(X), or with K-theory by studying the
product of Grothendieck classes [OY ] · [OZ ] ∈ K(X). When Y and Z meet suffi-
ciently transversally, these products give the respective classes of the intersection,
in the sense that [Y ∩ Z] = [Y ] · [Z] ∈ H∗(X) and [OY ∩Z ] = [OY ] · [OZ ] ∈ K(X).

The Grothendieck ring has a topological filtration K(X) = F0 ⊃ F1 ⊃ · · ·
by ideals. The ideal Fi is generated by all classes [OY ] for which Y ⊂ X has
codimension at least i. There is a group homomorphism H∗(X) → gr(K(X)) =⊕

i≥0 Fi/Fi+1 from the Chow ring to the associated graded ring of K(X) given by
[Y ] �→ [OY ], and this map becomes an isomorphism of rings after tensoring with Q

(see [10, Ex. 15.2.16]). The geometric meaning of this is that intersection theory in
the cohomology ring only captures the lowest graded piece of information available
in the Grothendieck ring.
Example 1. Let C ⊂ P2 be a curve of degree 3. Since C can be degenerated
into a union of three lines, its cohomology class is [C] = 3[line]. The Grothendieck
class is finer and can “see” that these lines overlap in three points. Thus [OC ] =
3[Oline]−3[Opoint]. This example generalizes easily to a hypersurface of any degree
in Pn.
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The goal of these notes is to explain the combinatorics that arises in the study
of K-theoretic intersection theory of some concrete varieties and degeneracy loci.
The material is mostly taken from the papers [4, 3], as well as from joint work [7]
with A. Kresch, H. Tamvakis, and A. Yong.

Our notes are based on a lecture series presented at the Mini-School on Schubert
Varieties at the Banach Center in the Spring of 2003. We thank Piotr Pragacz and
Andrzej Weber, and the Banach Center for their kind invitation and hospitality.
We also thank R. Vakil for private communication concerning a symmetry property
of K-theoretic Schubert structure constants.

2. K-theory of Grassmannians

Let X = Gr(d, n) be the Grassmann variety of d-dimensional subspaces of Cn.
For each partition λ = (λ1 ≥ · · · ≥ λd ≥ 0) with λ1 ≤ n − d, there is a Schubert
variety

Xλ = {V ∈ X | dim(V ∩ Cn−d+i−λi) ≥ i ∀1 ≤ i ≤ d} .

Here Ck ⊂ Cn denotes the subspace of vectors where the last n− k coordinates are
zero. The codimension of Xλ in X is equal to the weight |λ| =

∑d
i=1 λi of λ. We

will identify the partition λ with its Young diagram of boxes, which has λ1 boxes
in the top row, λ2 boxes in the second row, etc. If we let R = (n − d)d denote a
rectangular partition with d rows and n − d columns, then the Schubert varieties
in X correspond to the Young diagrams λ contained in R.

R = d
λ

n − d

We will write Oλ = [OXλ
] for the Grothendieck class of the Schubert variety Xλ.

These classes form a basis for the Grothendieck ring of X :

K(X) =
⊕
λ⊂R

Z · Oλ .

It is interesting to note that, as abstract rings, the Grothendieck and cohomology
rings of a Grassmann variety are isomorphic. Despite this fact, the K-theoretic
intersection theory has a richer structure than the cohomological intersection theory.

Given two partitions λ, μ ⊂ R, we can write

Oλ · Oμ =
∑

ν

cν
λμOν

for unique structure constants cν
λμ ∈ Z. Our first goal will be to describe these

constants, which determine the K-theoretic intersection theory on X . Using the
isomorphism H∗(X) ∼= gr(K(X)) it follows that the integer cν

λμ is non-zero only
when |ν| ≥ |λ| + |μ|, and when we have equality |ν| = |λ| + |μ|, the coefficient cν

λμ

is a structure constant in the cohomology ring. These cohomology constants are
called Littlewood-Richardson coefficients and play an important role in numerous
fields, including representation theory, geometry, and combinatorics, see e.g. [12].
Lenart [21] has proved that the K-theoretic Pieri coefficients cν

