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Introduction

These notes come from the lectures delivered by the author at 25th Autumn School of Algebraic
Geometry in Lukecin in 2002 and the lectures delivered by the author at the IMPANGA seminar
in 2004–5. The School lectures were largely based on the book [HL], whereas the IMPANGA
lectures were very close to the author’s papers [La1], [La2] and [La3].

So the author decide to write notes that contain more of a vision of how the topic could be
lectured upon than the actual faithful account of the delivered lectures. This particularly refers
to the last lecture that contains generic smoothness of moduli spaces of sheaves on surfaces and
the proofs in the lectures were based on the different O’Grady’s approach. Since this approach
was already published by the author (see [La3]), there was no point in copying it so the author
decided to follow the Donaldson’s approach whose idea (but not necessarily technical details) is
easier to understand.

The notes contain some exercises (that are not very evenly distributed) in which the author
put a part of the theory that is either analogous to what is done in the lectures or is too far away
to be proven and is quite standard.

Since the paper is relatively short, it was impossible to give full proofs of all the theorems.
All the proofs are either provided or can be found in the very incomplete references at the end of
the paper. The references contain either books or the references that are not contained in these
books (partially because they are too new).

1 Lecture 1. Bogomolov’s instability and restriction theorems

• Topological classification of vector bundles
• Semistability and its properties
• Bogomolov’s instability theorem
• Restriction theorems

Let X be a smooth complex projective variety. Classification of algebraic vector bundles
on X can be divided into two parts: discrete, where we distinguish vector bundles using just
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topological structure, and continuous, where we study holomorphic/algebraic structures on a
given topological vector bundle.

1.1 Topological classification of vector bundles

This part is usually neglected in algebro-geometric papers, as fixing basic topological invariants
such as rank and Chern classes distinguish algebraic vector bundles sufficiently well to study
change of the algebraic structure. Nevertheless, we will recall a few results on the topological
classification refering to [BP] for a nice recent account of this topic.

The set of rank r vector bundles on X is isomorphic to the set [X ,Grr(C∞)] of homotopy
classes of maps from X to the infinite Grassmannian Grr(C∞) = BU(r). Since H∗(Grr(C∞)) is a
polynomial ring Z[c1, . . .cn], this allows to define characteristic classes of a vector bundle.

In topology, it is easier to classify vector bundles up to stable equivalence (i.e., up to adding
a trivial vector bundle). Stable equivalence classes can be read off the topological Grothendieck
ring Ktop(X), which is the universal ring associated to all vector bundles on X with direct sum
and tensor operations. Again the topological group Ktop(X) is isomorphic to homotopy classes
[X ,BC×Z], where BC = lim→Grr(C2r). The K-ring is easier to compute and for example one
can show that

K∗
top(CP

n) � Z[ξ ]/ξ n+1.

Nevertheless, a complete topological classification of vector bundles on projective spaces is far
from being complete.

It is known that a topological rank r > n vector bundle on n-dimensional X is topologically
equivalent to a direct sum of a rank n vector bundle and the trivial vector bundle of rank (r−n).
So it is sufficient to classify vector bundles of rank r ≤ n. As an application of the Atiyah-Singer
index theorem, one can show that if E is a topological vector bundle on X then

∫
X

ch(E)ch(ξ ) tdX ∈ Z

for all classes ξ ∈ Ktop(X). In case H∗(X ,Z) has no torsion, then by the Bǎnicǎ-Putinar result
(see [BP]), if Chern classes satisfy the above condition then there exists a unique topological
rank r = n vector bundle with such Chern classes.

In case of projective spaces, the above conditions on Chern classes of topological vector
bundles can be written quite explicitly, and they are known as Shwarzenberger conditions. In
case of lower rank r < n on CPn, there can be several different topological structures for a given
rank and collection of Chern classes. The first such example was given by M. Atiyah and E.
Rees, who classified topological rank 2 vector bundles on CP3 and in particular showed that
there are exactly two different structures if c1 ≡ 0 (mod 2). Later, vector bundles on CPn

were classified for n ≤ 6, but it is not known which of these vector bundles can be realized as
algebraic vector bundles. This is connected to the Hartshorne’s conjecture saying that there are
no indecomposable rank 2 vector bundles on CPn for large n (n ≥ 7, or maybe even n ≥ 5 as no
examples are known).
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In the rest of the paper we will be mainly interested in algebraic vector bundle on surfaces.
In this case to each vector bundle E one can associate its rank r, the first Chern class c1E ∈
H2(X ,Z)∩H1,1(X) and the second Chern class c2E ∈ H4(X ,Z) � Z. These are all topological
invariants and all triples (r,c1,c2) with r ≥ 2 can be realized as algebraic vector bundles (R.
Schwarzenberger).

1.2 Semistability and its properties

Let us fix topological invariants of a vector bundle. As usual in algebraic geometry, instead of
a geometric vector bundle we study the associated locally free coherent sheaf of its sections.
In general, we cannot expect that the set of all vector bundles with fixed invariants have a nice
structure of algebraic variety. The necessity of restricting to some subset of the set of all vector
bundles can be understood by the following standard example.

Example 1.2.1. Consider the set {�(n)⊕�(−n)} on P1. The topological invariants are fixed
but we have infinitely many points which cannot form a nice algebraic variety. Moreover, there
exists a family of vector bundles {Et}t∈C such that Et ��⊕� for t �= 0 but E0 ��(n)⊕�(−n)
(Exercise: construct such a family). So the point corresponding to �⊕� would not be closed in
the moduli space.

The natural class of vector bundles which admits a nice moduli space comes, at least in
the curve case, from Mumford’s Geometric Invariant Theory (GIT). The corresponding vector
bundles are called stable (or semistable). However, in higher dimensions if we want to get a
projective moduli space then we need to add some non-locally free sheaves at the boundary of
the moduli space. So we need to define semistability and stability in the more general context.

Let X be a smooth n-dimensional projective variety defined over an algebraically closed field
k and let H be an ample divisor on X . For any rank r > 0 torsion free sheaf E we define its slope
by

μ(E) =
c1E ·Hn−1

r
,

where c1E denotes the first Chern class of the line bundle (
∧r E)∗∗. The Hilbert polynomial

P(E) is defined by P(E)(k) = χ(X ,E ⊗�X(kH)). The reduced Hilbert polynomial is defined as
p(E) = P(E)/r.

Definition 1.2.2. 1. E is called slope H-stable if and only if for all subsheaves F ⊂ E with
rkF < rkE we have

μ(F) < μ(E).

2. E is called Gieseker H-stable if and only if for all proper subsheaves F ⊂ E

p(F) < p(E)

(i.e., the inequality holds for large values k).
Similarly, one can define (slope or Gieseker) H-semistability by changing the strict inequality

sign < to ≤.
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Restricting our attention to semistable sheaves is not very restrictive since each (torsion-free)
sheaf has a canonical filtration with semistable quotients.

Let us fix a torsion free sheaf E on X . Consider the set {μ(F)F ⊂ E}. This set has a maximal
element μmax = μmax(E) and the set {F : F ⊂ E, such that E/F is torsion-free, μ(F) = μmax}
contains a sheaf E1 of largest rank. This element is the largest element in this set with respect to
the inclusion relation and it is called the maximal destabilizing subsheaf of E.

Now we consider the maximal destabilizing subsheaf E ′
2 in E/E1 and set E2 = p−1E ′

2 for the
natural projection p : E → E/E1. Iterating this process we get the unique filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = E

such that

1. all the quotients Fi = Ei/Ei−1 are semistable, and

2. μmax(E) = μ(F1) > μ(F2) > .. . > μ(Fm) = μmin(E).

This filtration is called the Harder–Narasimhan filtration of E.

1.2.1 Properties of slope semistability in characteristic 0:

1. If E1, E2 are slope H-semistable torsion free sheaves then E1 ⊗E2/Torsion is also slope
H-semistable.

2. If f : Y → X is a finite map between smooth projective varieties then a torsion free sheaf
F is slope H-semistable if and only if f ∗F is slope f ∗H-semistable.

1.3 Bogomolov’s inequality

Now let us consider the following question: which Chern classes can be realized by semistable
vector bundles?

The class Δ(E) = 2rc2E − (r−1)c2
1E is called the discriminant of E. In the surface case we

will not distinguish between Δ(E) and its degree
∫

X Δ(E).
A partial answer to the above question is given by the following theorem.

THEOREM 1.3.1 (BOGOMOLOV). Let X be a smooth complex projective surface. Then for any
torsion free (slope) H-semistable sheaf E we have

Δ(E) ≥ 0.

Proof. We can assume that E is a locally free sheaf. Indeed, for any torsion free slope H-
semistable sheaf E on a smooth surface, the sheaf E∗∗ is locally free, slope H-semistable and
Δ(E∗∗) ≤ Δ(E).

For simplicity, we also assume that c1E = 0. The general case can be reduced to this one
using either the Q-vector bundle E(− 1

r detE) or the vector bundle � ndE.
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Now let us note that SnE is slope H-semistable (this follows from 1.2.1.1). Hence for C ∈ |kH|
and k > 0 we have

h0(SnE(−C)) = 0.

Therefore from the short exact sequence

0 → OX(−C) →�X →�C → 0

tensored with SnE we get

h0(SnE) ≤ h0(SnE(−C))+h0(SnEC) = h0(SnEC).

Considering Y = P(EC) →C we see that

h0(SnEC) = h0(Y,�
P(EC)(n))

by the projection formula. Since dimY = r there exists a constant C such that

h0(SnE) ≤ h0(Y,�
P(EC)(n))≤C ·nr

for all n > 0. Similarly, using restriction to C ∈ |kH| for large k, one can see that there exists a
constant C′ such that

h2(SnE) = h0(SnE∗ ⊗KX) ≤C′ ·nr

for all n > 0.
Therefore

χ(X ,SnE) ≤ h0(SnE)+h2(SnE) ≤ (C +C′)nr.

But by Exercise 1.5.10 we have

χ(X ,SnE) = −Δ(E)
2r

nr+1

(r +1)!
+O(nr),

so Δ(E) ≥ 0.

The above proof of Bogomolov’s theorem follows quite closely Y. Miyaoka’s proof from
[Mi].

