ALGEBRAIC K-THEORY OF SCHEMES

MAREK SZYJEWSKI

1. INTRODUCTION

The present notes contain the foundations of algebraic K-theory together with a
series of explicit computations of the K-groups of fields and some classical varieties.
Our goal is to provide an introduction to a more advanced reading, as well as to
convince the reader that such a study may be useful and interesting. The exposition
is by no means complete nor self-contained. We hope nevertheless, that the covered
part of the theory is sufficient for effective computations in algebraic geometry.

The organization of these notes follows the historical development of algebraic
K-theory in the 2nd half of the XXth century. Section 2 contains a brief outline
of the theory of the Grothendieck groups Ko(X), K{(X). In Section 3 we develop
the higher K-theory (of Milnor and Quillen) of fields and compute the K-groups of
finite fields. The next two sections are based on Quillen’s fundamental paper [23]:
the definition of K-groups as homotopy groups is given and their properties are
discussed. Some instructive examples not contained in [23] are also included. In
Section 6 we compute the higher algebraic K-groups of projective bundles, Brauer-
Severi varieties (after [23]) and quadrics (after Swan [27]). In the last section we
apply these techniques to compute the Chow ring of a split quadric (here we follow
the author’s approach [28]) and to prove “Hilbert 90” for K (F(y/a)) following
Merkurjev’s proof.

These notes are slightly expanded version of a series of lectures at Algebraic
Geometry, Algebra and Applications Conference and Summer School in September
2003, held in Borovetz (Bulgaria). I am grateful to the organizers of this conference
for their invitation. I am also grateful to Piotr Krason and Piotr Pragacz, who read
carefully the manuscript and helped to convert it into a paper.

2. GROTHENDIECK GROUPS

There are numerous connections between properties of a scheme/variety X and
properties of the categories of sheaves of Ox-modules on X. We are interested in
two categories:

e the category M(X) of coherent Ox-modules on X,
o the category P(X) of vector bundles (locally free Ox-modules of finite
rank) on X.

If X = Spec(R) is an affine scheme, the first one is equivalent to the category of
finitely generated R-modules, while the second one is equivalent to its subcategory
of projective R-modules.

In the 50’s of the XXth century Alexander Grothendieck studied additive func-
tions on these categories: for an abelian group A, a function f : C — G is called

1
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additive, iff for every exact sequence
0-A—-B—-C—=0

in C the equality
F(B) = F(A) + £(C)
holds.

In 1957, in the manuscript [7] along with an algebraic proof of (a generalized)
Riemann-Roch-Hirzebruch Theorem, Grothendieck introduced a universal target
groups for additive functions. Given an additive category C embedded in an abelian
category A, the Grothendieck group K(C) of C is a factor of the free abelian group
generated by isomorphic classes [A] of objects of C modulo subgroup generated by
all expressions

(B] - (4] - [C]
for every sequence
0—A—=B—-C—0

in C, which is exact in A. Thus Ky(C) has generators: one generator [A] for each
A € Ob(C) and every element of Ky(C) may be expressed in the form [A] — [B] (in
many ways). Moreover, split sequences are exact inependently of the embedding in
an abelian category, so the addition rule may be written as

[A]+ [B] =[A® B].
In this way, to a scheme X there are associated two K-groups:
GQ(X) or K(/)(X) = KQ(M(X)),

Ko(X) = Ko(P(X))
(this is modern notation; Grothendieck’s was K (X) and K'(X) - see eg. [2].
Moreover, notation Ko(X) and K°(X) is in use, e.g. [5], or even K(X) and K;(X)
-[9].) These groups have generators [A] for A € Ob(M (X)) (resp. A € Ob(P(X)))
which are subject to relations

[B] = [A] + [C]

associated with sequences 0 - A — B — C' — 0 which are exact in M(X).
The function
A— [4]
from Ob(M(X)) (resp. A € Ob(P(X))) to K{(X) (resp. Kp(X)) is universal
additive function, in the sense that every additive function factors through it.
In the affine case, X = Spec(R), it is customary to simplify the notation

Ky(Spec(R)) = Kg(R),
Ko(Spec(R)) = Ko(R).

It is known that it is impossible to classify vector bundles up to isomorphism on
all varieties; in contrast, in many cases one can compute K-groups.

Example 2.1. If R = F is a field (X = Spec(F) is a point), then every finitely
generated F'-module is free, and these modules are classified by dimension. Thus

Ki(F) = Ko(F) 2 Z

and the isomorphism is induced by the additive function A — dim A.
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Example 2.2. If R = D is a skew-field (a division ring), then finitely generated
left D-modules are free. If A is such a module, then every basis of A has the same
number of elements. So two finitely generated D-modules are isomorphic iff they
have the same rank (or dimension). It follows that

K(D) = Ko(D) =7
and the isomorphism is induced by the additive function A — dim A.

Exercise 2.1. Prove that for a (not necessarily commutative) ring R and finitely
generated projective left R-modules A, B

[A] = [B] in Ko(R) iff there exists
a f.g. projective C' such that A C = BoC.
Exercise 2.2. Prove that, in general, for a category C embedded in an abelian
category A,
[A] = [B] in Ko(C) iff there exist objects C',C,C" and exact sequences
0—-C'-C—-A0C" -0and0—-C"—-C —-BaoC" —0.

2.1. Definitions, multiplicative structure, contravariant properties, Car-
tan map. If F is a vector bundle, then it is easy to check locally that

F@—: M(X)—> M(X)
is an exact functor (takes exact sequences to exact sequences). In fact, one has:

Proposition 2.1. The formula
(4] - [B] = [A® B

defines a multiplication rules

Ko(X) @z Ko(X) —  Ko(X),

Ko(X) ®z Ko(X) —  Kj(X).
With this multiplication rule, Ko(X) is a ring with unit element 1 = [Ox], and
K{(X) is a Ko(X)-module. 1
Example 2.3. For a field F, the map dim : Ko(X) — Z is a ring isomorphism.

In the “categorical” context to study dependence of K-groups on functors one
must restrict to additive functors which preserve exactness of sequences (exact
functors). To do this we will introduce the notion of exact category below. In our
set-up, where exactness is defined by embedding into an abelian category, one must
use exact functors defined on ambient abelian categories. It is obvious, that such a
functor f: A; — Ay which takes C; to Co defines a homomorphism

f : K()(Cl) — K()(CQ)
Example 2.4. The inclusion functor P(X) — M(X) preserves exactness. Thus
there is a homomorphism
Ko(X) — Ky(X)
which acts naturally on generators ([A] — [A].) This is a homomorpism of Ko(X)-

modules.

This homomorphism is called the Cartan homomorphism.
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Example 2.5. If f : X — Y is a morphism of schemes, then the pull-back functor
i MY) — M(X) is exact and takes P(Y) to P(X). Thus Ko and K; are
functors from schemes to abelian groups.

Example 2.6. (Reduction by resolution) We keep the notation following Example
2.8. Assume that:

1) for every object A in Co there is a finite resolution of A by objects of the form
f(B), B €y,

2) if for A,C € Ob(C2) there is a positive number n and an exact sequence

0—-C— f(Bp-1) — -+ — f(By) = A—0,

then there exists By, € Ob(C1) such that C = f(B,,).
Then the homomorphism f : Ko(C1) — Ko(Cq) is surjective. In fact, if there is an
exact sequence

0— f(By) =+ — f(Bo) — A— 0,

then to show that

one needs only a standard inductive argument.

Example 2.7. Consider X = Spec(Z). Locally free abelian groups are simply free
abelian groups, so the additive function rank defines a ring isomorphism Ko(Z) = 7.
Every finitely generated abelian group A has a resolution

0— By —-By—A—0

with free abelian groups By, B1. Thus the inclusion functor P(Z) — M(Z) induces
a surjective homomorphism Ko(Z) — K{(Z) which again splits by means of rank
function. Thus K\(Z) = Ko(Z) = Z.

Another example: if f : X — Y is a proper morphism of locally noetherian
schemes and every object in M(X) has a finite resolution by coherent sheaves with
no higher derived images, then there is a well defined group homomorphism

fe: Ko(X) — Ko(Y)
such that f.[F] = [f.F] provided F has no higher derived images.