(p),μ can be expressed
as plus or minus a binomial coefficient.
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Set-valued tableaux. We will formulate a general rule for the structure constants
cν
λμ, and for this purpose we introduce some notation. Define a set-valued tableau

to be a labeling of the boxes of a skew diagram with finite non-empty sets of
positive integers, so that the numbers in the diagram increase weakly along rows
and increase strictly down columns. More precisely, the maximum number of any
box must be less than or equal to the minimum of the box to the right of it, and
strictly smaller than the minimum of the box below it. For example

T =
1 2 3

1 2234
2 3 5 7

is a set-valued tableau whose shape is the skew diagram (4, 3, 3)/(2, 1). Define
the content of a set-valued tableau to be the sequence (c1, c2, . . . ), where ci is the
number of boxes containing the integer i. We also define the word of a set-valued
tableau to be the sequence of integers in its boxes when read from left to right then
bottom to top; the integers of a single box are arranged in increasing order. The
above tableau T has content (2, 4, 3, 1, 1, 0, 1) and word (2, 3, 5, 7, 1, 2, 2, 3, 4, 1, 2, 3).
A sequence of integers is called a reverse lattice word if every integer i ≥ 2 in the
sequence is followed by more i − 1’s than i’s.

Given two partitions λ and μ, we let λ ∗ μ denote the skew shape obtained by
attaching the Young diagrams for λ and μ corner to corner as shown.

λ ∗ μ =
λ

μ

The following theorem from [4] is a K-theoretic generalization of the classical
Littlewood-Richardson rule [22].
Theorem 1. The structure constant cν

λμ is equal to (−1)|ν|−|λ|−|μ| times the number
of set-valued tableaux of shape λ ∗ μ, such that the word is a reverse lattice word
with content ν.
Example 2. Let λ = μ = (2, 1) and ν = (3, 3, 1). Then there are two set-valued
tableaux of shape λ ∗μ such that the word is a reverse lattice word with content ν.

1 1
2

1 2 3
2

1 1
2

1 2
2 3

It follows that cν
λμ = −2.

It follows from the theorem that K-theoretic structure constants on Grassmanni-
ans have signs that alternate with codimension, that is (−1)|ν|−|λ|−|μ|cν

λμ ≥ 0. This
alternation in sign has in fact been established by Brion for all homogeneous spaces
G/P , where G is a simply connected semisimple algebraic group [2]. One can also
derive from Theorem 1 that, if Oν occurs with non-zero coefficient in Oλ ·Oμ, then
we have Xλ ∩ Xμ ⊃ Xν ⊃ ⋂

ρ Xρ, where the intersection is over all partitions ρ

such that [Xρ] occurs in the cohomology product [Xλ] · [Xμ] ∈ H∗(X).
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Another consequence of the theorem is the following symmetry property of the
K-theoretic Schubert structure constants cν

λμ. For a partition λ ⊂ R we let λ∨ =
(n − d − λd, . . . , n − d − λ1) be the dual partition.

λ

λ∨

Corollary 1. For any three partitions λ, μ, ν ⊂ R we have cν
λμ = cμ∨

λν∨ .

Notice that when |ν| = |λ| + |μ|, this is immediate from the identity cν
λμ =∫

X
[Xλ] · [Xμ] · [Xν∨ ] for cohomological structure constants.
The proof given below was produced in response to a question of R. Vakil, who

had observed that the corollary follows from a conjectured K-theoretic puzzle rule
of A. Knutson and T. Tao. We note that this conjecture has now been proved by
Knutson and Vakil by translating K-theoretic puzzles to set-valued tableaux [16].

Proof. Let ρ : X → {point} be a map to a point. The corresponding pushforward
map ρ∗ : K(X) → K(point) = Z is given by ρ∗(Oλ) = 1 for all λ ⊂ R. Define the
bilinear form

K(X) ⊗ K(X) → Z ; α ⊗ β �→ ρ∗(α · β) .