PROPOSITION 1.3.2 ([LA1]). Let X be a smooth complex projective surface and let H be an
ample divisor on X. Then for any rank r torsion free sheaf E we have

H2 ·Δ(E)+ r2(μmax −μ)(μ −μmin) ≥ 0.

Proof. Let 0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = E be the Harder–Narasimhan filtration. Set Fi = Ei/Ei−1,
ri = rkFi, μi = μ(Fi). Then by Bogomolov’s inequality and the Hodge index theorem
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Δ(E)
r

= ∑ Δ(Fi)
ri

− 1
r ∑

i< j
rir j

(
c1Fi

ri
− c1Fj

r j

)2

≥ − 1
rH2 ∑

i< j
rir j

((
c1Fi

ri
− c1Fj

r j

)
H

)2

= − 1
rH2 ∑

i< j
rir j(μi −μ j)

2.

(The Hodge index theorem says that (DH)2 ≥ D2 ·H2 for any divisor D.) Now the proposition
follows from the following lemma:

LEMMA 1.3.3. Let ri be positive real numbers and μ1 > μ2 > .. . > μm real numbers. Set r = ∑ri
and rμ = ∑riμi. Then

∑
i< j

rir j(μi −μ j)
2 ≤ r2(μ1 −μ)(μ −μm).

Proof. Let us note that

∑
i< j

rir j(μi −μ j)
2 = r

(
m−1

∑
i=1

(
∑
j≤i

r j(μ j −μ)

)
(μi −μi+1)

)
.

Using ∑ j≤i r jμ j ≤ (∑ j≤i r j)μ1 and simplifying yields the required inequality.

1.4 Restriction theorems

As an application of the above proposition we get the following effective restriction theorem (see
[La1]). A weaker version of this theorem was proved by F.A. Bogomolov (see [HL, Theorem
7.3.5]).

THEOREM 1.4.1. Let E be a rank r ≥ 2 vector bundle on a smooth complex projective surface
X. Assume that E is slope H-stable. Let D ∈ |kH| be a smooth curve. If

k ≥ r−1
r

Δ(E)+1

then ED is stable.

Proof. Assume that ED is not stable. Then there exists a subsheaf S ⊂ ED such that μ(S) ≥
μ(ED). Let us take the maximal subsheaf with this property. In this case the quotient T = (ED)/S
is a vector bundle on D (it is sufficient to check that T is torsion free; if it has a torsion then the
kernel S′ of ED → T/Torsion contains S and μ(S′) ≥ μ(S)).
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Let G be the kernel of the composition E → E|D → T . The sheaf G is called an elementary
transformation of E along T . Set ρ = rkS. Then rkE = rkG = r and rkT = r−ρ (as a vector
bundle on D).

Computing Δ(G) (use Exercise 1.5.11) we get

Δ(G) = Δ(E)−ρ(r−ρ)D2 +2(r degD T − (r−ρ)Dc1(E)).

By assumption μ(T ) ≤ μ(E|D), so

Δ(G) ≤ Δ(E)−ρ(r−ρ)D2.

Using the stability of E we get

μmax(G)−μ(G) = μmax(G)−μ(E)+
r−ρ

r
DH ≤ r−ρ

r
kH2 − 1

r(r−1)
.

Note that we have two short exact sequences:

0 → G → E → T → 0

and
0 → E(−D) → G → S → 0.

In particular G∗ ⊂ (E(−D))∗ and

μ(G)−μmin(G) = μ(E(−D))−μmin(G)+
ρ
r

DH

= μmax(G∗)−μ((E(−D))∗)+
ρ
r

DH ≤ ρ
r

kH2 − 1
r(r−1)

.

Hence, applying Proposition 1.3.2 to G we obtain

0 ≤ H2Δ(G)+ r2(μmax(G)−μ(G))(μ(G)−μmin(G))

≤ H2Δ(E)−ρ(r−ρ)(H2)2k2 + r2
(

r−ρ
r

kH2 − 1
r(r−1)

)(
ρ
r

kH2 − 1
r(r−1)

)
.

Therefore
rH2

r−1
k ≤ H2 ·Δ(E)+

1
(r−1)2 ,

which contradicts our assumption on k.

Remark. Note that if E is torsion free then the restriction ED is also torsion free for a general
divisor D in a base point free linear system (see [HL, Corollary 1.1.14] for a precise statement).

As a corollary to Theorem 1.4.1 we get an effective restriction theorem for semistable sheaves.
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COROLLARY 1.4.2. Let E be a torsion free sheaf of rank r ≥ 2. Assume that E is slope H-
semistable. Let D be a general curve of a base point free linear system |kH|. If

k ≥ r−1
r

Δ(E)+1

then ED is semistable.

Proof. Let 0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = E be the Jordan–Hölder filtration of E (i.e., such a fil-
tration that all the quotients are slope H-stable torsion free sheaves; compare with the Harder–
Narasimhan filtration). Set Fi = Ei/Ei−1 and ri = rkFi. Let D ∈ |kH| be any smooth curve such
that all the sheaves (Fi)D have no torsion. Then the corollary follows from Theorem and the
following inequality

Δ(E)
r

≥ ∑ Δ(Fi)
ri

(cf. the proof of Proposition 1.3.2).

1.5 Semistability in positive characteristic

In positive characteristic, to obtain analogues of properties 1.2.1 we need a notion of strong
semistability. Let X be defined over a characteristic p field and let F : X → X be the absolute
Frobenius morphism, obtained as identity on topological spaces and raising to p-th power on
sections of �X .

We say that a sheaf E is strongly slope H-semistable, if for any integer k, the pull back (F k)∗E
is slope H-semistable.

S. Ramanan and A. Ramanathan showed that in positive characteristic a tensor product of
strongly slope H-semistable sheaves is strongly slope H-semistable. It is easy to see that Property
1.2.1.2 also holds for strongly slope semistable sheaves.

Theorem 1.3.1 still holds with a similar proof as before. The only difference is in showing
that h2(SnE) = O(nr), because in general (SnE)∗ is no longer isomorphic to Sn(E∗) for sheaves
with trivial determinant. In this case one can still prove it using twice Serre’s duality:

h2(X ,SnE) = h0(X ,(SnE)∗ ⊗KX) ≤ h0(C,(SnE)∗ ⊗KX ⊗�C) = h1(C,SnE ⊗�C(C))

and Exercise 1.5.1. Alternatively, one can replace symmetric powers of E by Frobenius pull
backs and suitably change the computation.

This analogue of Bogomolov’s inequality and generalizations of Proposition 1.3.2 and Corol-
lary 1.4.2 imply boundedness of H-semistable sheaves on surfaces (see Lecture 3).

Remaining properties of semistability, some of which were used before, are put into the
following exercises.

EXERCISE 1.5.1. Let X be a projective scheme of dimension d over an algebraically closed field
k. Let F be a coherent sheaf on X . Then for any line bundle L on X we have

hi(X ,L⊗n ⊗F) = O(nd)

(Hint: use Grothendieck’s method of dévissage).
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EXERCISE 1.5.2. Use Bogomolov’s theorem to prove the Kodaira vanishing theorem on surfaces:
if L is an ample line bundle on a smooth complex projective surface then H 1(X ,KX + L) = 0
(Hint: suppose otherwise and use Serre’s duality H1(KX + L) = (Ext1(L,�X))∗ to construct a
vector bundle which violates Bogomolov’s inequality).

EXERCISE 1.5.3. M. Raynaud constructed a smooth projective surface X over an algebraically
closed field of characteristic p and an ample line bundle L on X such that H1(X ,L−1) �= 0.
Use this and Exercise 1.5.2 to construct a counterexample to Bogomolov’s theorem for slope
semistable sheaves in characteristic p.

EXERCISE 1.5.4. Let X be a smooth projective surface X over an algebraically closed field of
characteristic p. One can show that although Bogomolov’s inequality fails there exists some
α(r,X ,H) depending only on r, X and H such that Δ(E) ≥ α(r,X ,H) any slope H-semistable
torsion free sheaf E. Use this and Exercise 1.5.3 to construct a counterexample to Property
1.2.1.2 in characteristic p.

EXERCISE 1.5.5. Any slope semistable torsion free sheaf E on P2 is strongly slope semistable.
Use this to show that in arbitrary characteristic Theorem 1.4.1 holds on P2.

EXERCISE 1.5.6. Show that Δ(T
P2) = 3 and for all smooth curves C ∈ |�

P2(k)| with k ≤ 2,
the restriction EC is not stable. Theorem 1.4.1 ensures that EC is stable for any smooth curve
C ∈ |�

P2(k)| if k ≥ 3 (by Exercise 1.5.5 this holds in any characteristic).

EXERCISE 1.5.7. Let F : X → X be the absolute Frobenius morphism. Use Exercise 1.5.4 and
the fact that F∗E ⊂ SpE for any vector bundle E to show that 1.2.1.1 also fails in characteristic
p.

EXERCISE 1.5.8. Show that both Properties 1.2.1 fail if slope semistability is replaced by Gieseker
semistability.

EXERCISE 1.5.9. Show that both Properties 1.2.1 fail if slope semistability is replaced by slope
stability.

Partial solution: Let E be a slope H-stable with degree zero. Then E ∗ is also slope H-
stable. If 1.2.1.1 holds for stability then E ⊗E ∗ is slope stable. But �X is a direct summand in
� ndE = E ⊗E∗ (at least in characteristic 0), a contradiction.

EXERCISE 1.5.10. Let E be a vector bundle on a smooth surface X . Use the Leray–Hirsch
theorem and the Riemann–Roch formula on P(E) to prove that

χ(X ,SnE) = −Δ(E)
2r

nr+1

(r +1)!
+O(nr).
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EXERCISE 1.5.11. Let E be a rank r vector bundle on a smooth surface X . Let G be an elementary
transformation of E along a vector bundle T on a smooth curve D. Show that G is a rank r vector
bundle on X and we have

c1G = c1E − rkT ·D
and

c2G = c2E +degD T − rkT (D · c1E)+
rkT (rkT −1)

2
D2.

(Hints: The first equality follows since T is trivial outside finitely many points of D, c1T =
c1(�

rkT
D ) and from

0 → �(−D) → �X → �D → 0.

The second equality follows from the Riemann–Roch formula.)