Proposition 2.2. If X is a separated noetherian regular scheme, then the Cartan
map Ko(X) — K{(X) is an isomorphism. 1

2.2. Fundamental Theorem (homotopy property), localization, cycle map,
filtrations. In the affine case X = Spec(R), where R is a commutative ring, every
element of Ky(R) may be written in following special form:

[A]—[B]=[A®C]—[B&C]=[R"| - [B&C]=n—[Ba& (]

where C is such that A@® C = R™. Moreover, an equality [A] = [B] is equivalent to
existence of a C' such that A® C = B @ C (Exercise 2.1), and C' may be chosen to
be a free module (we say that A and B are stably isomorphic). The class [R!] of
rank 1 free module is the unit of the ring Ko(R), so Ko(R) = Z means that R! is a
generating module and every finitely generated projective R -module is stably free.
It is not very difficult to prove that every finitely generated projective module over
a polynomial ring F[x1,za,...,x,] is stably free, so Ko (Flz1,29,...,2,]) = Z.
Serre in 1955 posed the question if every finitely generated projective module is in
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this case actually a free module. This fact was proven independently by Quillen
and Suslin in 1973.

A weaker statement - the equality Ko (F'[z1,22,...,2Z,]) = Z - has two general-
izations.

Theorem 2.3 (Fundamental Theorem). If R is a regular ring, then the inverse
image functors M — R[t]@r M, M — R[t,t"Y] @ g M induce ismorphisms

Ko(R[t]) = Ko(R) = Ko(R[t,t™"]). &

Theorem 2.4 (Homotopy property). If f : X — Y is a morphism of smooth
varieties such that all fibers f~*(y) are affine spaces, then inverse image functor
f* induces a ring isomorphism Ko(Y) = Ko(X). 11

The fact that a (locally free) sheaf on an open subset U C X extends to a (locally
free) sheaf on whole X can be stated as follows:

Theorem 2.5 (Localization). Let U be an open subset of a scheme X and let Z
be the reduced closed complement of U in X with the reduced scheme structure.
Denote by j : U — X and i : Z — X the inclusions. The following sequence is
exact:

K§(2) —= K4(X) —

Ky (U) U |

One of the reasons to introduce higher algebraic K-theory was to extend this
sequence to a long exact localization sequence. We achieve this in Proposition 5.4
below.

Every closed subscheme Z of X defines an element [Oz] € K{(X). If Z"(X) is
the group of cycles of codimension r in X, and

dim X
z2x) =@ Z(X)
then there is a group homomorphism
Z°(X) — Ki|X)
(2] — [Oz],

called the cycle map. In the affine case it is easy to see that the image of the
cycle map generates K()(X) - every finitely generated R-module has a filtration
with factors isomorphic to R/p for suitable p € Spec R. This fact remains valid
for smooth varieties over a field. Thus the homomorphism Z°*(X) — Kj(X) is
surjective ([2, Exposé X, Corollaire 1.1.4].)

There is the topological filtration

« is in the kernel of restriction
FPK({(X) = ae K\(X): K{(X) — K{(Ox,) to the generic ,
point z of every subvariety of codimension < p

and consecutive factors of this filtration are connected with the cycle groups Z"(X).
Multiplication in Ky(X) extends to multiplication in K{(X):

7]+ 16] = (=1 [T (7,9)].
For this multiplication, if cycles Z1, Zs intersect properly, then
[OZI] ) [022] = [Ozlﬁzz]'
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2.3. Projective Bundle Theorem. Computation of the Grothendieck group of
a projective bundle ([2, Exposé VI]) was crucial for the theory and its applications.
We present here a modern proof.

Theorem 2.6. If £ is a vector bundle of rank n on a quasicompact scheme Y,
p: X=Py(€) =Y
is the projective bundle associated to £, Ox(—1) is the tautological line bundle,
then, via p* : Ko(Y) — Ko(X), the Ko(Y)-module Ko(X) is a free with the basis
[Ox],[0Ox(-1)],...,[0Ox(1 —n)].
Proof. (cf. [20, Theorem 2.1] or [21, Theorem 2.1]) Define a sheaf 7 on X by the
exact sequence:
0—-J —p (€) - O0x(1)—0.
The sheaf J is locally free of finite rank, since p*(€) and Ox (1) are such. Moreover,
p.Ox(1) = & =Homp, (£, 0y),

P o= ¢ )

where J = = Homo, (J,Ox). Therefore

H° (X xy X,0x(1)®RJ ) =H° (Y, ®¢&) =Endy (£),
where

FNG=pi(F) QOxxyx p3 (9)

is a sheaf on X xy X, F,G are sheaves on X, and p, p2_are the projections
X xy X — X. Consider the global section s of Ox (1) X 7 which corresponds
to the identity endomorphism of €. Since the restriction to the diagonal A:X —
X xy X is locally induced by the evaluation map £ ® & — Ox, the section s
vanishes exactly along the diagonal, which yields the Koszul resolution

0 — Ox(A-mBA"  T—-

2
— Ox(-2)B N\ J - Ox(-1)BJ - OxBOx — Oa(x) — 0.
By the projection formula, for every bundle F on X

n—1

F] = o (@3F) - [Oa)) = 1o <<p; EEDIC [Ox(‘“&/\ijD
=0

- Senw (5 (|A"] ) ) 1000

n—1

= > (-1)'p. q/\z j] '[J-‘]> (Ox (=),

i=0
which implies that the map

o) : @:;01 Ko(Y) — K()(X)

olag,...,ap—1) = Z a; [Ox(—1)]
i=0

is a surjective homomorphism of Ky(Y')-modules.
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On the other hand, it is known that

R"p.Ox(i) = 0 foreverym>0,i>0

p*OX(i)
R"p,Ox(i) = Oforeverym>0,1—-n<i<-1.

Sym‘E " for every i > 0

Thus for the map

n—1
Vo Ko(X) =, Ko(Y)
(FD) = @ FLp [FED]Lop [F=n)]),
the composition ¥ o ¢ : Ko(Y)" — Ko(Y)™ is given by an upper triangular matrix

with units on the diagonal, which implies that ¢ is injective. i

Remark 2.1. We shall prove a more general version of the Projective Bundle
Theorem in Theorem 6.9 below.

3. K-THEORY OF FIELDS

3.1. Ki(F) and K5(F) (Matsumoto Theorem). With some effort, proper no-
tions of K3 (R), K2(R) were found even without assumption that R is commutative.
Milnor’s book [16] is an excellent, easy and self-contained exposition of this part of
developement of the theory.

The group GL,,(R) may be identified with a subgroup of GL,11(R) of block
diagonal matrices with 1 in the right lower corner:

AlO
A|—><01>,

GL(R) = limGLy(R)
E(R) = lmE,(R)

Definition 3.1.

where E,,(R) is a subgroup of GL,(R) generated by all elementary matrices.
Recall that:

e a group G is a perfect group iff G has trivial center and G is equal to its
commutator subgroup,

e a group is perfect iff it has the universal central extension,

e the group E(R) is perfect,

(see [16, §5])

Definition 3.2. The Steinberg group St(R) is a universal central extension of the
group E(R).

Definition 3.3.

K1(R) = Hi(GL(R), Z) = GL(R)/[GL(R), GL(R)] = GL(R)/E(R)
K(R) = Hy(E(R),Z) = ker (St(R) — E(R))
K3(R) = H3(St(R),Z)



8 MAREK SZYJEWSKI

If R is a commutative ring, there is a homomorphism
R* = GL1(R) — GL(R) - K1(R).
If R is a commutative ring, then
det : GL(R) — R*
factors through K;(R) and splits the homomorphism R* — K;(R).

The group K>(R) may be characterized as a kernel of universal central extension
of perfect group E(R), which is a subgroup of GL(R) generated by (images of)
elementary matrices and coincides with the commutator subgroup [GL(R), GL(R)].

In the case of a field, it is easy to see that K;(F) is a multiplicative group of F:

det : K1(F) = F*.
In general, the determinant map defines a splitting epimorphism

det : K1(R) — R*

and the kernel is usually denoted as SK;(R).
We will use an additive notation for the group K (F'). An element corresponding
to a € F* is denoted by {a} (it is not a set!), so
{-}  F*" = Ky(F)
{ab} = {a} + {0}
{1} = o0
Every element of K;(R) arises from an automorphism of a free R-module. In
particular, if E/F is an finite field extension, then there are canonical transfer
maps
e Ng/p : Ko(E) — Ko(F) which as a group homomorphism coincides with
multiplication by the degree [E : F],

e Ng/p: Ki(E) — K(F) which coincides with usual norm, since the usual
norm of x € E" is determinant of multiplication z - —: F — FE.