We claim that this is a perfect pairing, and that the dual basis element of Oλ equals
tOλ∨ , where t = 1 − O(1). (This class t represents the top exterior power of the
tautological subbundle on X .) The corollary is immediate from this claim since
cν
λμ = ρ∗(Oλ · Oμ · tOν∨) = cμ∨

λν∨ .
It follows from Theorem 1 that tOλ = Oλ −O(1) · Oλ =

∑
ν(−1)|ν/λ|Oν , where

the sum is over all partitions ν such that λ ⊂ ν ⊂ R and ν/λ has at most one box
in any row or column. This implies that ρ∗(tOλ) = δλ,R, and we obtain

ρ∗(tOλ · Oμ) =
∑

ν

cν
λμ ρ∗(tOν) = cR

λμ .

Finally, it is an easy exercise to check from the theorem that cR
λμ = δλ,μ∨ . �

3. The bialgebra of stable Grothendieck polynomials

For a set-valued tableau T with content (c1, c2, . . . , cr), we set xT = xc1
1 xc2

2 · · ·xcr
r .

For any partition λ we define a stable Grothendieck polynomial for this partition by

Gλ =
∑

sh(T )=λ

(−1)|T |−|λ| xT ∈ Z�x1, x2, . . .� .

The sum is over all set-valued tableau T of shape λ. This is a special case of the
stable Grothendieck polynomials studied by Fomin and Kirillov [8] (see section 6).
One can check from the definition that the power series Gλ is symmetric in the
variables xi. Furthermore, the term of lowest degree in Gλ is the Schur function for
λ. In particular, the elements Gλ are linearly independent. We let Γ denote their
linear span.

Γ =
⊕

λ

Z Gλ ⊂ Z�x1, x2, . . .�
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If E = L1 ⊕ · · · ⊕ Le is a vector bundle on a variety X , which can be written as
a direct sum of line bundles Li, we define

Gλ(E) = Gλ(1 − L−1
1 , . . . , 1 − L−1

e , 0, 0, . . . ) ∈ K(X) .

Since Gλ is symmetric, this can be written as a polynomial in the exterior powers of
the dual bundle E∨, so the definition also makes sense when E is not a direct sum
of line bundles. When X = Gr(d, Cn) is a Grassmann variety and S ⊂ Cn ×X the
tautological subbundle on X , it follows from [20] or [13, Thm. 3] that Oλ = Gλ(S∨).
Theorem 1 generalizes to the following statement [4, Cor. 5.5].
Theorem 2. For any partitions λ and μ we have

Gλ · Gμ =
∑

cν
λμ Gν

where the sum is over all partitions ν, and the constants cν
λμ are given by Theorem 1.

It follows from this theorem that each product Gλ · Gμ is a finite linear combi-
nation of stable Grothendieck polynomials Gν . In particular, Γ is a subring of the
power series ring Z�x1, x2, . . .�.

For partitions λ, μ, and ν, we set dν
λμ = cρ

νR, where R is a rectangular partition
which is wider than λ and taller than μ, and ρ = (R+μ, λ) is the partition obtained
by attaching λ and μ to the sides of R.

ρ = (R + μ, λ) =
R μ

λ

It is not hard to see that dν
λμ is independent of the choice of the rectangle R. Given a

finite set of variables x1, . . . , xn, we write Gλ(x1, . . . , xn) = Gλ(x1, . . . , xn, 0, 0, . . . ).
The coefficients dν

λμ have the following interpretation.

Theorem 3. For any partition ν and integers 0 < m < n we have

Gν(x1, . . . , xm, xm+1, . . . , xn) =
∑
λ,μ

dν
λμGλ(x1, . . . , xm) · Gμ(xm+1, . . . , xn) .

Define a coproduct Δ : Γ → Γ ⊗ Γ by

Δ(Gν) =
∑
λ,μ

dν
λμ Gλ ⊗ Gμ .