2 Lecture 2

• Moduli functors and moduli spaces: definition and examples
• Geometric invariant theory
• Moduli space of semistable sheaves

2.1 Moduli functors and moduli spaces

We are interested in providing the set of isomorphism classes of vector bundles on a fixed variety
with a natural scheme structure. To explain what “natural” means we need a few notions from
category theory. They will also be useful in describing some well-known parameter spaces like
the Hilbert scheme, Grothendieck’s Quot-scheme, etc.

Let � be a category (e.g., the category Sch/S of S-schemes of finite type) and let� : � →
Sets be a contravariant functor, called in the following a moduli functor. For an object X of �
elements of� (X) will be called families. By hX :� → Sets we will denote the functor of points
of X defined by hX(Y ) = Hom

�
(Y,X).

Definition 2.1.1. (1)� is corepresented by an object M of � if there is a natural transformation
α :� → hM such that for any natural transformation β :� → hN there exists a unique morphism
ϕ : M → N such that β = hϕα .

(2)� is represented by an object M of � if it is isomorphic to the functor hM.

Let � is a moduli functor. If the functor� is corepresented by M then we say that M is a
moduli space for � . If � is represented by M (or more precisely by a natural transformation
� → hM) then we say that M is a fine moduli space for the functor� .

A moduli space M for � is fine if and only if there exists a universal family U ∈� (M)
such that the natural transformation hM →� , given on Hom

�
(Y,M) →� (Y ) via g → g∗U , is

an isomorphism.

We show a few basic moduli spaces in a growing order of generality.
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2.1.1 Hilbert scheme.

Let� ilb(X/k) be a moduli functor Sch/k → Sets defined by

� ilb(X/k)(S) = { subschemes Z ⊂ S×X , flat and proper over S}.

Let X be a projective scheme with an ample line bundle �X(1). Let Z be a subscheme of X .
We define the Hilbert polynomial of Z as

P(Z)(m) := χ(Z,�Z ⊗�X(1)⊗m).

Let now Z
i

↪→ S×X
p→ S and let f = p◦ i. Let Zs := f−1(s) be the fiber of f over s ∈ S. Then

we define a subfunctor of� ilb(X/k) by

� ilbP(X/k)(S) = { subschemes Z ⊂ S×X , flat and proper over S with P(Zs) = P}.

THEOREM 2.1.2. The functor � ilbP(X/k) is representable by a projective k-scheme. The fine
moduli space of this functor is called the Hilbert scheme and denoted by HilbP(X/k).

EXERCISE 2.1.3. Let P be a constant polynomial equal to n. Then HilbP(X/k) is the Hilbert
scheme of n points in X . Show that if X is a curve then HilbP(X/k) = SnX . What is the universal
object in this case?

2.1.2 Grothendieck’s Quot scheme

Let f : X → S be a projective morphism of Noetherian schemes and let �X(1) be an f -ample
line bundle on X . Let E be an S-flat coherent sheaf on X . We want to define a scheme which
parametrizes pairs (s,F) consisting of a point s ∈ S and a coherent quotient sheaf F of Es = EXs
with fixed Hilbert polynomial P. To this end let us first define the functor�uot : Sch/S → Sets,
which to each S-scheme T associates the set of all T -flat quotients

ET = �T ⊗E → F

of coherent sheaves on Y = T ×S X such that for all t ∈ T the sheaf Ft = (F)Yt
on the fiber

Yt = Speck(t)×T Y of Y → T has Hilbert polynomial P.

THEOREM 2.1.4. The functor�uot is represented by a projective S-scheme QuotX/S(E;P)→ S.
This scheme is called the Quot-scheme.

Obviously, the Quot-scheme generalizes the classical Grassmann variety. In the special case
when E =�X the Quot scheme gives the Hilbert scheme parametrizing S-flat subschemes of the
scheme X with given Hilbert polynomial P.
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2.1.3 Flag scheme

Let E be an S-flat coherent sheaf on X and let Pi, i = 1, . . . ,k, be some fixed polynomials.
Consider the functor � lag : Sch/S → Sets, which to each S-scheme T associates the set of

all flags
0 ⊂ F1 ⊂ . . . ⊂ Fk = ET =�T ⊗E

of coherent subsheaves on Y = T ×S X such that

1. the factors gri = Fi/Fi−1 of this filtration are T -flat, and

2. for all t ∈ T the sheaf gri,t = gri |Yt
has Hilbert polynomial Pi.

THEOREM 2.1.5. The functor� lag is represented by a projective S-scheme FlagX/S(E;P1, . . . ,Pk)→
S, called the flag scheme.

EXERCISE 2.1.6. Construct the flag scheme FlagX/S(E;P1, . . . ,Pk) → S using existence of the
Quot-schemes.

2.2 Geometric invariant theory (GIT)

Example 2.2.1. (A categorical quotient) Let a k-group G acts on a k-scheme X . Then for any
k-scheme T the T -points of G, i.e., hG(T ), also form a group which naturally acts on hX(T ).
So we can consider the functor hX/hG : Sch/k → Sets, which to any k-scheme T associates the
set of hG(T )-orbits of hX(T ). If this functor is corepresented by a scheme Y , then Y is called a
categorical quotient of X by G and denoted by X/G.

Categorical quotients do not need to exist in general. But they exist if G is a reductive group
acting on an affine scheme.

Let X be a k-scheme with the action σ of a k-group G:

G×X
σ→ X

p2 ↓
X

Definition 2.2.2. � is G-linearized if there exists an isomorphism

Φ : σ ∗
� → p∗2�

satisfying the cocycle condition.

From now on we assume that X is a projective k-scheme and G is a reductive group (e.g.,
G = GL(n)). Let L be an ample G-linearized line bundle on X .

We define (semi)stable points of the polarized scheme (X ,L) as follows:

Definition 2.2.3. 1. Xss(L) := {x ∈ X : ∃n ∃s ∈ H0(X ,nL)G| s(x) �= 0}.
2. Xs(L) := {x ∈ X : x ∈ Xss(L),Gx is finite, and Gx ⊂ X ss(L) is closed}.

12



THEOREM 2.2.4. 1. There exists a categorical quotient X ss(L)→ Xss(L)/G. k-points of the quo-
tient X ss(L)/G correspond to closed G-orbits in X ss(L) (but not all G-orbits need to be closed).

2. There exists a categorical quotient X s(L) → Xs(L)/G. The fibers of this map are closed
G-orbits.

To determine X s(s)(L) we will use the following theorem:

THEOREM 2.2.5. (the Hilbert-Mumford criterion) A point x ∈ X is semistable (stable) if and only
if for all non-trivial one-parameter subgroups λ :Gm → G we have

μL(x,λ ) ≥ 0 (μL(x,λ ) > 0, respectively).

To define μL(x,λ ) let us draw a diagram:

A1 \{0} =Gm
λ→ G g

↓ ↓ σ ↓
A1 f→ X gx = σ(g,x)

0 → f (0) = limt→0 λ (t)x

Let Φ be the linearization of L. This linearization induces on the fibres of L maps

Φ : L( f (gx)) → L( f (x)).

Clearly, f (0) is a fixed point of the action of Gm, so Gm acts on the fibre L(F(0)). Let r be the
weight of this action. Then we set

μL(x,λ ) := −r.

2.3 Moduli space of semistable sheaves

In these lectures we are interested in the following moduli functor.
Let (X ,�X(1)) be a smooth polarized projective scheme over an algebraically closed field k.

For a k-scheme S let p and q denote the projections of S×k X to S and X , respectively. Let us
define an equivalence relation ∼ on S-flat families of sheaves on X by F1 ∼ F2 if and only if there
exists a line bundle� on S such that F1 � F2 ⊗ p∗� . Let us note that fibrewise the families F1
and F2 define the same family of sheaves on X . Therefore it is natural to introduce the following
moduli functor�P : Sch/k → Sets (and� s

P : Sch/k → Sets), which sends a k-scheme S to the
set of isomorphism classes of S-flat families of Gieseker semistable (respectively, stable) sheaves
on X with Hilbert polynomial P modulo the relation ∼.

THEOREM 2.3.1. There exists a moduli scheme MP for the functor �P. It is a projective k-
scheme of finite type and it contains an open subscheme Ms

P, which is the moduli scheme for
� s

P.
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2.3.1 Geometric meaning of points of the moduli space of sheaves

Let E be a Gieseker semistable torsion free sheaf. Then either it is Gieseker stable or there exists
a proper subsheaf E1 ⊂ E such that p(E1) = p(E). By passing to a smaller subsheaf if necessary
we can assume that E1 is Gieseker stable. Then the quotient E/E1 is Gieseker semistable with
p(E/E1) = p(E).

By induction on the rank we can therefore construct a filtration 0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = E
in which all the quotients Ei/Ei−1 are Gieseker stable and p(Ei/Ei−1) = p(E). Such a filtration
is called a Jordan–Hölder filtration of E (but unlike the Harder–Narasimhan filtration it is not
unique).

Let us set grJH E =
⊕

Ei/Ei−1.

EXERCISE 2.3.2. Show that grJH E does not depend on the choice of Jordan–Hölder filtration.

Definition 2.3.3. Two Gieseker semistable sheaves E and E ′ with p(E) = p(E ′) are called S-
equivalent if grJH E � grJH E ′.

An extension of a sheaf F by a sheaf G is an exact sequence of sheaves 0 →G → E → F → 0.
The set of all extensions is parametrized by a k-vector space Ext1(F,G). Moreover, there exists
the universal extension � , i.e., such a family of sheaves on Ext1(F,G)×X that �η = � |{η}×X is

the extension defined by η ∈ Ext1(F,G).
If we have a Gieseker semistable sheaf E and E1�E is Gieseker semistable subsheaf with the

same reduced Hilbert polynomial then the universal extension induces a morphism Ext1(E/E1,E1)→
M.

On the lineA1 defined by η = [E]∈ Ext1(E/E1,E1) the universal extension � satisfies �tη �
E for t �= 0 and �0 � E1 ⊕E/E1. Therefore the map A1 → M is constant (since M is separable)
which shows that E defines the same point in M as E1 ⊕E/E1. Similarly, one can show that E
defines the same point as grJH E.

One can also show that two Gieseker semistable sheaves which are not S-equivalent define
different points in MP.