Description of Ko(F') is more complicated. A Steinberg symbol with values in an
abelian group A is a map f: F* x F’* — A which:

e is bimultiplicative, i.e.
f(ab,c) = f(a,c) + f(b,c), f(a,bc) = f(a,b) + f(a,c)
e vanishes on pairs (a, b) such that a +b =1,
f(a,1—a)=0.

Matsumoto and (independently) Moore proved that K»(F') is the group of values
of universal Steinberg symbol:

Theorem 3.1 (Matsumoto).
Ky(F) X F*®@F*/S
where S is a subgroup of F* @ F* generated by all a ® b such that a +b = 1.
For a proof see [16]. We use the notation

{a,b} = a®bmod S.
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Thus the identities
(3.1) {ab,c} = {a,c} + {b,c}, {a,bc} = {a,b} + {a,c},
(3.2) {1,a} = {a,1} =0,
(3.3) {a,1—a}=0fora#1
hold in K3(F). The map
{—, =} F* X F* — Ky(F)

is called the universal Steinberg symbol.

There is a transfer map Ng/p : K2(E) — Ko(F'), but it is not so easy to write

formula for it (see Lemma 7.15 and Proposition 7.16 below for the case (E : F') = 2.)
It is worth to point out that there are natural multiplications

Ko(R)® Ki(R) — Ki(R),
in the case of a field the latter is
{a}{b} = {a, b}

and is “graded commutative” (see Exercise 4 on page 10). For a finite field extension,
the projection formula

Ng/r ({a} - {z}) = {a} - {Ng,r(z)}
for a € F*, x € E*, holds.

3.2. Milnor K-theory of fields. The Matsumoto Theorem 3.1 was a motivation
for J. Milnor in 1970 ([15]) to define, for a field F', a graded ring

KM(F) = Ko(F) ® K1 (F) ® K»(F) & K3'(F) - @ K} (F) @ - --

which has interesting connections with the theory of quadratic forms and Galois
cohomology, as an approximation of K-theory.

Definition 3.4. Let T*(F) be the tensor algebra of a Z-module F*
. _ o0 *\®n
) =@ ()

and let I be the two-sided ideal of T*(F) generated by all expressions a @ b such
that a +b=1. Then

KM(F) S T*(F)/I.

The ideal I is homogeneous, so KM (F) is a graded ring. Milnor’s K-group
KM(F) is the n-th homogeneous component of KM (F), and KM (F) = K, (F) for
n=0,1,2. We usually write

{a1,a2,...,an} =01 ®az ® --- ® a, mod I.
Milnor was able to prove the following theorem:

Theorem 3.2. If F(t) is a field of rational functions in t, then there are split exact
sequences

0— KM(F) - KM(F(t)) — @ KM (F[t]/7) =0
forn=1,2,..., where ™ runs over closed points of the affine line SpecF[t].

Proof. [15, Theorem 2.3] 1
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3.3. Quillen K-theory of finite fields. Known values of K-functor for a ring R
led D. Quillen to use homotopy theory methods to compute appropriate homology
groups.

In 1969 Quillen introduced a “+4-construction”: given a pointed arcwise con-
nected CW-complex (X, z), and perfect normal subgroup H C m (X, x), there is a
map of CW-complexes f : (X,z) — (X, 2T) such that

e f induces an isomorphism 71 (X,z)/H = m (X, 2);

e finduces an isomorphism He (X, f*L) = H, (X, L) for every local system

of coefficients L on X .
There exists the classifying space BGL(R) of the group GL(R), such that
H.(GL(R)) = Ho(BGL(R)) and H*(GL(R)) = H*(BGL(R)).
Applying the +-construction to this classifying space yields the following definition
([22]):
Definition 3.5. Fori > 0,
K;(R) = m;(BGL(R)™).

The space BGL(R)* is connected, so mo(BGL(R)") = 0. Consider the disjoint
union Ko(R) x BGL(R)' of copies of connected space BGL(R)" , one for each
element of K(R). This space has the same higher homotopy groups as BGL(R)™
(higher homotopy group do depend on the connected component of the base point
only). Moreover, mo(Ko(R) x BGL(R)") = Ko(R) by the construction, so
for all 7 > 0. The product Ko(R) x BGL(R)" is the first example of so called K-
theory space - a space which homotopy groups are desired K-groups. Note that such
a space is defined only up to homotopy equivalence, since BGL is. The proper term
”a homotopy type of spaces” is much longer than “space”, so we use not-so-correct
notion ” K-theory space”.

With this definition Quillen was able to compute K-groups of a finite field F,
with ¢ elements:

Theorem 3.3. Fori >0
Ky (Fy) =0,
Kz 1(Fg) =2/(q" = 1).
IfF, CF,, then K,(F,) C K,,(F,) for all n.
In particular, this shows that Milnor K-theory, altough useful, gives no proper
values of K,,(F) for n > 1.

Exercise 3.1.

1—2

— 1

(2) Use this to show that {x,—x} =0 in K3(F).
(3) Deduce that {z,z} = {z,—1}.

(4) Deduce that {z,y} + {y,z} = 0.

Exercise 3.2. Assume that F is a finite field.

(1) Show that for every a,b € F*, the equation ax® + by? =1 has a solution in
F.

(1) Simplify the expression 7
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(2) Use this and the fact that the group F* is cyclic to prove that Ky(F) = 0.
(3) Deduce that KM(F) =0 forn > 1.

4. QUILLEN (Q-CONSTRUCTION

Homotopy theory turns out to be a proper setting for developing K-theory. For
a suitable category (symmetric monoidal or exact or Waldhausen), (the homotopy
type of) a topological space is attached; K-theory groups are homotopy groups
of this K-theory space. We discuss the first general Quillen definition of higher
algebraic K-theory of an exact category in some detail.

4.1. Exact categories, (Q-construction, classifying space of a category.

4.1.1. Ezact categories.

Definition 4.1. Exact category 9 = (9, A, €) is an additive category M, having
a set of isomorphism classes of objects, embedded as a full subcategory in abelian
category A, closed under extensions in 2, with a family € of exact (in 2) sequences

(4.1) 0—M M2 M -0
(called admissible exact sequences) satisfying the following conditions:

(1) all split exact sequences of objects of It are in &; if 4.1 is in €, then o is a
kernel of 3 in 9t and [ is the cokernel of o in 9;
We say that a monomorphism (an epimorphism) is an admissible monomor-
phism (an admissible epimorphism) iff it occurs in an admissible exact se-
quence.

(2) a composition of admissible epimorphisms (monomorphisms) is an admis-
sible epimorphism (monomorphism)

A>\L>B A<*—B
N ; AN ]

Boa \* aoﬁ\\
C C

a (co)base change of an admissible epimorphism (monomorphism) is an
admissible epimorphism (monomorphism)

C>——O/>C|_|AB AXBCBI—»C
1) S
A B A B

(3) if M — M" possesses a kernel in 91 and the composition N — M — M" is
an admissible epimorphism, then M — M" is an admissible epimorphism;
the dual statement for monomorphisms holds true.

Kera — B~ > A Cokera =<—— B<~-—<A

e e

C C
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For example, given an admissible exact sequence (4.1) and a map N 2 M" the
sequence

0=M SMxy NBN-0

is an admissible exact sequence.

It is now known that condition (3) is a consequence of (1) - (2) (Keller, [10,
Appendix A]).

Moreover, for an exact category (9,2, €) there exists a functor M — A’ which
embeds 9 as a full, closed under extensions subcategory into an abelian category
2’ such that € is the class of all short exact sequences in 9t which are exact in 2'.
So there is another way to define an exact category.

We will use arrows »— and — to denote admissible monomorphisms and admis-
sible epimorphisms respectively.

An admissible subobject is a source of an admissible monomorphism.

There is a notion of an ezact functor between exact categories: it is an additive
functor, which takes admissible exact sequences to admissible exact sequences.