This coproduct corresponds to the pullback along the embedding

Gr(d1, n1) × Gr(d2, n2) → Gr(d1 + d2, n1 + n2)

which maps a pair (V1 ⊂ Cn1 , V2 ⊂ Cn2) to V1 ⊕ V2 ⊂ Cn1+n2 .
It follows from theorems 2 and 3 that the coproduct Δ makes Γ into a commu-

tative and cocommutative bialgebra. The linear map Γ → Z which sends 1 = G(0)

to one and Gλ to zero for |λ| > 0 furthermore gives a counit. This bialgebra is a
K-theoretic parallel of the ring of symmetric functions.

The bialgebra Γ has an involution Γ → Γ defined by Gλ �→ Gλ′ , where λ′ is the
conjugate partition of λ. This involution corresponds to the duality isomorphism
Gr(d, n) ∼= Gr(n− d, n) of Grassmannians. Equivalently, the structure constants of
Γ satisfy the identities cν

λμ = cν′
λ′μ′ and dν

λμ = dν′
λ′μ′ .
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4. Geometric specializations of stable Grothendieck polynomials

Given two vector bundles E and F over the variety X and a partition ν, we
define

Gν(F − E) =
∑
λ,μ

dν
λμ Gλ(F ) · Gμ′(E∨) ∈ K(X)

where E∨ is the dual bundle of E. It is proved in [4] that Gλ(F − E) is a special-
ization of the double stable Grothendieck polynomials of Fomin and Kirillov [8]. It
therefore follows from a super symmetry property of the latter polynomials that,
for any vector bundle H we have

(1) Gλ(F ⊕ H − E ⊕ H) = Gλ(F − E) .

In other words, Gλ gives a well defined linear map Gλ : K(X) → K(X). Since the
coproduct Δ is coassociative, we furthermore deduce that

(2) Gν(F − E) =
∑
λ,μ

dν
λμ Gλ(F − H) · Gμ(H − E) .

Another useful identity is Gλ(F − E) = Gλ′(E∨ − F∨), which was first proved by
Fomin (see [4, Lemma 3.4].)

If the bundles E and F have ranks e and f , and if λ and μ are partitions such
that �(λ) ≤ f and μ1 ≤ e, we also have the factorization formula

(3) G(ef )+λ,μ(F − E) = Gλ(F )G(ef )(F − E)Gμ(−E)

where (ef ) + λ, μ denotes the partition (e + λ1, . . . , e + λf , μ1, μ2, . . . ).
More generally, the following Gysin formula was proved in [3]. It generalizes

Pragacz’s cohomological Gysin formula from [24] and [14, (4.4)] to K-theory.
Theorem 4. Let E and F be vector bundles of ranks e and f over X, and let
π : Gr(d, F ) → X denote the Grassmann bundle of subbundles of F of rank d, with
universal exact sequence 0 → S → π∗F → Q → 0. Set q = f − d. Let λ and μ be
partitions such that �(λ) ≤ q, and λq ≥ max(e, μ1 + d). Then we have in K(X)
that

π∗(Gλ(Q − π∗E) · Gμ(S − π∗E)) = G(λ1−d,...,λq−d,μ1,μ2,... )(F − E) .

Like Pragacz’s cohomological Gysin formula, this result remains true with slightly
weaker conditions. Namely, one may drop the requirement that λq − d ≥ μ1. This
means that the sequence I = (λ1 − d, . . . , λq − d, μ1, μ2, . . . ) is not necessarily a
partition; the definition of GI when I is an arbitrary sequence of integers is given
[3, §3], but will not be discussed here. It is curious to note that the same formula
is also true when λ and μ are arbitrary partitions such that �(λ) ≤ q and �(μ) ≤ d
[24],[14, (4.3)], but this case of the formula is false in K-theory.

5. Degeneracy loci

Let φ : E → F be a map of vector bundles of ranks e and f over X . Given an
integer t ≤ min(e, f), there is a degeneracy locus

Ωt = Ωt(φ) = {x ∈ X | rank(φx : E(x) → F (x)) ≤ t} .