COROLLARY 2.3.4. MP parametrizes S-equivalence classes of Gieseker semistable sheaves. The
subscheme Ms

P parametrizes isomorphism classes of Gieseker stable sheaves.

2.3.2 Relative moduli spaces of pure sheaves

There exists a more general version of this theorem which will also be useful in the following.
Before formulating this more general theorem we need to generalize the notion of Gieseker
semistability and stability to the so called pure sheaves.

A sheaf E is called pure if it is torsion free on its scheme-theoretical support. Equivalently,
for any subsheaf F ⊂ E the dimension of the support of F is equal to the dimension of the support
of E (this is denoted by dimE).

The Hilbert polynomial of any coherent sheaf E can be written as a sum

P(E)(k) = χ(X ,E(k)) =
dimE

∑
i=0

αi(E)
ki

i!
.
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Then we define the reduced Hilbert polynomial p(E) = P(E)
αdimE(E) . As in Definition 1.2.2 a pure

sheaf E is called Gieseker semistable (stable) if for any proper subsheaf F ⊂ E we have p(F) ≤
p(E) (p(F) < p(E), respectively).

Let f : X → S be a projective morphism of k-schemes of finite type with geometrically con-
nected fibers and let �X(1) be an f -ample line bundle. Let P be a fixed polynomial.

As before we define the moduli functor�X/S(P) : Sch/S → Sets as

(�X/S(P))(T ) =

⎧⎨
⎩

equivalence classes of families of pure Gieseker
semistable sheaves on the fibres of T ×S X → T
which are T -flat and have Hilbert polynomial P

⎫⎬
⎭ .

THEOREM 2.3.5. There exists a projective S-scheme MP(X/S) of finite type over S, which is the
moduli space for the functor�P(X/S). Moreover, there is an open scheme Ms

P(X/S)⊂MP(X/S)
which is the moduli space for the subfunctor of families of geometrically Gieseker stable sheaves.

2.3.3 Picard scheme

Let X → T be a flat projective morphism of k-schemes of finite type. Assume that geometric
fibres of this morphism are varieties. The Picard scheme Pic P

X/T parametrizes line bundles with
fixed Hilbert polynomial P on fibres of X → T . In general, it is a quasi-projective scheme but it
is not a fine moduli scheme.

However, if X → T has a section then it is a fine moduli scheme. In this case there exists a
universal family of line bundles on X ×T PicP

X/T . This family is called the Poincare line bundle
and denoted by	 .

If X is a smooth projective variety over an algebraically closed field k then Pic P
X = PicP

X/k

is a projective scheme. If P is the Hilbert polynomial of �X then Pic P
X is a group scheme with

1 = [�X ] and tensor product as a group action. If chark = 0 then by Cartier’s theorem any group
scheme is smooth, so in particular Pic P

X is smooth.
Finally let us note that for any two polynomials P1 and P2 representing line bundles�1 and

�2 the corresponding Picard schemes are isomorphic. An isomorphism between Pic P1
X

and PicP2
X

is given, e.g., by tensoring with�2 ⊗� ∗
1 .

EXERCISE 2.3.6. Prove that the Picard scheme Pic P
X/T is an open subset of the moduli space

MP(X/T ).

EXERCISE 2.3.7. Let X be a smooth projective k-variety and let P be the Hilbert polynomial of
a line bundle. Prove that the whole moduli space MP(X/k) of torsion-free sheaves represents a
suitably defined Picard functor. In particular, in this case Pic P

X/k is a projective scheme.
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3 Lecture 3

• Boundedness of semistable sheaves
• Construction of the moduli space of semistable sheaves

3.1 Boundedness of semistable sheaves

Corollary 1.4.2 implies boundedness of the family of semistable sheaves on complex surfaces.
More precisely, there exists a scheme S of finite type over C and an S-flat sheaf F on S×X such
that the set {Fs}s∈S, where Fs = F ⊗�{s}×X , contains all slope H-semistable sheaves with fixed
topological invariants.

This can be proved in a few steps. Let us first recall the Castelnuovo-Mumford criterion:

THEOREM 3.1.1. Let X be a smooth projective variety with �X(1) very ample. Let E be a
coherent sheaf on X. If hi(X ,E(−i)) = 0 for all i > 0 then

1. E is globally generated, and

2. hi(X ,E(m− i)) = 0 for all i > 0 and all m ≥ 0.

In the first step we need to prove boundedness on curves:
Boundedness for curves: Let C be a smooth curve. Let E be a sheaf on C with rkE = r.

Then
μmin(E) > μ(ωC(−m)) = degωC −mdeg�C(1)

So if m >
deg KC−μminE

deg�C(1) then h1(C,E(m)) = Hom(E,ωC(−m)) = 0. By Theorem 3.1.1 E(m +1)
is globally generated. Hence for all sheaves E with fixed Hilbert polynomial P and μmin(E)
bounded from below we can find m0 such that all E(m0) are quotients of �P(m0)

X
. So they form

a bounded family as follows, e.g., from existence of Quot-schemes (see Theorem 2.1.4). In
particular semistable vector bundles of fixed degree and rank form a bounded family.

Boundedness for surfaces:
For simplicity we will consider only stable vector bundles (locally free sheaves). Then The-

orem 1.4.1 implies that for all stable locally free sheaves E on a complex surface X , with fixed
Hilbert polynomial (or rank, c1EH and Δ(E)), there exists a fixed curve C such that the restriction
EC is stable. Then it is easy to see, e.g., applying Theorem 3.1.1 and Serre’s vanishing theorem
that there exists m1 such that E(m1) is globally generated and we can conclude as before.

More generally, we have the following theorem due to Maruyama in the characteristic zero
case and the author in general:

THEOREM 3.1.2. (Boundedness Theorem) The family of slope semistable sheaves with fixed
numerical data is bounded. This means that for a fixed polynomial P there exists a scheme S of
finite type over k and an S-flat coherent sheaf � on X × S, such that the set {�s}s∈S contains
isomorphism classes of all slope semistable sheaves with Hilbert polynomial P.
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This implies that the moduli space of Gieseker semistable sheaves on X is a projective scheme
of finite type.

For the construction of the moduli space we also need a good bound on the number of section
of a sheaf:

THEOREM 3.1.3. Let X be a smooth n-dimensional projective variety with a very ample line
bundle H. Then for any rank r torsion free sheaf E on X we have

h0(X ,E)≤
{

rHn
( μmax(E)

Hn +ln(r+1)+n
n

)
if μmax(E) ≥ 0,

0 if μmax(E) < 0.

In characteristic zero the above theorem was proven by C. Simpson and J. Le Potier (see
[HL, Theorem 3.3.1]), using the Grauert-Mülich restriction theorem. In positive characteristic
this proof does no longer work and one needs to use Bogomolov’s inequality (see [La2]).

Using Theorem 3.1.3 one can prove the following characterization of semistable sheaves
among torsion free sheaves:

THEOREM 3.1.4. Let P be a fixed polynomial and let m be a sufficiently large integer. Then for
a torsion free sheaf with Hilbert polynomial P the following conditions are equivalent:

1. F is Gieseker semistable

2. h0(F(m)) = P(m) and for all subsheaves F ′ of F with rank 0 < r′ = rkF ′ < r = rkF we
have

h0(F ′(m)) ≤ r′P(m)
r

with equality if and only if P(F ′) = P(F).

EXERCISE 3.1.5. Prove that the following implications hold:

E is slope stable ⇒ E is slope semistable
⇓ ⇑

E is Gieseker stable ⇒ E is Gieseker semistable

3.2 Construction of the moduli space MP.

By Theorem 3.1.2 and Exercise 3.1.5 the family of all Gieseker semistable sheaves with fixed
Hilbert polynomial P is bounded. This implies that there exists an integer m0 such that for all
m ≥ m0 and for all Gieseker semistable sheaves E with Hilbert polynomial P

1. E(m) is globally generated,

2. Hi(X ,E(m)) = 0 for i > 0.

17



In particular, these conditions imply that h0(E(m)) = χ(X ,E(m)) = P(m).

Set V = k⊕P(m) and� = V ⊗�X(−m). Consider the Quot-scheme Q = Quot(� ;P).
Let R be a subset of Q parameterizing all quotients [� → E] such that E is Gieseker

semistable and the induced map V = H0(X ,� (m)) → H0(X ,E(m)) is an isomorphism.
For any point [� → E] ∈ R and any isomorphism V →V we get a point in R corresponding

to the composition
V ⊗�X(−m) →V ⊗�X(−m)→E.

Therefore GL(V ) acts on R and, at least set theoretically, the quotient of R by GL(V ) param-
eterizes Gieseker semistable sheaves on X . To get a scheme structure on this quotient we need to
use Theorem 2.2.4.

To construct a GIT quotient first we need to find a GL(V )-linearized polarization � on R.
There are two different constructions of polarizations and both of them are used in the description
of line bundles on the moduli space. One of them is due to C. Simpson and the other is due to
D. Gieseker, and although it is less natural it was constructed much earlier. The problem with
Gieseker’s construction is that it does not easily generalize to pure sheaves.

In Simpson’s construction we consider

�l := det(p∗(F̃ ⊗q∗�X(l))),

where F̃ is the universal quotient sheaf on the Quot-scheme. For large l this line bundle is very
ample on Q. The Quot-scheme is constructed as a subscheme of certain Grassmannian and �l
comes from the Plücker embedding of this Grassmannian into a projective space.

In Gieseker’s construction the constructed line bundle is not ample on Q but only on R.
To any family F of sheaves on a smooth projective variety X/k parametrized by S one can

associate the family detF of determinant line bundles. This induces a natural transformation of
functors�P and	icX . Since the functor	icX is represented by PicX we get a map det : S →
PicX such that detF � det∗	⊗ p∗� for a certain line bundle� on S.

If we make this construction for the universal quotient V ⊗ q∗�X(−m) → F̃ on Q×X then
we get a line bundle 
 =�

R
on the closure of R in Q.

This line bundle 
 is also a quotient of det∗(
∧rV ⊗ p∗	∗(−rm)) and the quotient map

induces a morphism of schemes

ζ : R → PPicX (det∗(
∧r

V ⊗ p∗	∗(−rm)))

over PicX . One can easily see that ζ |R is injective, so
 = ζ ∗�P(1) is det-ample.