Some examples:

Example 4.1. 9t =2, & is the family of all exact sequences.
Example 4.2. M =2A, € is the family of all split exact sequences.

Example 4.3. 2 is the category of finitely generated left R-modules, M is the full
subcategory of projective modules, & is the family of all sequences that are exact in
2A.

Example 4.4. X is a scheme, 2 is the category of coherent O x-modules, I is
the full subcategory of locally free modules, € is the family of all sequences that are
ezact in A.

4.1.2. The Q-construcion. For an exact category 9 = (M, A, €) Quillen defined
another category, denoted by Q90 (called the Quillenization of 91.) Given an exact
category (9,2, &) the category Q9 has the same objects as 91, and a morphism
from M to M’ in QM is a class of diagrams

MEN S
up to isomorphism, which induces the identities on M and M’.

« é
The composition of morphisms M 2 NS M and M' < N' 5 M” in the
category Q9 is defined by the fiber product as follows. Given two composable

B B’
morphisms M « N =, M', M« N' A M" the diagram

N, N’
M M’ M"
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is completed to the diagram

NXM/ N’
N
N; N,
M M’ M"

which yields the composition

Bop1 Yop2
M « Nxu N — M".

It is clear that composition is well-defined and associative. Since the isomorphism

B
classes of diagrams M « N 2 M’ form a set for each M, M', the Q9 is a well
defined category.

Each admissible monomorphism N &M gives rise to a morphism oy : N — M
in Q9N represented by the diagram

1N «
ar: N« N— M
and morphisms of this type are called injective.

Dually, each admissible epimorphism M «ﬁ— N defines a morphism ' : M — N
in Q9N represented by the diagram

BMENEN
and these morphisms are called surjective.

B «
Note that M « N ~— M’ = ayo 3. There is a dual decomposition: given a map
M «5— N2 M’ the fiber product

N—"—= )’

B
defines a decomposition M « N S M = 8o 7. Conversely, for a diagram
5
M 5 N & M the fiber sum N = M Iy, M’

M 1y M'>>— )1’

0| i(s

M N’

. B . »
defines a morphism M « N »5 M’ = a; o #' with the decomposition. In fact,
this is an alternative way to define morphisms in @Q91. It may be convenient to
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regard a morphism in the category Q9 as a bicartesian (cartesian and cocartesian
simultaneously) square

N—"> )\’

ﬁi g ia
M>$ Nl

and agree that usually we omit one corner of the square for short. The O sign
indicates that marked square is bicartesian.

Proposition 4.1.

a) If a and o' are composable monomorphisms in M, then (vo ') = a0y in

QIM;

b) if B and 3 are composable epimorphisms in M, then (B’ o B)' = B' 0 B" in QIM;
1

¢) (1), = (In) = 1ns;

d) for a bicartesian square

M>—— N’
with admissible arrows in N the equality ay o ' = &' oy holds in QM. 1

4.1.3. The universal property of the Q-construction. Supose given a category €, for

each object M in 9 an object hM of €, and for each N = M (resp. M efi N) in
9 amap oy : AN — hM' (vesp. 3 : hM — hN) such that the properties a), b), c),
d) of Proposition 4.1 hold. Then it is clear that this data induce a unique functor
F:QM — €, F(M)=hM compatible with the operations a — ay, 8 — B

This universal property of the Q-construction shows that an exact functor F' :
M — M between exact categories induces a functor QM — QM', M — FM,
ar — (Fa)y, ' — (FB)'. Also for the dual category 9° of an exact category 9
there is an isomorphism of categories

QM° = QM
such that the injective arrows in the former correspond to the surjective arrows in

the latter and conversely.

4.1.4. Isomorphisms. For an isomorphism N 2, M, two maps oy : N — M and
a " : N — M are equal since there is commutative diagram

N<<—N>—>M

|

Conversely, a map in @91 which is both injective and surjective is an isomorphism
and it is of the form a; = a~ ! for a unique isomorphism a in M.
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4.1.5. Zero maps. Let us denote 0™ : 0 — M and 057 : M — 0 unique maps in the
additive category 90t. The set Morgon(0, M) is in 1 — 1 correspondence with the
set of admissible subobjects of M (i.e. admissible monomorphisms N XM up to

automorphism of N over M), since each such a morphism by the definition is given
by diagram

0 a
0M .0 <& NS M.
Thus the set Morgon (0, M) of morphisms from 0 to M is partially ordered with
the smallest element 0} and the greatest element 0',. There are decompositions

O!M =0 O!N and 0M = a0 O!N since each such a morphism is, by definition, given
by the diagram:

Ox NN =0 N—2>VM NxyN=N——=N—"> )/
| = | A | = |~
ay
0> > N and
0 0

B
Dually, given admissible epimorphism M — M" with kernel N oM , there are
decompositions 03, = ' 00}, and 03 = f'o U!MH given by commutative diagrams:

N:Kerﬂ:OanM @ M
i %
0 M

Proposition 4.2. An admissible exact sequence 4.1 produces following commuta-
tive diagram in Q9N:

0

"
oM

K\/

Proof. There are decompositions 0} = a; 0 0M" and 0 = ay 0 0'y,,. I
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4.2. Higher K-groups and their elementary properties. The classyfying space
B¢ of a small category € is the geometric realization of the nerve N€ of this cate-
gory. The nerve N€ of a small category € is a simplicial set whose

(1) p-simplices are diagrams in € of the form
Xo—=X1—-—=X,

(2) the i-th face of the simplex is obtained by deleting the object X; and com-
posing arrows which come to and go from Xj;

1x,
(3) the i-th degeneracy of the simplex is obtained by inserting X; = X in
place of X;.
Quillen [23, I.2., Theorem 1 p. 18] proved the following

Theorem 4.3. The fundamental group m (B(QM),0) is canonically isomorphic to
the Grothendieck group Ko(9M). 1

It is obvious from this proof that the class [M] € Ky(9) corresponds under this
isomorphism to the loop ‘O'M‘ — oM ‘ formed from paths ‘O'M| corresponding to
1-simplex O!M :0— M and ‘0,M| corresponding to 1-simplex O!M :0— M.

This theorem was a motivation for the following definition:

Definition 4.2. The higher algebraic K-theory groups of an exact category 9 are
the homotopy groups of the classifying space of the category QIMN:

Ki(M) = 711 (B(QM),0).

It is known, that this definition agrees with the earlier definition of K-theory of
a ring, that used the +-construction. In particular K-groups of a finite field are
known as well as Ky, K7 and K of arbitrary field. The last Th(eorem) on page 228
of [6] states that for a ring R the loop space QQP(Spec(R)) is homotopy equivalent
to Ko(R) x BGL(R)* (cf. [29, IV§5, Theorem 5.1].)

Example 4.5. A geometrical realization of the simplicial set, associated to the
commutative diagram of an admissible exact sequence 4.1 consists of the following
four 2-simplices

! 1"
oM oM

0—— M 25 M, O—HM“iM

(T VRN VR YA VA Vi
visible in diagram 4.2. This simplicial complex is obtained from the diagram by
glueing together the three O vertices (fig. 1.) It may be realized as a parachute form
(fig. 2) or a sphere with a hole of a clover-leaf shape (fig. 3) - boundary of each
part of the leaf is a loop corresponding to one of objects M', M, M" with such an
orientation that sum of the loop of the subobject and the loop of the factor is the
loop of M.

Example 4.6. A long exact sequence, e.g.
0—A%BLocXlp_o

may be split into two short exact sequences by E = Im 3 = kervy and resulting
complezes are glued together along the boundary of the hole corresponding to E into
a sphere with four-lobed hole.
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FiGURE 1. Connecting 0 vertices

FIGURE 2. Parachute

Example 4.7. Given two short exact sequences with the same subobject, a total
object and a factor (so called double short exact sequence) there are two clover-
holed spheres with common boundary of the holes. This defines an element of
m2(B(QM),0). A. Nenashev proved ([18], [19]) that for arbitrary exact category
M, every element of K1(IM) is given by a double short exact sequence in this way.
Moreover, he gave a family of defining relations for K1(9) in terms of double short
exact sequences.



18 MAREK SZYJEWSKI

/’/ .

/ N
M i
O )
M .