This locus has a natural structure of subscheme of X , given as the zero-section of
the map ∧t+1φ : ∧t+1E → ∧t+1F . The expected (and maximal possible) codimen-
sion of Ωt is the number (e − t)(f − t). When this codimension is attained, the
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classical Thom-Porteous formula expresses the cohomology class of Ωt as a Schur
determinant. This formula generalizes to K-theory as follows.

Theorem 5. If Ωt has codimension (e− t)(f − t) in X then its Grothendieck class
is given by

[OΩt ] = G(e−t)f−t(F − E) ∈ K(X) .

The Thom-Porteous degeneracy locus Ωt can be generalized as follows. Let
E0 → E1 → · · · → En be a sequence of vector bundles and bundle maps over X .
A set of rank conditions for this sequence is a collection r = {rij} of non-negative
integers, for 0 ≤ i < j ≤ n. This data defines the quiver variety

Ωr = Ωr(E•) = {x ∈ X | rank(Ei(x) → Ej(x)) ≤ rij ∀i < j} .

We will demand that the rank conditions can occur, i.e. there exists a sequence of
vector spaces and linear maps V0 → V1 → · · · → Vn such that dim(Vi) = rank(Ei)
and rank(Vi → Vj) = rij for all i < j. In other words, the rank conditions should
correspond to an orbit of a quiver representation as in [1]. In this case, the expected
codimension of the quiver variety Ωr is equal to

d(r) =
∑
i<j

(ri,j−1 − rij)(ri+1,j − rij)

where we set rii = rank(Ei) for all i. In work with Fulton [6], we proved a formula
for the cohomology class of a quiver variety Ωr. The following theorem from [3]
generalizes this formula to K-theory.

Theorem 6. Let E0 → E1 → · · · → En be a sequence of vector bundle maps such
that the quiver variety Ωr(E•) has codimension d(r) in X. Then the Grothendieck
class of this quiver variety is given by

[OΩr ] =
∑

cμ(r)Gμ1 (E1 − E0) · Gμ2(E2 − E1) · · ·Gμn(En − En−1) ∈ K(X)

where the sum is over sequences μ = (μ1, . . . , μn) of partitions μi, and the coeffi-
cients cμ(r) are integers given by the rank conditions.

The coefficients cμ(r) of this formula are called quiver coefficients. They are
uniquely determined by the fact that the theorem is true for all varieties X , as
well as the requirement that cμ(r) is non-zero only if �(μi) ≤ rii for all i. These
coefficients can furthermore be computed by an explicit combinatorial algorithm
based on the operations of the bialgebra Γ, see [3, §4].

A quiver coefficient cμ(r) is non-zero only when
∑ |μi| ≥ d(r). When

∑ |μi| =
d(r), the coefficient cμ(r) also appears in the formula for the cohomology class of Ωr;
these coefficients are called cohomological quiver coefficients. It was conjectured in
[6] and proved by Knutson, Miller, and Shimozono in [15] that cohomological quiver
coefficients are non-negative. The K-theoretic quiver coefficients were conjectured
to have alternating signs, in the following sense.1

Conjecture 1. For any rank conditions r and sequence of partitions μ, we have

(−1)
� |μi|−d(r) cμ(r) ≥ 0 .

1After these lectures were presented, this conjecture from [3] has been proved in the papers [5]
and [23].
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We explain how to prove Theorem 6 for a sequence of three vector bundles
E → F → H of ranks e, f , and h. In this case the quiver variety is defined as

Ω = {x ∈ X | rank(E → F ) ≤ r, rank(F → H) ≤ s, rank(E → H) ≤ t}
for some non-negative integers r, s, and t. The requirement that these rank
conditions can occur says that r ≤ min(e, f), s ≤ min(f, h), t ≤ min(r, s), and
f + t ≥ r + s.