Once we constructed a GL(V )-linearized line bundle�l on R one has to prove that the points
of R correspond to semistable points of GL(V ) action on (R,�l) and the points of Rs (corre-
sponding to those points [� → E] ∈ R for which E is Gieseker H-stable) correspond to stable
points of GL(V ) action on (R,�l). Sice the center of GL(V ) acts on Q trivially, we need only to
find (semi)stable points for the SL(V )-action. This is the content of Theorem 3.2.2.
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Once we know it by Theorem 2.2.4 there exists a good quotient π : R → M and M is the
moduli space of Gieseker H-semistable sheaves. Moreover, the restriction π|Rs : Rs → Ms is a
geometric quotient (i.e., GL(V )-orbits of stable sheaves are closed).

By the properties of a GIT quotient, the points of M correspond to the closed orbits of GL(V )-
action on R. Therefore it is sufficient to identify such orbits. We used a slightly different method
of identifying points of the moduli space in 2.3.1.

For further use let us note the following theorem, which is not needed for the construction of
the moduli space:

THEOREM 3.2.1. Rs → Ms is a principal PGL(V )-bundle, locally trivial in the étale topology.

This follows from the fact that the scheme-theoretic stabilizer of the GL(V )-action at every
point of Rs is equal to AutE = k∗.

THEOREM 3.2.2. The set R
ss(�l) of semistable points of the action of SL(V ) on (R,(�l)R

) is
equal to R.

Proof. Let us take a point
[ρ : V ⊗�(−m) → F] ∈ Q

and a 1-parameter subgroup
λ :Gm → SL(V ).

We want to find [ρ] := limt→0 λ (t)[ρ] and the weight of the induced Gm-action on�l([ρ]).
To this end let us decompose V into weight-spaces for the inducedGm-action: V =

⊕
n∈ZVn,

where Gm acts on Vn with weight n. Let us set V≤n =
⊕

m≤nVm, F≤n = ρ(V≤n ⊗�(−m)) and
Fn := F≤n/F≤n−1. Then

[ρ] = [
⊕

Vn →
⊕

Fn].

Now we look for the weight of the action of Gm on the fiber�l([ρ]).
As Gm acts on Fn with weight n, it acts on Hi(Fn(l)) with the same weight n. Since the fiber

�l([ρ]) = detH∗((
⊕

Fn)(l)), Gm acts on�l([ρ]) with weight ∑n∈ZnP(Fn, l). So

μ�l ([ρ],λ ) = − ∑
n∈Z

nP(Fn, l).

Let us take a subspace V ′ ⊂ V . It gives the filtration together with weights defined up to
a multiple, so it is associated to a certain 1-parameter subgroup of SL(V ). Let us set F ′ =
ρ(V ′ ⊗�(−m)) and

ΘF(V ′) = dimV ·P(F ′, l)−dimV ′ ·P(F, l).

Using the Abel transformation we can rewrite the above expression for μ�l ([ρ],λ ) as

μ�l ([ρ],λ ) =
1

dimV ∑
n∈Z

ΘF(V≤n).

So we get the following corollary:

19



COROLLARY 3.2.3. A point [ρ :� → F ] ∈ Q is SL(V )-semistable if and only if for all V ′ ⊂V
we have ΘF(V ′) ≥ 0.

Unfortunately, usually one is not able to prove that SL(V )-semistable points of Q are in R.
The main problem is to prove that an SL(V )-semistable point of Q corresponds to a torsion free
sheaf (or it is a limit of such points). So we need to restrict to R. Then Theorem 3.1.4 the above
corollary imply the following finishing the construction:

COROLLARY 3.2.4. If l � 0 then [ρ : � → F] ∈ R is SL(V )-semistable if and only if F is
Gieseker semistable.

4 Lecture 4

• Line bundles on moduli spaces
• Strange duality

4.1 Line bundles on moduli spaces

4.1.1 Grothendieck’s K and K0 groups of sheaves on varieties

Let X be an n-dimensional Noetherian scheme. The Grothendieck group K(X) of coherent
sheaves on X is the quotient of the free abelian group generated by the coherent sheaves on
X by the subgroup generated by [F]− [F ′]− [F ′′], where F,F ′ and F ′′ are coherent sheaves in the
exact sequence

0 → F ′ → F → F ′′ → 0.

The Grothendieck group K0(X) of locally free sheaves is defined in the same way but using only
locally free sheaves and short exact sequences of locally free sheaves.

If X is smooth then K(X) � K0(X) (see Exercise 4.2.5) has structure of a commutative ring
with 1 = [�X ] and [F1] · [F2] := [F1⊗F2] for locally free sheaves F1 and F2.

In this case we can introduce a quadratic form χ : K(X)×K(X)→ Z. This is defined by

(a,b)→ χ(a ·b) =
∫

X
ch(a)ch(b) td(X)

for a,b∈K(X), where ch(x) is the Chern character of x and td(X) is the Todd class of the tangent
bundle of X .
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4.1.2 Line bundles defined by families of sheaves

A projective morphism f : X → S induces a homomorphism f ! : K(X) → K(S) defined by

f!([F]) = ∑
i≥0

(−1)i[Ri f∗F].

PROPOSITION 4.1.1. If f : X → S is a smooth projective morphism, S is a k-scheme of finite type
and E is an S-flat coherent sheaf on X then [E] ∈ K0(X) and f!([E]) ∈ K0(S). More precisely, E
has a locally free resolution E• such that all sheaves Ri f∗E j are locally free.

Let p and q denote natural projections of S×X to S and X , respectively. The above propo-
sition implies that if E is an S-flat family of sheaves on a smooth projective variety X then
[E] ∈ K0(S×X) and we have a map p! : K0(S×X) → K0(S). Therefore the following definition
makes sense:

Definition 4.1.2. For each such family E we define the homomorphism λE : K(X) → PicS by

λE(u) = det p!(q
∗u · [E]).

In this way we constructed line bundles on a scheme parametrizing a given family of sheaves
on X .

4.1.3 Line bundles on moduli spaces

We want to make a similar construction as above to construct line bundles on the moduli space.
If the moduli space MP is fine then there exists the universal sheaf � on M × X and λ

�

produces line bundles on MP for each class u ∈ K(X). In general MP is not fine and we cannot
expect existence of a homomorphism λ : K(X) → PicMP. However, such a homomorphism
exists if we restrict to some subspace of K(X).

Let c be a class in K(X). Then we can define the moduli space M(c) of Gieseker H-semistable
sheaves of class c. This is a well defined open and closed subscheme of MP for P defined by
P(m) = χ(X ,c · [�X(mH)]). We also set Ms(c) = Ms

P ∩M(c). We will produce line bundles on
M(c) and Ms(c).

Set
Kc = c⊥ = {u ∈ K(X) : χ(c ·u) = 0}

and
Kc,H = c⊥∩{1,h,h2, . . . ,hdimX}⊥⊥.

THEOREM 4.1.3. (1) There exists a group homomorphism λ s : Kc → PicMs(c) such that for
any S-flat family � of Gieseker H-stable sheaves of class c on X if Φ

�
: S → Ms(c) denotes the

classifying morphism then Φ∗
�
(λ s(u)) = λ

�
(u) for u ∈ Kc.

(2) (char k = 0) There exists a group homomorphism λ : Kc,H → PicM(c) such that for any
S-flat family � of Gieseker H-semistable sheaves of class c on X if Φ

�
: S → M(c) denotes the

classifying morphism then Φ∗
�
(λ (u)) = λ

�
(u) for u ∈ Kc,H.

(3) (char k = 0) For any u ∈ Kc,H the restriction of λ (u) to Ms(c) gives λ s(u).
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Proof. We will prove only the first part of the theorem. The rest can be proved in a similar way.
Let Rs(c) ⊂ R be an open subset of R used in the construction of the moduli space, corre-

sponding to stable sheaves of class c. Let u ∈ K(X) and set� = λ
F̃
(u), where F̃ is the universal

quotient sheaf on Rs(c)×X . � has a natural GL(V ) linearization coming from F̃ .
We want to check that if u ∈ Kc then� descends to a line bundle on Ms(c). To check it, it is

sufficient to check that for any point [ρ] = [ρ :� → E] ∈ Rs(c) the stabilizer of GL(V ) action
at [ρ] acts trivially on the fibre� ([ρ]).

The stabilizer of GL(V ) at ρ is equal to the image of a natural homomorphism AutE →
GL(V ) sending ϕ to H0(ρ(m))−1 ◦ H0(ϕ(m)) ◦ H0(ρ(m)) (this is well defined since by our
assumption H0(ρ(m)) is an isomorphism).

So we need to understand the action of AutE � k∗ on � ([ρ]). Since higher direct images
commute with base change we have � ([ρ]) � detH•(X ,E ⊗ u). Therefore A ∈ AutE acts by
Aχ(c·u) and this action is trivial if u ∈ Kc.

4.2 Strange duality

In the remaining part of this lecture (apart from the exercises) we assume that the base field has
characteristic zero.

4.2.1 The strange duality morphism

Let us take two classes c and c∗ in K(X) such that c∈Kc∗,H and c∗ ∈Kc,H (in particular χ(c ·c∗) =
0).

Then we can define �c,c∗ = λc(c∗) and �c∗,c = λc∗(c). Let p1 and p2 denote the projections
of M(c)×M(c∗) onto the first and the second factor, respectively. Let us take a line bundle
� = p∗1�c,c∗ ⊗ p∗2�c∗,c.

We will assume that X is either a curve or a surface. We will also make some mild assump-
tions on the classes c and c∗, e.g., we assume that the rank of c is positive and semistable sheaves
of class c∗ are pure of dimension (dimX −1). Then the line bundle� has the following universal
property:

PROPOSITION 4.2.1 (LE POTIER, [LP2]). For all S-flat families � of Gieseker H-semistable
sheaves of class c and � of Gieseker H-semistable sheaves of class c∗ let Φ

�
: S → M(c) and

Φ
�

: S → M(c∗) be the corresponding classifying morphisms. Then for

Φ = (Φ
�

,Φ
�
) : S → M(c)×M(c∗)

we have Φ∗� = det(p!(� ⊗� )).