\,\ ///

FiGure 3. Clover-holed sphere

Any exact functor f : 91 — 9 induces a functor Qf : Q9 — QMV, and hence
a homomorphism of K-groups which we denote by
fo Ko(9M) — Ko (90).

A natural transformation Q f — Qg of functors induces a homotopy between maps
B(Qf) and B(Qg), so naturally equivalent exact functors f,g : 9t — 9 induce
the same homomorphism f, = g..

Example 4.8. Given two exact categories I, M’ one may convert the product M x
M’ into exact category in the obvious way. Clearly Q (M x M) = Q (M) x Q (M)
and (prq, pry) is an isomorphism

K; (Dﬁ X Dﬁ/) =K; (m) o K; (ml) .
Example 4.9. Let

f/ — f . f/l

be an exact sequence of exact functors from an exact category M to an exact category
N. Then

fe=Fft+ £
as homomorphisms K;(9M) — K;(N).
This may be generalized as follows. We say that a filtration
O=foChC - Cl=f:M=>N

is an admissible filtration iff f,_1(X) — fp(X) is an admissible monomorphism for
all X and p. This implies that there exist quotient functors f,/ f, for all ¢ < p and
it f,/fp—1 are exact, then all quotients f,/f, are exact.

Example 4.10. If f : It — N is an exact functor between exact categories equipped
with an admissible filtration 0 = fo C f1 C --- C f, = f such that the consecutive
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quotients functors f,/ fp—1 are exact, then

n

Fe = (Fol Fo1)s-

p=1
Example 4.11. If there is an exact sequence
O—>f0—>f1—>—>fn—>0

of exact functors M — N, then

n

Y LP(fp)e =0

p=0

Example 4.12. Let X be a ringed space, P(X) - the category of vector bundles
on X with the usual notion of an exact sequence, K;(X) = K; (P(X)). Given E in
P(X), there is an ezxact functor:

E®ox —:P(X)—PX)
which induces a homomorphism (E ®@o, —)« : K;(X) — K;(X). If

0—-FE —-—E—-E"—0
is an exact sequence of vector bundles, then
(E @0y =)« = (E' ®0x =)« + (B" @05 =)

Thus there is a product

Ko(X)®z Ki(X) — K;(X)

[E] @z — (E®ox —)«(2).

In fact, there are products K;(X) ®z K;(X) — K,;1;(X) which generalize the

above and make K,(X) into a graded-commutative ring but the construction re-
quires more machinery.

Example 4.13. If X is a scheme, then there are exact functors

E®o, —:P(X)— P(X)
E®oy —: M(X) — M(X)

which yield a Ko(X)-module structure on both K (X) and K'(X).

4.3. Devissage and localization in abelian categories. Technical theorems on
homotopy theory of categories - Quillen’s Theorem A and B ([23, §7]) - yield results
on K-theory of abelian categories.

Let A be an abelian category having a set of isomorphism clases of objects,
with all short exact sequences admissible. Let moreover B be a non-empty full
subcategory closed under taking subobjects, quotient objects and finite products
in A, with all short exact sequences admissible. Thus B is an abelian category and
the inclusion functor B — A is exact.

Then @B is a full subcategory of QA consisting of those objects which are also
objects of B.
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Theorem 4.4 (Devissage). Suppose that every object A of abelian category A has
a finite filtration

0=AyCcAC---CA, =4
such that Aj/A;_1 is in B for each j. Then the inclusion QB — QA is a homotopy
equivalence, so K; (B) =2 K; (A).
Proof. [23, §5, Theorem 4]. I

Example 4.14. Let A be an abelian category such that:

o the isomorphism classes of objects of A form a set,

o cvery object of A has finite length (has a finite filtration with simple objects as
consecutive factors.)

Then

K (A)=]] K (D)
jeJ
where {X; : j € J} is a set of representatives for the isomorphism classes of simple
objects in A, and D; is the skew field End(X;)P.
Example 4.15. If I is a nilpotent two-sided ideal in a noetherian ring R, then
K[(R/I) > K/(R).
The second result - long exact homotopy sequence - is the main tool for producing

long exact sequence of localization.

Theorem 4.5 (Localization). Let B be a Serre subcategory of an abelian category A,
let A/B be the associated quotient abelian category, and lete : B — A, 0: A— A/B
denote the canonical functors. Then there is a long exact sequence

7 K (A/B) % Ko (B) 2 Ko (A) & Ko (A/B) — 0
Proof. [23, §5, Theorem 5|. I

This is a homotopy long exact sequence of a (homotopy) fibration B(QB) —
B(QA) — B(Q(A/B)); it is natural in A, B.

Example 4.16. If R is a Dedekind domain (regular normal domain of dimension
1) with quotient field R o), then there is a long exact sequence

= K (R(o)) — H Ki(R/m) — K;(R) — K; (R(O)) o
meSpecmR

5. K, OF NOETHERIAN SCHEMES

The category M(X) of coherent Ox-modules on a noetherian scheme X is an
abelian category, so the Devissage and Localization Theorems apply. We list shortly
basic results, following [23, §7].

5.1. Fundamental Theorem.

Theorem 5.1. If R is a noetherian ring, then there are canonical isomorphisms

Ki(R[t]) = Ki(R),

3

K{(R[t,t7']) = K{(R) & K{_1(R)
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If R is regular, there are canonical isomorphisms
Ki(R[t]) = Ki(R),
Ki(R[t,til]) > K;(R)® K;_1(R).
Proof. [23, §6, Theorem 8§]. I

In general, if a noetherian separated scheme X is regular, then the Cartan ho-
momorphism K;(X) — K/(X) is an isomorphism.

5.2. Functoriality, localization, homotopy property. If f: X — Y is a mor-
phism of schemes, then the inverse image functor f*: P(Y) — P(X) is exact and
induces homomorphism of K-groups which is denoted f*: K;(Y) — K;(X).

If f: X — Y is a flat morphism of schemes, then the inverse image functor
i MEY) - M(X) is exact and induces homomorphism of K-group which is
denoted f*: K/(Y) — K[(X).

In both cases the formula

(f9)" =g"f"
holds.

Thus K; becomes a contravariant functor from noetherian separated schemes
to abelian groups and K| becomes a contravariant functor on the subcategory of
noetherian separated schemes and flat morphisms. Some homotopy theory is needed
to prove that K; takes filtered projective limits of schemes with affine transition
maps to filtered injective limits of abelian groups, and K/ takes such a limits with
flat affine transition maps to appropriate limits of abelian groups.

Let f: X — Y be a proper morphism, so that the higher derived image functors
R!f,. carry coherent sheaves on X to coherent sheaves. Let F(X, f) denote the full
subcategory of M(X) consisting of sheaves F such that R'f.(F) = 0 for i > 0.
The functor f. induces a homomorphism

In the case when f is finite, in particular, when f is a closed immersion, (X, f) =
M(X).

In the case when X has an ample line bundle, every coherent sheaf on X can
be embedded in an object of F(X, f), which implies that the inclusion F(X, f) —

M(X) induces an isomorphism on K’-groups.
In both cases a homomorphism f. : K/ (X) — K/(Y) is defined.

Proposition 5.2 (Projection Formula). If for f : X — Y both f. : K[ (X) —
K[(Y) and f*: K[(Y) — K[ (X) are defined, then for x € Ko(X), y € K[(Y) the
equlity:

folz- [ (y)) = fulz) -y
in K/(Y) holds.
Proof. [23, §7, Proposition 2.10]. 1

Let ¢ : Z — X be a closed subscheme of X, and let Z be the coherent sheaf of
ideals in Ox defining Z. The functor ¢, : M(Z) — M(X) allows us to identify
coherent sheaves on Z with coherent sheaves on X annihilated by Z.

Proposition 5.3. If T is nilpotent, then v, : K] (Z) — K/(X) is an isomorphism.
In particular K[(X,eq) = K[(X). 11
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Now we extend the exact sequence of Localization Theorem 2.5:

Proposition 5.4 (Localization). Let j : U — X be the open complement of Z in
X. The there is a long exact sequence

= Kl (U) S K(2) 5 KI(X) 5 Kj(U) = -
Proof. The functor j* : M(X) — M(U) induces an equivalence of M(U) with
the quotient category M(X)/B, where B is the Serre subcategory consisting of
coherent sheaves with support in Z. Devissage implies that ¢, : M(Z) — B induces
isomorphism on K-groups, so the desired exact sequence results from 4.5. I

We get, as an immediate application, the following generalization of the Funda-
mental Theorem 5.1:

Proposition 5.5 (Homotopy Property). Let f: P — X be a flat map whose fibres
are affine spaces. Then f*: K/(X) — K/(P) is an isomorphism.