To make sure that the bundle maps are maximally generic, we start by re-
placing X with the bundle Hom(E, F ) ⊕ Hom(F, H) and the bundle maps with
the universal maps E → F → H on this bundle. (In the rest of this section
we avoid explicit notation for pullbacks of bundles.) Then form the product
Y = Gr(r, F ) ×X Gr(s, H) of Grassmann bundles with projection π : Y → X ,
and let F ′ ⊂ F and H ′ ⊂ H denote the tautological subbundles on Y . On the
subset Z = Z(E → F/F ′) ∩ Z(F → H/H ′) ⊂ Y , the bundle map from E to F
factors through F ′, and the map F → H factors through H ′. This gives a map
F ′ → F → H ′ on Z, and we let Ωt = Ωt(F ′ → H ′) ⊂ Z denote the corresponding
Thom-Porteous locus.

Since all the rank conditions are satisfied on Ωt, it follows that π(Ωt) ⊂ Ω.
In fact, by using that the bundle maps are universal, one can show that π maps
Ωt birationally onto Ω (see [6, Lemma 1].) Since quiver varieties have rational
singularities [17], it follows that

π∗([OΩt ]) = [OΩ] ∈ K(X) .

Let R = (r− t)s−t be a rectangle with s− t rows and r− t columns. By Theorem 5
and equations (2) and (3) we have

[OΩt ] = G(e)f−r (F/F ′ − E)G(f)h−s(H/H ′ − F )GR(H ′ − F ′)

= G(e)f−r (F/F ′ − E)G(f)h−s(H/H ′ − F )
∑
λ,μ

dR
λμ Gλ(F/F ′)Gμ(H ′ − F )

=
∑
λ,μ

dR
λμ G(e)f−r+λ(F/F ′ − E)G(f)h−s(H/H ′ − F )Gμ(H ′ − F )

in the Grothendieck ring of Y . Using Theorem 4 we therefore obtain

[OΩ] = π∗([OΩt ]) =
∑
λ,μ

dR
λμ G(e−r)f−r+λ(F − E) · G(f−s)h−s,μ(H − F )

in K(X) as required. Notice that the quiver coefficients for a sequence of three
bundles are just the coproduct coefficients dR

λ,μ. In particular, they have alternating
signs.

6. Grothendieck polynomials

For each permutation w ∈ Sn+1, there is a double Grothendieck polynomial
Gw(x; y) = Gw(x1, . . . , xn; y1, . . . , yn) defined as follows [20, 18]. If w = w0 is
the longest permutation in Sn+1, then we set

Gw0(x; y) =
∏

i+j≤n+1

(xi + yj − xiyj) .

Otherwise there is a simple transposition si ∈ Sn+1 such that �(wsi) = �(w) + 1.
In this case we set

Gw(x; y) = πi(Gwsi)
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where the Demazure operator πi is defined by

πi(f) =
(1 − xi+1)f(x1, . . . , xi, xi+1, . . . , xn) − (1 − xi)f(x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
.

Grothendieck polynomials were introduced by Lascoux and Schützenberger [20,
18] as representatives for the Grothendieck classes of Schubert varieties in a flag
variety. More generally, the double Grothendieck polynomials have the following
interpretation. Let F1 ⊂ F2 ⊂ · · · ⊂ Fn → Hn � · · · � H2 � H1 be a sequence
of bundles on X consisting of a full flag F• with a general map to a dual full flag
H•, such that rank(Fi) = rank(Hi) = i for all i. Given a permutation w ∈ Sn+1,
Fulton [11] defined the degeneracy locus

Ωw = Ωw(F• → H•) = {x ∈ X | rank(Fq(x) → Hp(x)) ≤ rw(p, q) ∀p, q} ,

where rw(p, q) = #{i ≤ p | w(i) ≤ q}. This type of degeneracy locus generalizes
Schubert varieties in flag varieties. In fact, if X = Fl(n+1) is the variety of full flags
in Cn+1, and if F• ⊂ Cn+1 ×X denotes the tautological flag on X and Cn+1 � H•
is a fixed dual flag, then Ωw ⊂ X is a Schubert variety.