If we now assume that H2(F ⊗G) = 0 for all Gieseker H-semistable sheaves F of class c and
G of class c∗ then we can construct a canonical section σc,c∗ ∈ H0(M(c)×M(c∗),�) such that

its zero set is equal to {([F], [G]) : H1(F ⊗G) �= 0}.
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This section gives an element of H0(M(c),�c,c∗)⊗H0(M(c∗),�c∗,c) so we have a linear map

Dc,c∗ : H0(M(c∗),�c∗,c)
∗ → H0(M(c),�c,c∗),

which is called the strange duality map.

CONJECTURE 4.2.2 (STRANGE DUALITY CONJECTURE). Whenever defined and non-zero the
map Dc,c∗ is an isomorphism.

Geometric interpretation of this conjecture is the following. We have a rational map

Ψ : M(c) ��� P(H0(M(c∗),�c∗,c))

which sends [F] ∈ M(c) to the divisor {[G] ∈ M(c∗) : H1(F ⊗G) �= 0}. One can check that
Ψ∗�(1) =�c,c∗ . The Strange Duality Conjecture asks if Ψ is a morphism and if the image of Ψ
is not contained in any hyperplane.

4.2.2 Strange duality on curves

Let C be a smooth projective curve. We have K(C) =Z⊕PicC, where the first factor corresponds
to the rank and the second to the determinant. We also have a numerical K-group K(C)num =
Z⊕Z, where the first factor corresponds to the rank and the second one to the degree of the
determinant.

Let us take c = [�r
C] ∈ K(C) and c∗ = (1,g− 1) ∈ K(C)num. One can easily check that

χ(c · c∗) = 0 and assumptions needed to define the strange duality map are satisfied.
In this case�c,c∗ is the generator of PicM(c) and M(c∗) = Jg−1 is the Jacobian parametrizing

line bundles of degree g−1.
Since we have the Poincare line bundle	 on Jg−1 (see 2.3.3) we get

�c∗,c = det(π!(	⊗ c)) = r det(π!	) = rΘ,

where Θ is the theta divisor defined by Θ = {L ∈ Jg−1 : h0(C,L) �= 0}.
The strange duality map Ψ : M ��� P(H0(Jg−1,rΘ)) sends [E] to {L ∈ Jg−1 : h0(C,E ⊗L) �=

0} and the strange duality implies that

h0(M(c),�c,c∗) = h0(Jg−1,rΘ).

This is a special case of the so called Verlinde formula computing the number of sections of
tensor powers of �c,c∗ on M(c).

THEOREM 4.2.3. Strange duality conjecture holds for curves.

This theorem was first proven for generic curves by P. Belkale in [Be] and then for all curves
by A. Marian and M. Oprea in [MO]. Unfortunately, the proof uses the Verlinde formula, so we
do not get a new proof of the Verlinde formula.
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4.2.3 Strange duality on the projective plane

Let us consider the projective plane P2. Let c be the class of a rank 2 vector bundle with c1 = 0
and c2 = n and let c∗ be the class of �L(−1) for some line L.

Then χ(c · c∗) = 0 and one can check that all our assumptions used in the definition of the
strange duality map are satisfied.

Let us note that M(c∗) is the dual P2 (it parametrizes lines in P2) and M(c) parametrizes
semistable sheaves of rank 2 on P2 with c1 = 0 and c2 = n.

By the Grauert–Müllich theorem (false if chark > 0) the restriction of any such semistable
sheaf to a general line is trivial. The lines on which the restriction is non-trivial (the so called
jumping lines) form a curve of degree n in P∗2 (this fact is called Barth’s theorem).

In this case Ψ is defined everywhere on M(c) and it is known as the Barth morphism. How-
ever, even in this case the strange duality conjecture is known only for small n:

THEOREM 4.2.4 (DANILA, SEE [DA]). The strange duality map is an isomorphism for 2 ≤ n ≤
19.

EXERCISE 4.2.5. Let X be a smooth variety over an algebraically closed field k. Then there
exists an isomorphism K0(X) � K(X) (see [Ha, Chapter 3, Exercise 6.9]).

EXERCISE 4.2.6. Show that for any coherent sheaves F1 and F2 we have

[F1] · [F2] = ∑
i
(−1)i[
 or�X

i
(F1,F2)]

EXERCISE 4.2.7. Let us set [F]∗ = ∑(−1)i[� xti(F,�X)] for a coherent sheaf F (note that if F is
locally free then [F]∗ = [F∗]). Show that

[F1] · [F2]
∗ = ∑(−1)i[� xti(F2,F1)].

EXERCISE 4.2.8. For any two coherent sheaves F1 and F2 let us set

χ(F1,F2) = ∑(−1)i dimExti(F1,F2).

Show that χ(F1,F2) = χ(X , [F2] · [F1]
∗).

EXERCISE 4.2.9. Let E and F be torsion free sheaves on a smooth surface X . Set rE = rkE,

rF = rkF and ξE,F = c1F
rF

− c1E
rE

. Show that

χ(E,F) = −
(

rE
Δ(F)
2rF

+ rF
Δ(E)
2rE

)
+ rErF

(
1
2

ξ 2
E,F − 1

2
ξE,FKX + χ(�X)

)
.
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5 Lecture 5

• Deformation theory of Quot schemes and local structure of moduli spaces
• e-stability
• Examples of unobstructed moduli spaces

This lecture starts with a local study of moduli spaces.

5.1 Deformation theory of Quot schemes and local structure of moduli
spaces

THEOREM 5.1.1 (SEE [HL], PROPOSITION 2.2.8). Let X be a projective scheme over k, � a
coherent sheaf and P a Hilbert polynomial. Take a k-rational point [σ :� → E] ∈ Quot(� ;P)
and set K = kerσ . Then

dimHom(K,E)−dimExt1(K,E) ≤ dim[σ ] Quot(� ;P) ≤ dimHom(K,E).

Moreover, if Ext1(K,E) = 0 then Quot(� ;P) is smooth at [σ ].

COROLLARY 5.1.2. Let E be a Gieseker stable sheaf with Hilbert polynomial P. If Ext2(E,E) =
0 then Ms

P is smooth at [E] and it has dimension dimExt1(E,E).

Proof. Take a point [� → E] ∈ Rs as in the construction of Ms
P. From the short exact sequence

0 → K →� → E → 0

we get

0 → Hom(E,E) → Hom(� ,E) → Hom(K,E) → Ext1(E,E) → Ext1(� ,E) →
→ Ext1(K,E) → Ext2(E,E) → Ext2(� ,E).

Now by construction Exti(� ,E) = Hi(E(m))dimV vanishes for i > 0 and it has dimension
(dimV )2 for i = 0. Since E is stable, dimHom(E,E) = 1. Then Ext1(K,E) = Ext2(E,E) = 0
and by the above theorem Rs is smooth at [� → E]. Moreover, at this point Rs has dimension
dimHom(K,E) = dimExt1(E,E)+dimPGL(V ).

Since Rs → Ms is a PGL(V )-principal bundle (see Theorem 3.2.1), by descent Rs is smooth
if and only if Ms is smooth. So the above dimension count and Theorem 5.1.1 imply the required
assertions.

In fact, one can prove a more precise version of this theorem. Namely, for any Gieseker
stable sheaf E there exists a map

Ext1(E,E) ⊃U
Φ→Ext2(E,E)
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well defined on an open neighbourhood of 0 such that the germ of Ms at [E] is the germ of Φ−1(0)
at 0. The map Φ is called a Kuranishi map but it is not unique in algebraic category.

Let X be a smooth projective variety. Then we have a map

det : M → PicX

sending [E] to [detE] (it is well defined even at points corresponding to strictly semistable
sheaves).

THEOREM 5.1.3. Let E be a Gieseker stable sheaf. Then after canonical isomorphisms the
tangent map T[E]M → T[detE]PicX can be identified with the trace map

Tr : Ext1(E,E) → Ext1(detE,detE) � H1(�X).

Moreover, obstructions for [E] to be a smooth point of M map to the obstructions for [detE] to
be a smooth point of PicX via the trace map

Tr : Ext2(E,E) → Ext2(detE,detE) � H2(�X).

Let us denote the kernel of the trace map

Tr : Exti(E,E) → Exti(detE,detE) � Hi(�X)

by Exti(E,E)0.
If the characteristic of the base field is 0 then by Cartier’s theorem any group scheme is

smooth, so PicX is smooth. In this case, if E is a Gieseker stable sheaf then Ms is smooth at [E]
if Ext2(E,E)0 = 0.

More precisely, if we set M(� ) = det−1([� ]) (this definition needs alteration in positive
characteristic) then the germ of Ms(� ) at any point [E] is the germ at 0 of Ψ−1(0) for some map

Ext1(E,E)0 ⊃U
Ψ→Ext2(E,E)0

defined on an open neighbourhood U of 0.

5.2 e-stability

Let X be a smooth projective n-dimensional variety and let H be an ample divisor on X . Let us
set |H| = n

√
Hn.

Definition 5.2.1. Let e ≥ 0 be a real number. A torsion-free sheaf E on X is called e-(semi)stable
if for every subsheaf E ′ ⊂ E of rank r′ < r = rkE we have

μ(E ′)(≤)μ(E)− e|H|
r′

.
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Note that any e-(semi)stable sheaf is slope (semi)stable.

LEMMA 5.2.2. Let E be a rank r torsion free sheaf on X. Assume that there exists a non-zero
s ∈ Hom(E,E ⊗
 ) with trivial determinant.

1. If c1
 ·H < 0 then E is not slope semistable.

2. E is not e-stable for all

e ≥ (r−1)[c1
 ·H]+
2|H|

Proof. Since dets = 0, the subsheaves kers ⊂ E and ims ⊂ E ⊗
 are non-trivial of ranks k < r
and r− k < r, respectively. Hence, if E is e-stable then

μ(ker s) < μ(E)− e|H|
k

and

μ(im s) < μ(E)+ c1
 ·H − e|H|
r− k

.

Then
rμ(E) = kμ(ker s)+(r− k)μ(ims) < rμ(E)+(r− k)c1
 ·H −2e|H|

and hence

e <
(r− k)c1
 ·H

2|H| ≤ (r−1)[c1
 ·H]+
2|H| ,

which proves the second part of the lemma. The first one can be proven in the same way.