Proof. 1t follows by noetherian induction, starting from a closed point and passing
to generic point, since the affine case is proved - see [23, §7, Proposition 4.7]. I

5.3. Filtration, K-cohomology, Brown-Gersten-Quillen spectral sequence,
Chow ring. Let M, (X) denote the Serre subcategory of M(X) consisting of those
sheaves whose support is of codimension > p. It is clear that

K (My(X)) = lim K/(2)

where Z runs over closed subsets of codimension > p. Moreover subcategories
M, (X) are preserved by flat inverse image functor and by filtered projective limits
with affine flat transition maps.

Theorem 5.6. Let X, be the set of points of codimension p in X. There is the fol-
lowing Brown-Gersten-Quillen spectral sequence (shortly: BGQ spectral sequence)

EPI(X) = J] K-pg (k(2)) = K, (X)
reX,

which is convergent when X has finite dimension. BGQ spectral sequence is con-
travariant for flat morphisms. If X = lim X;, where i — X; is a filtered projective

system with flat affine transition morphisms, then the BGQ) spectral squence for X
is the inductive limit of the BGQ spectral sequences for the X;.
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This sequence is concentrated in the range p > 0, p 4+ ¢ < 0; if dim X = d then
the Ej-term looks as follows:

[ Ko(k(z))

z€Xo

[T K (k(r) o T Ko(k(z))

z€Xo reXq

[ Ka(k(z)) I Kaa(k(x)) ... II Ko(k(z))
z€Xo zeX, z€Xy

[ Ky (k(z) o I Ka(k(z)) ... [T Ki(k(2))
€ Xo reX1 reXy

Proof. Consider the filtration

M(X) = Mo(X) D Mi(X)D---
of M(X) by Serre subcategories. There is an equivalence

Mp(X) /My (X) = TT (UM (Ox.0 / (rad (Ox,2))")
X, n
which yields an isomorphism
Ki (Mp(X)/ My (X)) = T Ki(k(x)
reX,

where k() is the residue field at x.

Localization exact sequences

— Ki (Mpi1 (X)) = K; Mp(X) = ] Ki(k(2) = Kiy (Mps1(X)) —

z€X,
form an exact couple:
D D
\ ) /
where
p=]]&:Myx), E=]] ]I K: (k)
ip i,p T€Xp

and give rise to the BGQ spectral sequence in a standard way (see eg. [12, X1.5]). I
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The filtration, arising in K/ (X) from the BGQ spectral sequence is the one
given by codimension of support: FPT1K! (X) consists of elements of K/ (X) which
vanish at generic points of subschemes of codimension < p.

One of geometric applications of BGQ spectral sequence is the following;:

Theorem 5.7. Let X be reqular scheme of finite dimension over a field. Then
there is a canonical isomorphism

EPP(X) = CHP(X).

Proof. 23, §7, Proposition 5.14]. I

In fact, the group ] Ko(k(z)) = [] Z is a group of codimension p cycles
zE€EX) zE€EX)

on X, and one may check that image of [] Ki(k(z)) — I Ko(k(x)) (or
r€EXp-_1 zE€EX)

11 E(x)* — ]I Z) is exactly the group of cycles linearly equivalent to 0.
$€XP_1 xEXp

Fory € X,,_1 and x € X, the yz component of diferential [[ k(y)* — ][] Z
yEXp_1 reX,
assigns to f € k(y)* the multiplicity of its 0 in x.
Another property of the BGQ spectral sequence is connected with the so called
Gersten Conjecture.

Proposition 5.8. The following conditions are equivalent:
(i) For every p > 0 the inclusion Mp11(X) — My(X) induces 0 on the K -groups;
(ii) For all q, E" = 0 if p # 0 and the edge homomorphism K' & — EY? is an
isomorphism;
(#4i) For every n the sequence
(5.1) 0— K (X) = ] Kn(k(@) = T Koo (k@) — -
z€Xo reXq
1s exact. |
Proposition 5.9 (Gersten). Let K/, denote the Zariski sheaf on X associated to the

presheaf U — K| (U). Assume that Spec (Ox ) satisfies the equivalent conditions
of Proposition 5.8 for all x € X. Then there is a canonical isomorphism

EP(X) = HP(X,K").

Proof. We use the sequences (5.1) for different open subsets of X and we sheafify
them to get a sequence of sheaves

z€Xo r€X1

where iy : Spec (k(z)) — X denotes the canonical map. The stalk of this sequence
over x is the sequence (5.1) for Spec (Ox ), which is exact by hypothesis, whence
it is a flasque resolution of /C/,. B

We refer to HP (X, K!)) as K-cohomology groups of X.
The Gersten Conjecture is the following:

Conjecture 5.10. The conditions of Proposition 5.8 are satisfied for the spectrum
of a regular local ring.
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Some partial cases of this conjecture are proved. In particular Quillen proved
it even for a semilocal ring obtained from a finite type algebra over a field by
localizing with respect to a finite set of regular points (|23, Theorem 5.11]). So
EYY(X) = HP(X,K",) holds for a smooth variety over a field. This is a tool for

effective computation of F5(X), e.g.

e HP(—,K_,) has a homotopy property: if f: X — Y is a flat map whose
fibers are affine spaces, then f* induces an isomorphism HP (X, K’ q) o~
HP(Y,K_,).

e if 7 is a closed subset of X of pure codimension d, then

0—-—0— H Ky_a(k(z)) — H Kp_q-1(k(z)) — -
TE€Zo r€Z
is a subcomplex of
r€Xo r€X)
and the factor complex is
[T Eik@)— I EKor(k(@)—
ze(X\Z)o ze(X\Z)1
which yields excision property: H?(X,K) = HP(X\Z,K,)forp=0,1,...,d—
2 and there is an exact excision sequence:
0— H"NX,K,) » H"Y(X\Z,K,) — H(Z,K],_;) —
- Hd(leC;z) - Hd(X\Z,IC;) - Hl(ZvlC;zfd) —
Other important properties of BGQ spectral sequence are that if X is a variety
over a field F, then Fq"~ (X) is a spectral sequence of K,(F')-modules. In particular
the constants - elements of Ko(F') - are in kernel of every differential. Thus if a

term is constant, EP9(X) = K_,_,(F), then all differentials starting from E?-7(X)
are trivial.

Example 5.1. Affine space.
If X = A% is the affine space, then E5'?(X) looks as follows:

Ko(F(X)) 0 0 0

Ki(F) 0 0 0



26 MAREK SZYJEWSKI

and the BGQ spectral sequence degenerates from the Fs-term on - all differentials
in all £,,, n > 2, are trivial. i

Example 5.2. Projective space.

If X = P’ is the projective space, then for a hyperplane Z = ]P’Zfl there is an
exact excision sequence:

0 — HO(P%vlCLq) - HO(A%aKLq) - HO(Pgil’ICqul) -
- Hl(Pg‘vlCLq) - Hl(A%aKLq) - Hl(PgilaKqul) —
which in fact is:
0 — HO( ?‘a’cl—q) - K*Q(F) - HO(P?‘_laK/—q—l) -
- Hl( ?‘a’cl—q) —0— Hl(]PY}g‘_lvlC,—q—l) o
Moreover, the homomorphism H?(A%, K" ) — HO(Pg’l,ICqul) is induced by a
differential, so it is trivial and
EYU(PE) = K_o(F),  ER(P}) = B30\ (Bp") for p > 0.
By induction on n we get
qu(P%) = K*pfq(F)

The BGQ spectral sequence for a projective space degenerates from F5 onwards.
In the Fs-term we have:

Ko(F) 0 0 0
K(F) | Ko(F) 0 0
B®R: k) | KuoF) . K(F) Ko()
Kni1(F) | Kn(F) K>(F)  Ka(F)

It follows that there is a canonical isomorphism of K,(F)-modules
K, (Pp) = K (Pf) = Ko(F)""

compatible with the topological filtration: here in lower right block there is the
image of Ex(P:'). Thus F'K,(P}) is the image of K¢(P% '), where P! is
embedded in P} as a hyperplane. The Ky(F'), at p = 1,¢ = —1 is the Piccard
group, unit element of this group is the class |:OP;—1:| of the structural sheaf of a

hyperplane. i
Example 5.3. A quadric.