Fulton proved that the cohomology class of Ωw is given by a double Schubert
polynomial [11]. This was generalized to the following formula for the Grothendieck
class in [3, Thm. 2.1] as an application of [13, Thm. 3].
Theorem 7. If the codimension of Ωw equals the length of w, then

[OΩw ] = Gw(x; y)

where xi = 1 − L−1
i ∈ K(X) for Li = ker(Hi → Hi−1), and yi = 1 − Mi ∈ K(X)

for Mi = Fi/Fi−1.
Fulton’s degeneracy locus Ωw is a special case of a quiver variety, that is Ωw =

Ωr(F• → H•) for a set of rank conditions r depending on the permutation w. It
follows from this that Gw(x; y) = [OΩr ], so

(4) Gw(x; y) =
∑

μ

cw,μ Gμ1(F2 − F1) · · ·Gμn(Hn − Fn) · · ·Gμ2n−1(H1 − H2)

where the constants cw,μ = cμ(r) are quiver coefficients. Note that Gμi(Fi+1−Fi) =
Gμi(Mi+1) is either zero or a power of 1 − M−1

i+1 = 1 − (1 − yi+1)−1, which can
be expressed as a formal power series in yi+1. Similarly Gμ2n−i(Hi − Hi+1) =
Gμ2n−i(−Li+1) is a power of 1 − (1 − xi+1)−1.

The double Grothendieck polynomials are related to stable Grothendieck poly-
nomials as follows. Given a permutation w ∈ Sn+1, we let 1m × w ∈ Sm+n+1

denote the shifted permutation, which acts as the identity on the set {1, 2, . . . , m}
and maps m+ i to m+w(i) for i ≥ 1. The stable Grothendieck polynomial Gw(x; y)
of Fomin and Kirillov [8] is defined by

Gw(x1, . . . , xm; y1, . . . , ym) = G1m×w(x1, . . . , xm, 0, . . . , 0; y1, . . . , ym, 0, . . . , 0) .

Let λ = (λ1 ≥ · · · ≥ λk ≥ 0) be a partition. The corresponding Grassmannian
permutation wλ with descent at position k is defined by wλ(i) = i + λk+1−i for
i ≤ k and wλ(i) < wλ(i + 1) for i �= k. With the notation of section 3, we have
Gλ(x) = Gwλ

(x; 0) and

Gwλ
(x; y) = Gλ(x; y) =

∑
σ,τ

dλ
στGσ(x)Gτ ′(y) .
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Every stable Grothendieck polynomial Gw(x; y) can be written as a finite linear
combination of the polynomials Gλ(x; y) given by partitions [4]. We will describe a
formula of Lascoux for the coefficients of this linear combination, which shows that
they have alternating signs.

Given a permutation w, let r be the last descent position of w, i.e. r is maximal
such that w(r) > w(r + 1). Set w′ = wτrk where k > r is maximal such that
w(r) > w(k). We also set I(w) = {i < r | �(w′τir) = �(w)}. Define a relation
� on the set of all permutations as follows. If I(w) = ∅ we write w � v if and
only if v = 1 × w. Otherwise we write w � v if and only if there exist elements
i1 < · · · < ip of I(w), p ≥ 1, such that v = w′τi1r . . . τipr. The following is an
immediate consequence of [19, Thm. 4].

Theorem 8 (Lascoux). For any permutation w we have

Gw =
∑

λ

aw,λ Gλ

where the sum is over all partitions λ, and aw,λ is equal to (−1)|λ|−�(w) times
the number of sequences w = w1 � w2 � · · · � wm such that wm = wλ is a
Grassmannian permutation for λ and wi is not Grassmannian for i < m.

7. Alternating signs of the coefficients cw,μ

In this section we outline a proof that the quiver coefficients cw,μ of (4) have
alternating signs, based on our joint paper [7] with Kresch, Tamvakis, and Yong.