COROLLARY 5.2.3. Assume that h0(E,E ⊗
 ) > h0(
 r).

1. If c1
 ·H < 0 then E is not slope semistable.

2. If c1
 ·H ≥ 0 then E is not e-stable for all

e ≥ (r−1)c1
 ·H
2|H|

Proof. Consider the (non-linear) map ϕ : Hom(E,E ⊗
 ) → H0(
 r) given by the determinant.
Since ϕ−1(0) �= /0, the fiber ϕ−1(0) is at least 1-dimensional. Hence there exists a non-zero
s ∈ Hom(E,E ⊗
 ) with trivial determinant and we can apply the previous lemma.

The above corollary generalizes a well known fact that a slope stable sheaf is simple (we get
this for 
 =�X ).

If E is a torsion free slope H-semistable sheaf which is not e-stable for some e ≥ 0 then we
have a filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ Ek = E
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such that all quotients Fi = Ei/Ei−1 are slope semistable,

μ(E1) > μ(E)− e|H|
rkE1

and
μ(F2) ≥ . . . ≥ μ(Fk).

Such a filtration can be constructed first by taking e-destabilizing subsheaf of E with torsion free
quotient E/E1 and then lifting the Harder–Narasimhan filtration of this quotient to E.

Let X be a smooth projective surface. In the following we always fix the determinant� . Our
aim is to bound the dimension of the locus R(e) of e-unstable sheaves in R

�
and the correspond-

ing locus in M(r,� ,c2).
Note that for a point [ρ :� → E] ∈ R(e) we have a filtration

0 ⊂�0 ⊂�1 ⊂ . . . ⊂�k =�

such that�0 = kerρ and�i/�i−1 = Fi for i ≥ 0.
Set Pi = P(Fi). Then [ρ :� → E] lies in the image of the map

Y = Flag(� ;P0,P1, . . . ,Pk) → Quot(� ;P)

obtained by forgetting all of the flag except for �0 →� . There exists only a finite number
of such Flag-schemes which are non-empty. So in order to bound the dimension of R(e) it is
sufficient to bound the dimension of Y .

To do this one can use a version of Theorem 5.1.1 for Flag-schemes. The only thing we need
to know about this is that the dimension of Flag(� ;P0,P1, . . . ,Pk) at [�•] is less or equal to the
dimension of a certain Ext-group:

dimExt0+(�•,�•) ≤ h0(� om(� ,� ))−1+ ∑
i≤ j

dimExt1(Fj,Fi).

Now the dimension of Ext1(Fj,Fi) can be computed using the Euler characteristic χ(Fj,Fi)
(which can be computed by the Riemann–Roch formula; see Exercise 4.2.9) and the dimensions
of Hom(Fj,Fi) and Hom(Fi,Fj ⊗ωX) � (Ext2(Fj,Fi))

∗ (see Theorem 5.3.2). These dimensions
can be bounded using Theorem 3.1.3. After some computation O’Grady used this idea to prove
the following theorem.

THEOREM 5.2.4 (O’GRADY).

dimR(e) ≤
(

1− 1
2r

)
Δ+ c1e2 + c2e+ c3 +(dimV )2,

where c1,c2 and c3 are some explicit functions depending only on r, X and H.

Let M(e) denote the locus of e-unstable sheaves in the moduli space M(r,� ,c2).
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COROLLARY 5.2.5.

dimM(e) ≤
(

1− 1
2r

)
Δ+ c1e2 + c2e+ c3 + r2.

Proof. By the construction π : R(e) → M(e) = R(e)/GL(V ), so that

dimM(e) ≤ dimR(e)−dimπ−1([E])

for some [E] ∈ M(e). But the stabilizer of GL(V ) action at [� → E] is equal to AutE, so

dimπ−1([E]) = dimGL(V )−dimAut(E) ≥ (h0(� ))2 − r2

and the asserted inequality follows from the above theorem.

5.3 Examples of unobstructed moduli spaces.

THEOREM 5.3.1 (MARUYAMA). Let X be a smooth projective surface and let H be an ample
divisor such that HKX < 0. Then for any slope H-semistable torsion free sheaf E we have
Ext2(E,E) = 0. In particular, any moduli space Ms

P is smooth.

Proof. We will use the following useful version of the Serre duality theorem:

THEOREM 5.3.2. Let X be a smooth n-dimensional projective variety. Then for any two coherent
sheaves F and G we have

Extp(F,G) � (Extn−p(G,F ⊗ωX ))∗.

The above theorem implies that Ext2(E,E) � (Hom(E,E ⊗ωX ))∗. But h0(ω⊗r
X ) = 0 since

KX H < 0. Hence if Ext2(E,E) �= 0 then h0(E,E ⊗ωX ) > h0(ω⊗r
X ) and E is not slope semistable

by Lemma 5.2.3, a contradiction.

In fact, we can also deal with another case:

PROPOSITION 5.3.3. Let X be a smooth projective surface with ωX � �X . Then the moduli
space of Gieseker stable sheaves Ms(� ) with fixed determinant � is smooth. In particular, if
the characteristic of the base field does not divide r then the moduli space M s(� ) has dimension
Δ(E)− (r2 −1)χ(�X). Moreover, if the Picard scheme of X is reduced then Ms

P is smooth.

Proof. To prove smoothness it is sufficient to prove that for any Gieseker H-stable sheaf E the
kernel of the trace map Ext2(E,E) → H2(�X) is zero. Since the trace map is dual to the map
H0(ωX) → Hom(E,E ⊗ωX) induced by the diagonal embedding, it suffices to show that the
cokernel of this map is trivial. But this is obvious as Gieseker stable sheaves are simple.

The second part follows from the easy dimension count:

dimExt1(E,E)0 = −χ(E,E)+ χ(�X) = Δ(E)− (r2 −1)χ(�X).
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Note that in positive characteristic there exist smooth projective surfaces with ωX � �X ,
whose Picard scheme is non-reduced.

If X is a smooth projective surface with KX numerically trivial, e.g., if X is an Enriques
surface (i.e., such that h0(ωX) = 0, but ω2 � �X ), then the moduli space Ms(� ) need not be
smooth. Here we show when it happens refering to [Kim] for a more precise description of the
moduli space in this case.

PROPOSITION 5.3.4 ([KIM]). Let X be an Enriques surface. Then the moduli space of slope
stable rank r torsion free sheaves Mμ(� ) with fixed determinant� is smooth if r is odd and it
is singular precisely at points corresponding to E such that E � E ⊗ωX if r is even.

Proof. Let E be a rank r slope stable sheaf on X . We have Ext2(E,E)0 = Ext2(E,E)� (Hom(E,E⊗
ωX))∗. If there exists a non-zero s ∈ Hom(E,E ⊗ωX) then dets �= 0 by Lemma 5.2.2. Since KX
is numerically trivial, this implies that s gives rise to an isomorphism E � E ⊗ωX (E and E ⊗ωX
have equal Hilbert polynomials). In particular, comparing determinants we get ω r

X � �X , so the
rank r must be even. It is easy to see that at such points the moduli space is singular as the
dimension of the tangent space is larger than the actual dimension.

There are many examples where the moduli space Ms(� ) is singular for an Enriques surface.
We should note that in [Kim] the author’s statement is different to ours and he distinguishes some
cases where E � E ⊗ωX but [E] is a smooth point of the moduli space. This happens because he
forgets about the scheme structure and looks only at the underlying reduced scheme which is not
a moduli space in the functorial sense of Definition 2.1.1.

EXERCISE 5.3.5. Assume that r and c1� ·H are relatively prime. Show that every rank r slope
H-semistable sheaf with determinant� is slope H-stable. In particular, in this case the moduli
spaces Mμ(� ) and Ms(� ) are projective.

6 Lecture 6

• Spectral covers
• An algebraic interlude on local deformations
• Generic smoothness of moduli spaces of sheaves on surfaces

6.1 Spectral covers

Let N be a line bundle on a smooth projective variety X . Let π :V(N∗)→ X be the corresponding
geometric bundle, i.e., V(N∗) = Spec

⊕
r≥0(N

∗)r.
Let us recall that the F-theoretic support of a sheaf supported on a divisor is the scheme

corresponding to its 0th Fitting ideal. This should not be mistaken for a scheme theoretic support
which is defined by the annihilator ideal sheaf.

A sheaf F on a regular scheme Z is called Cohen–Macaulay if at every point z in the scheme-
theoretic support Y of F , the depth of F at z is equal to the codimension of z in Y . We will use the
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fact that if π : Y → X is a finite morphism onto a regular scheme X then F is Cohen–Macaulay
if and only if π∗F is locally free. A Cohen–Macaulay sheaf supported on a divisor in Z can be
thought of as a pure sheaf of rank 1 on its F-theoretic support.

PROPOSITION 6.1.1. There exists a canonical bijection between

1. Isomorphism classes of Cohen–Macaulay (or pure) sheaves L onV(N∗), whose F-theoretic
support Y ⊂ V(N∗) is a proper degree r cover of X,

2. Isomorphism classes of pairs (E,s), where E is a rank r locally free (torsion free, respec-
tively) sheaf on X and s : E → E ⊗N is a homomorphism.

The cover Y → X corresponding to (E,s) is called a spectral cover.

Proof. If we are given L as in 1, then we set E = π∗L and we recover s from the π∗�V(N∗)-module
structure on π∗L:

π∗�V(N∗)⊗π∗L → π∗L.

To recover L from (E,s) we need to define a section x∈H0(V(N∗),π∗N) = H0(X ,π∗�V(N∗)⊗
N), as the section corresponding to the constant section 1 of �X in π∗�V(N∗) ⊗N = N ⊕�X ⊕
N−1 ⊕ . . ..

Then we define L by the following exact sequence

π∗E
x Idπ∗E −π∗s−→ π∗E ⊗π∗N → L⊗π∗N → 0,

i.e., L = coker(x Idπ∗E −π∗s)⊗ π∗(N∗). By definition the F-theoretic support Y is given by
vanishing of the determinant det(x Idπ∗E −π∗s).

The above proposition is a generalization of [BNR, Proposition 3.6] to non-integral spectral
covers in higher dimension.