Let Q% be a d-dimensional projective quadric over F' defined by equation ¢4 = 0,
where

@2k = ToYo + T1y1 + -+ TrYk,
Qi1 = 22+ Toyo + Ty + 0+ Tl
Consider the hyperplane section Z¢ : yp = 0 and its open complement U?¢ =

QN\Z4=1, U?is an affine space - the spectrum of F [;—z,z—z, ,% /((;2—:) or
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F & Zo Yo ... Ikl [(22k:1) which is a polynomial ring in d variables. The ex-
Ye’' Yk’ Yk Yk Yr

cision property yields
HY(Q%,K)) = K. (F), HP(Q%K],)=HP"Y(z¢ Kl_,) for p> 0.
Z~1is a projective cone over Q%2 with the vertex pt = (0:0:---:0:1:0). Z9!
with the vertex removed is a bundle of affine lines over Q¢~2, so by the homotopy
property
Hp_l(Zd_l\Ptalqul) = Hp_l(Qd_Qa/C;zfl)
Starting the induction with Q° = pt Il pt and Q* = PL, we obtain
e for odd d
EpU(Q7) = HP(Q",K") = K—p—y(F),
e for d =2k
EPIQY) = HY(Q",K_) = K_p_q(F) for p # k,
EYUQY) = HHQU K ) = K_k—q(F) ® K_j—q(F) for p=k
and the BGQ spectral sequence degenerates from the Fs-term on.
In particular, we see that for ¢ < d,

CH Q%) = Z for 2i # d, CH*Q*)=zoZ. 1
6. Ko OF CERTAIN VARIETIES

There are several constructions of K-theory spaces other than @-construction,
like Gillet-Grayson G-construction or Giffen K-construction (see [29, Chapter IV],
i.e. http://math.rutgers.edu./ weibel/Kbook.IV.dvi.) If one wants to obtain
results like K3(Z) = Z/48Z ([11]) or K4(Z) = 0, then this topological machinery is
required. If one wants K-theory as a tool for algebraic geometry of varieties, then it
is reasonable to use above basic properties as axioms and simply do computations.
So there will be no homotopy theory in the following.

6.1. Regular sheaves and projective bundles. We recall here the computation
from §8 of [23] of K-theory ring of a projective bundle, for two reasons: firstly,
this gives methods for explicit computations, secondly this provides a model for
computations of K-theory of other varieties.

Let T be a scheme (not necessarily noetherian or separated), let £ be a vector
bundle of rank r over T, and let X = P(€) = Proj(Sym&) be associated projective
bundle, where Sym¢& is the symmetric algebra of & over Op. Let Ox(1) be the
canonical line bundle on X and f: X — T the structural map.

Lemma 6.1. (i) For every quasi-coherent sheaf F of Ox-modules, R1f.(F) is a
quasi-coherent sheaf of Or-modules which is zero for q > r.

(ii) For any quasi-coherent sheaf F of Ox-modules and vector bundle G on T, one
has

qu*(]:) ®OT g = qu*(]:®ox f*g)

(#1) For any quasi-coherent sheaf N' of O x -modules, one has
0 for q#0,r—1
R1f(Ox(n) ®o, N) = q Sym"€®o, N forqg=0 ]
(Sym™ ") " ®@or N forqg=r—1
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() If F is a coherent sheaf of Ox-modules, and T is affine, then F is a quotient
of (Ox(=1)®™)* for some n, k.

The following notion is usually attributed to Mumford ([17, Lecture 14]):
Definition 6.1. A quasi-coherent sheaf F of Ox-modules on X is m-reqular iff
Rif(F(m—1i))=0

for all i > 0. “O-regular” is simply “regular”. F is m-regular iff F(m) is regular.

Mumford himself attributes this notion and its properties to Castelnuovo.
The long exact sequence of higher derived images yields immediately the follow-
ing Lemma.

Lemma 6.2. Let 0 — F' — F — F"” — 0 be an exact sequence of quasi-coherent
sheaves of Ox-modules.

(i) If F'(n) and F"(n) are m-regular, so is F(n).

(ii) If F(n) and F'(n+ 1) are m-regular, so is F"'(n).

(iii) If F(n + 1) and F"(n) are m-regular, and if f. (F(n)) — f« (F'(n)) is onto,
then F'(n + 1) is m-regular. I

Lemma 6.3. If F is regular, then F(n) is reqular for all n > 0.
Proof. From the canonical epimorphism f*& — Ox(1) one gets an epimorphism
(6.1) Ox(—l) ROy I (5) — Ox

and Koszul resolutions

62) 0—Ox(-r) oy f* (/\8) L Ox(-1) B0y £ () - Ox 0,
(6.3) 0— F(—r)®oy [~ </\5> — = F(-1)®o, fF(€) = F—0.

p
Assuming F to be regular, one sees that <.7:(—p) Rox [* (/\ 5)) (p) is regular.

If (6.3) is split into short exact sequences

p
0— 2, = F(—p) ®oy [~ </\5> — Z, 1 — 0,

then by decreasing induction on p we obtain that the sheaf Z,(p+1) is also regular.
Thus the regularity of F implies that Zo(1) = F(1) is regular. I

Lemma 6.4. If F is regular, then the canonical map f*f. (F) — F is surjective.
Proof. As above there is an exact sequence
0-21 > F(-1)®o, ff(E)—-F—0

with regular Z;(2). Thus R'f. (Z1(n)) = 0 for n > 1, so the canonical map
fe (Fin—1)) ®0, € — fi (F(n)) is surjective for n > 1. Hence the canonical map
of Sym&-modules
f+ (F) @0, SymE — [ f+ (F(n))
n>0
is surjective. The Lemma follows by taking the associated sheaves. I



K-THEORY 29

Now we shall describe a recursive procedure which gives the canonical resolution
of a regular sheaf. This procedure is the key point here and in other computations
below. But first suppose that a coherent sheaf F of O x-modules admits a resolution

0= f(T)A=7r)=- = [ (T)) = F—=0

where 7; are coherent sheaves of Op-modules. Then F has to be regular. Moreover,
the above exact sequence can be viewed as a resolution of the zero sheaf by acyclic
objects for the d-functor F —— RIf.(F(n)), where n is any fixed nonnegative
integer. Applying f. we get an exact sequence

0 — Sym™ "¢ ®op Tre1 — - —= Sym"E ®o, fo (F) — 0
for n > 0. In particular, we have the exact sequences:
0T, > ERoy Tno1— -+ — [ (F(n)) —0

forn=0,1,...,7—1 which can be used to show that the sheaves 7,, are determined
by F up to canonical isomorphisms.

Recursive construction of a canonical resolution:

Conversely, given a coherent sheaf F of O x-modules, we inductively define a se-
quence of coherent sheaves of Ox-modules Z,, = Z,,(F) and a sequence of coherent
sheaves of Op-modules 7, = 7,,(F) as follows. Starting with Z_; = F, let

(64) 7;1 = f* (anl(n))a
Z, ker (f*(7n)(—n) — Z,-1) .

Z, and 7,, are additive functors of F.
Assume now that F is regular. We see by induction that Z,(n + 1) is regular.

This is clear for n = —1. The exact sequences

(6.5) 0= Zu(n) = F*(T) = Z_1(n) — 0
allow one to complete the induction. In addition we have
(6.6) f«(Zn(n))=0forn>0

because the functor f. maps f*(7,) — Z,_1(n) onto an isomorphism. The functor
f« 1s exact on the category of regular coherent sheaves of Ox-modules, so F —
T, (F) is an exact functor.