Suppose we are given a sequence of vector bundles

F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ V � Hn � · · · � H2 � H1

consisting of a full flag F• of a bundle V of rank n + 1, followed by a dual full flag
H• of V . Set F ′

i = V/Fi and H ′
i = ker(V � Hi). We then obtain a sequence

H ′
n ⊂ · · · ⊂ H ′

1 ⊂ V � F ′
1 � · · · � F ′

n ,

and it is an easy exercise to show that Ωw(F• → H•) = Ω�w(H ′
• → F ′

•) as subschemes
of X , where ŵ = w0w

−1w0. It follows that Gw(x; y) = [OΩ
�w
], so we obtain

Gw(x; y) =
∑

μ

c�w,μGμ1(H
′
n−1 − H ′

n) · · ·Gμn(F ′
1 − H ′

1) · · ·Gμ2n−1(F
′
n − F ′

n−1)

=
∑

μ

c�w,μGμ1(xn) · · ·Gμn(x1; y1) · · ·Gμ2n−1(0; yn)

where xi and yi are defined as in Theorem 7. Notice that Gλ(xi) equals xp
i when

λ = (p) is a single row with p boxes, and is zero otherwise. Similarly Gλ(0; yi) is a
power of yi or zero, and furthermore Gλ(x1; y1) =

∑
σ,τ dλ

στGσ(x1)Gτ ′(y1).

Corollary 2. The monomial coefficients of Grothendieck polynomials are special
cases of the quiver coefficients cw,μ.

The degenerate Hecke algebra is the free Z-algebra H generated by symbols
s1, s2, . . . , modulo the relations s2

i = si and sisi+1si = si+1sisi+1 for all i, and
sisj = sjsi for |i− j| ≥ 2. This algebra has a basis of permutations, corresponding
to reduced expressions in the generators.
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Now define the universal Grothendieck polynomial for the permutation w ∈ Sn

to be the element

Pw =
∑

μ

cw,μ Gμ1 ⊗ · · · ⊗ Gμ2n−1 ∈ Γ⊗2n−1 .

The following theorem gives an explicit formula for these polynomials.
Theorem 9. For w ∈ Sn+1 we have

Pw =
∑

(−1)
�

�(ui)−�(w) Gu1 ⊗ Gu2 ⊗ · · ·Gu2n−1 ∈ Γ⊗2n−1 ,

where the sum is over all factorizations w = u1 ·u2 · · ·u2n−1 in the degenerate Hecke
algebra H such that ui ∈ Smin(i,2n−i)+1 for each i.

This theorem combined with Lascoux’s formula for the expansion of stable
Grothendieck polynomials in the basis of Γ implies the following explicit formula
for the quiver coefficients cw,μ.
Corollary 3. The quiver coefficients cw,μ of Pw are given by

cw,μ = (−1)
� |μi|−�(w)

∑ 2n−1∏
i=1

|aui,μi | ,

where the sum is over all factorizations w = u1 · u2 · · ·u2n−1 in the degenerate
Hecke algebra H such that ui ∈ Smin(i,2n−i)+1 for each i, and the constants aui,μi

are given by Theorem 8.
The proof of Theorem 9 is based on some identities of universal Grothendieck

polynomials. For 1 ≤ i ≤ j ≤ 2n− 1 we define

Pw[i, j] =
∑

μ:μk=∅ for k �∈[i,j]

cw,μ 1 ⊗ · · · ⊗ 1 ⊗ Gμi ⊗ · · · ⊗ Gμj ⊗ 1 ⊗ · · · ⊗ 1 .

Using a Cauchy identity for double Grothendieck polynomials of Fomin and Kirillov
[9] as well as some geometry of quiver varieties, one obtains the identity

Pw =
∑

u·v=w∈H
(−1)�(uvw)Pu[1, i] · Pv[i + 1, 2n− 1] .

By iterating this formula, we obtain

Pw =
∑

u1···u2n−1=w∈H
(−1)

�
�(ui)−�(w) Pu1 [1, 1] · Pu2 [2, 2] · · ·Pu2n−1 [2n − 1, 2n− 1] .

Finally we use the identity

Pw[i, i] =

{
1⊗i−1 ⊗ Gw ⊗ 1⊗2n−1−i if w ∈ Smin(i,2n−i)+1

0 otherwise.

This was proved in [3] for i = n, and the remaining cases are easy consequences of
this. Theorem 9 follows immediately from these identities.
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