Let (E,s) be a pair consisting of a rank r torsion free sheaf E and a homomorphism s : E →
E ⊗N. Let ai ∈ H0(X ,Ni), i = 0,1, . . . ,r be elementary symmetric function in eigenvalues of s
(they are easily defined on the open subset where E is locally free and then uniquely extended to
the whole X ). Then by the Cayley–Hamilton theorem we have

r

∑
i=0

ais
r−i = 0

as a homomorphism E → E ⊗Nr, whereas the spectral cover is given by

r

∑
i=0

aix
isr−i = 0
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6.2 An algebraic interlude on local deformations

Let S = k[[x1, . . . ,xl]]. Let us choose 0 �= f ∈ S and set R = S/( f ). Let M be a Cohen–Macaulay
R-module. As an S-module it has for some integer n a resolution

0 → Sn ϕ→Sn → M → 0.

Then there exists ψ : Sn → Sn such that ϕψ = ψϕ = f · IdSn . This is called a matrix factorization
of f . After reducing modulo ideal ( f ) we get an infinite periodic free resolution of M:

. . . → Rn ψ→Rn ϕ→Rn ψ→Rn ϕ→Rn → M → 0.

Let N denote the image of ϕ . Then we have two short exact sequences:

0 → N → Rn → M → 0

and
0 → M → Rn → N → 0.

From the first sequence we get an exact sequence

0 → HomR(M,N) → HomR(M,Rn) → HomR(M,M) = R,

so HomR(M,N) is a reflexive R-module.
Using the second sequence we see that there is an exact sequence

HomR(M,N) → Ext1R(M,M) → Ext1R(M,Rn) = 0.

LEMMA 6.2.1. Let J = ( ∂ f
∂x1

, . . . , ∂ f
∂xl

). Then J Ext1R(M,M) = 0.

Proof. Then
∂ϕ
∂xi

ψ +ϕ
∂ψ
∂xi

=
∂ f
∂xi

IdSn,

so multiplication of the resolution of M by ∂ f
∂xi

is homotopical to the zero map. This easily implies
the required assertion.

Using the above lemma we see that there exists a surjection

HomR(M,N)/JHomR(M,N) → Ext1R(M,M) → 0.

Assume that R is an isolated singularity. Then Ext1
R(M,M) is a module of finite length bounded

from the above by
l(HomR(M,N)/JHomR(M,N)),

where l(S) denotes the length of S. Let us also assume that the number of variables l = 3 and
f = x2

3 − g(x1,x2). Then J′ = ( ∂ f
∂x1

, ∂ f
∂x2

) is an ideal generated by a system of parameters of
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R. Since HomR(M,N) is reflexive over a normal surface singularity, it is Cohen–Macaulay.
Therefore we can apply [BH, Corollary 4.6.11] and we get

l(HomR(M,N)/JHomR(M,N)) ≤ l(HomR(M,N)/J′HomR(M,N)) = rkM · rkN · l(R/J′).

But R/J′ � (k[[x1,x2]]/( ∂g
∂x1

, ∂g
∂x2

))[x3]/(x2
3 −g), so

l(Ext1R(M,M)) ≤ 2rkM · (n− rkM) ·μ0,

where μ0 is the Milnor number of the plane singularity g(x1,x2) = 0 (at 0).
The above arguments prove in particular the following proposition:

PROPOSITION 6.2.2. Let (E,s : E → E ⊗N) be as in Proposition 6.1.1. Assume that X is a
surface, Y is normal and rkE = 2. Then L from Proposition 6.1.1 is a rank 1 reflexive sheaf on Y
and at a point y ∈Y

h0(Y,� xt1(L,L)y) ≤ 2μx,

where μx is the Milnor number of the branching curve (dets = 0) at x = π(y).

EXERCISE 6.2.3. Assume that chark �= 2. Prove that if C := (xy = 0)⊂A2
k is a nodal curve then

on the double cover of A2 branched along C there exist precisely one rank 1 reflexive sheaf L
which is not locally free (cf. [Ha, II, Example 6.5.2]). Prove that Ext1(L,L) = k.

6.3 Generic smoothness of moduli spaces of sheaves on surfaces

Let M = Mμ
lf
(2,L,c2) be the moduli space of slope stable locally free rank 2 sheaves with deter-

minant L and second Chern class c2.
The following theorem was proven (over C) by S. Donaldson in the rank 2 case and then

generalized to higher rank (and strengthened) by D. Gieseker, J. Li and K. O’Grady (all in
chark = 0). The author generalized this to higher characteristic (also strenghening a part of
the theorem in chark = 0). We will try to imitate the original Donaldson’s proof. Although it
gives weaker results, its idea is much simpler and more straightforward. Assumption on the char-
acteristic is added mostly for our convenience (otherewise some covers become non-separable
and the dimension of the moduli space is not so easy to compute).

THEOREM 6.3.1. Assume chark �= 2. If c2 � 0 then M is generically smooth, i.e., smooth at a
generic point of each irreducible component. Moreover, the dimension of each irreducible com-
ponent is equal to Δ−3χ(�X) (and for even larger c2 there is only one irreducible component).

Proof. If E is a Gieseker stable locally free sheaf then by Theorem 5.1.3 we see that

T[E]M � Ext1(E,E)0 � H1(End0E)

and obstructions for M to be smooth lie in

Ext2(E,E)0 � H2(End0E) � (H0(End0E ⊗ωX ))∗.
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Here we use the fact that the trace map splits as the characteristic is not equal to 2. So by the
Riemann–Roch theorem M has at [E] dimension at least

h1(End0E)−h2(End0E) = Δ−3χ(�X).

To prove the theorem (except for the last part in the brackets which will be skipped), it is sufficient
to show that for c2 � 0 the closed subset S = {[E] ∈ M : H0(End0E ⊗ ωX) �= 0} of M has
dimension smaller than Δ−3χ(�X). This follows from Theorem 6.3.2.

THEOREM 6.3.2. Let 
 be a line bundle on X and let

S
�

= {[E] ∈ M : H0(End0E ⊗
 ) �= 0}.
If c1
 ·H < 0 then S

�
= /0. If c1
 ·H ≥ 0 and c2 � 0 then

dimS
�

< Δ−3χ(�X).

Proof. Since the first part is clear (see Lemma 5.2.2) we can assume that c1
 ·H ≥ 0.
Let |
 | → |
 2| be a map sending divisor D to 2D. We denote the image by 2|
 |. We will

prove the theorem under a simplyfying assumption that all divisors in |
 2|−2|
 | are reduced
(this is satisfied, e.g., if PicX is generated by 
 ).

We decompose S
�

into two locally closed subsets:

S′� = {[E]∈M : there exists a non-zero s∈H0(End0E⊗
 ) such that dets = 0 or dets∈ 2|
 |}
and

S′′� = {[E] ∈ M : for every non-zero s ∈ H0(End0E ⊗
 ) we have dets ∈ |
 2|−2|
 |}.

First let us note that S′
�

⊂ M( c1� ·H
2|H| ). This follows by Lemma 5.2.2 since if E ∈ S′

�
then

there exists s ∈ H0(End0E ⊗
 ) such that either dets = 0 or there exists t ∈ H0(
 ) such that
dets+ t2 = 0 and then for s′ = s− t · IdE (which is non-zero as Trs = 0) we have dets′ = 0. Hence
dimS′

�
can be bounded using Corollary 5.2.5.

To bound the dimension of S′′
�

we will use the moduli space M ′ of pairs (E,s) such that E ∈
S′′
�

and 0 �= s ∈ H0(End0E ⊗
 ). This moduli space exists and it can be constructed as a locally
closed subscheme in the moduli space of Gieseker stable pure sheaves on a compactification
P(�⊕
 ∗) of V(
 ∗) (with respect to polarization π∗H + aZ, where Z is the complement on
V(
 ∗) and a is a small positive rational number). This is a special case of the moduli space of
(generalized) Higgs bundles on X .

Note that we have a surjection M′ → S′′
�

so it suffices to bound the dimension of M ′. There
exists a partial Hitchin’s map M ′ → |
 2| sending (E,s) to the determinant of s. By Proposition
6.1.1 the fiber over B ∈ |
 2| is a subset of the moduli space M ′′

B of reflexive rank 1 sheaves on
the double cover Y of X branched along B. The cover p : Y → X is constructed as Spec(�X ⊕

 ∗), where the �X -algebra structure on �X ⊕
 ∗ is given by 
 ∗ ⊗
 ∗ → �X coming from
multiplication by the chosen equation of B. By assumption B is reduced, so the surface Y is
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normal (it is S2 as a hypersurface in a smooth 3-fold and it has only isolated singular points lying
over singular points of B).

The dimension of M′′
B at a rank 1 reflexive sheaf L is bounded from the above by dimExt1(L,L).

Using the local to global Ext spectral sequence we get

dimExt1(L,L) ≤ h0(� xt1
Y (L,L))+h1(� omY (L,L)).

Note that� omY (L,L)��Y , so h1(� omY (L,L)) = h1(p∗�Y ) = h1(�X)+h1(
 ∗) and we need
to bound only local contributions. In our case this can be done using Proposition 6.2.2, which
implies that

h0(� xt1
Y (L,L)) ≤ 2 ∑

x∈SingB

μx = 2(KX +B)B+2etop(B),

where SingB denotes the set of singular points of B and etop(B) is the “topological” Euler char-
acteristic of B (it also makes sense in positive characteristic and it is bounded from the above by
twice the number of irreducible components of B). Summing up, we get

dimS′′� < h0(
 2)+h1(�X)+h1(
 ∗)+2(KX +B)B+2etop(B),

where the right hand side does not depend on c2.

One should note that K. Zuo also used Donaldson’s idea to give a proof of Donaldson’s
Theorem 6.3.2 (in the rank 2 case) using some results of R. Friedman. However, his proof is
incomplete as he “forgets” to consider the case when there exists s ∈ H0(End0E ⊗
 ) such that
dets �∈ 2|
 | but the corresponding spectral cover is reducible. This happens if the curve dets = 0
decomposes D+ + D− for some divisors D± ∈ |
 ± τ|, where τ is a 2-torsion. Nowadays,
Theorem 6.3.2 is usually proven using O’Grady’s approach which is based on a completely
different idea than spectral covers.
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