Example 6.1. Projective space
Let F be a field, T = SpecF, X = P. The sheaf F = Ox (1) is regular.
To = f. (F) = H" (X, 0x(1))

is a vector space of dimension m + 1. Exact sequence (6.5) for n = 0

0— 25— 0% — O0x(1) =0
defines Zy; for the next step we twist this sequence by 1:

0— Zo(1) —» Ox (1™ - 0x(2) =0

to obtain that dim H° (X, Z5(1)) = (m+1) (™) — (™52) = (™5"). Thus

T = f. (Z0(1) = B (X, Zo(1)) = L")

Exact sequence (6.5) for n =1 is

0_)2(”_)0("1;1) — Z5(1) =0
1 X 0 .
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For convenience we glue it with the exact sequence for n = 0 twisted by 1:

m—+1
0— Zl(].) — Og( 2 ) — Ox(l)m+1 — Ox(2) — 0.

Thus next twist by 1

0— 2:(2) — 0x(M"F) S 0x@)m S 0x(3) -0,
yields
dim H° (X, Zp(2)) = (") (m+1) — (m+1) ("F2) + (mF3) = (™),

T = £ (2:2) = BO (X, 2,(2)) = U3,

so the next step is

0= 22— 0T o) - ox@mt — 0x(3) — 0.

The final result is Z,, = 0 and
0—-0x — OX(l)(anzrl) — ..
(erl) mal
= 0x(m-1\ 2 /] - Ox(m) — Ox(m+1)—0.
Untwisting yields the resolution of Ox(1):
0— Ox(-m) = Ox(1—m){"m') = ...
(erl) (erl)
= 0x(-1)\ 2/ -0x\ 1 /) —=0x(1)—0.
According to Proposition 2.6 above, K (X) is a free abelian group with a basis
1=1[0x], £ =[0x(-1)],£,...,&m" 1 ¢™. Here we have an identity
=)+ () O+ () (O H (=™
which yields the ring structure:
Ko(X)=Z[g/(1-¢™"). 1
Going back to the general case we see that the key point is that the recursive

process described above terminates, i.e. that Z,._; = 0. From 6.5 we get an exact
sequence

R (Znig-1(n)) — RO fu (Zuiq(n)) — RO f (f* (Tnsq) (—0))
which allows one to prove by induction on ¢, starting from 6.6, that R f.. (Z,44(n)) =
0 for g,n > 0. This shows that Z,_;(r — 1) is regular, since R%f, is zero for g > r.
Thus f. (Z,—1(r — 1)) =0 and Z,_;(r — 1) by Lemma 6.4.
We have proved the following.

Proposition 6.5. Any reqular coherent sheaf of Ox-modules F has the canonical
resolution of the form

67) 0= (Tra(F)A=7) = = [ (T(F)A) = (T (F) = F =0

where the T; (F) are coherent sheaves of Op-modules determined up to a unique
isomorphism by F. Moreover F —— T; (F) is an ezxact functor from the category
of reqular coherent sheaves of Ox-modules to the category of coherent sheaves of
Or-modules. 1

We state now three lemmas.
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Lemma 6.6. Assume T is quasi-compact. Then for any vector bundle F on X
there exists an integer ng such that for all coherent sheaves N of Or-modules, one
has

(a) R1f. (F(n) @oy f*(N)) =0 for ¢ >0,

(b) f+ (F(n)) ®or N — fu (F(n) ®ox f*(N)),
(c) f« (F(n)) is a vector bundle on T.

Proof. [23, §8, Lemma 1.12]. I

Lemma 6.7. If F is a vector bundle on X such that Rif, (F(n)) =0 for ¢ > 0
and n > 0, then f. (F(n)) is a vector bundle on T for all n > 0.

Proof. [23, §8, Lemma 1.13]. I

Lemma 6.8. If F is a regular vector bundle on X, then T; (F) is a vector bundle
on T for each i.

Proof. [23, §8, Lemma 1.14]. I
Now we can prove main result of this section (Theorem 2.1 of [23, §8] ).

Theorem 6.9. Let £ be a vector bundle of rank r over a scheme T and X =P (£)
the associated projective bundle. If T is quasi-compact, then one has isomorphisms
r—1
(Ko(T))" =5 Ko(X),  (ag,an,...,ar1) — Y _t'- fa;
i=0
where t € Ko(X) is the class of the canonical line bundle Ox(—1), product - is the
multiplication Ko(X) ® Ko(X) — K,(X) defined in Ezample 4.12, and f : X — T
is the structural map.

Proof. Let B,, = PB,.(X) denote the full subcategory of P(X) consisting of vector
bundles F such that R?f.(F(k)) = 0 for ¢ # 0 and k > n. Let R®,, = R,,(X) denote
the full subcategory of P(X) consisting of n-regular vector bundles. Each of this
subcategories is closed under extensions, so its K-groups are defined.

We prove that inclusions induce isomorphisms K, (R,,) = K,(B,) = K,(P(X)) =
K4(X). To see this change the exact sequence (6.2) into

0—0x — (f*E)NA)— - — <f* (/\5)) (r) —0

and tensor it by F:

0—=F = f(€) @ox F(1) = - = [ </\8> ®ox F(r) = 0.

p
For each p > 0, F — F(p) o, f* (/\8 is an exact functor from B,, to B, _1,

hence it induces a homomorphism u, : K, (Bn) — K, (Pn—_1). It is clear, that

> (—1)P~!u, is an inverse to the map induced by the inclusion B,,—1 — B,,. Thus
p>0

we have K, (Bn-1) = K, (B,) for all n. By Lemma 6.6 (a), P(X) is the union of
the B,,’s, so K, (P,,) = K,(P(X)) for all n. The proof that K, (R,,) = K,(P(X))

is similar.
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Put U,(N) = (f*(N)) (=n) for N € P(T). For 0 < n < r, U, is an exact functor
from P(T) to Po, hence it induces a homomorphism w,, : K,(P(T)) — K,(PBo). To
prove the theorem it suffices to show that the homomorphism

U KP(P(T))T - Kp(mo)v u (aovalv .- warfl) = z_:un(an);
n=0

is an isomorphism.
From Lemma 6.7 we know that V,,(F) = f. (F(n)) is an exact functor from Py
to P(T) for n > 0, hence we have a homomorphism

v Kp(Po) = Kp(P(T))",  w(x) = (vo(z),v1(2), ..., vr—1(2)),
where v,, is a homomorphism induced by V;,. Since
Vo Un(N) = fu (f*(N)) (n = m)) = Sym™ ™™ (£) ®o, N,

it follows that the composition vu is described by a triangular matrix with 1’s on
the diagonal. Therefore vu is an isomorphism, so u is injective.

On the other hand, 7;, is an exact functor from R to P(T), hence we have a
homomorphism

t: Ky(Ro) — Kp(P(T)), (&) = (to(x), —t1(),..., (1), 1(2)) ,

where t,, is induced by 7,. The composition ut is the map K,(Ro) — K,(Bo)
induced by the inclusion SRy — Bg. Since ut is an isomorphism w is surjective.
This concludes the proof. i

6.2. Brauer-Severi varieties. If a variety X is in some sense similar to a pro-
jective space, then K-theory of X differs slightly from the K-theory of projective
space. To show similarities and differences we discuss Brauer-Severi varieties and
quadric hypersurfaces.

Brauer-Severi variety is a twisted form of a projective space. Let k be a field
and let k be its algebraic closure.

Definition 6.2. A k-variety P is a Brauer-Severi variety over k if P = P;‘l.

(see [1].) For example a conic is a Brauer-Severi variety (Example 7.1 below.)

So a Brauer-Severi variety is similar to a projective space.

Brauer-Severi varieties over a fixed field k are classified by central simple k-
algebras. Since this connection algebras-varieties is relevant, we give here some
details.

Recall that a k-algebra A is central iff k is its center; it is simple iff it has no
proper two-sided ideals. By Wedderburn Theorem ([24, Chapter 8, Theorem 1.5])
every central simple k-algebra is a matrix algebra over a division ring, which is
central over k. In particular every central simple k-algebra is a matrix algebra.

Given a central simple algebra A of rank r2 over a field k, a Brauer-Severi variety
over k may be defined directly as follows. For a field extension & C K let Px be
the set of all left ideals L of A ®; K of dimension r. Let P be the k-variety which
set of K-points is Pk for every K. It is clear that P possesses the structure of an
algebraic variety over k. Indeed, picking a fixed basis for A over k, one embeds P
as a closed subvariety of a Grassmannian Gr(r,r?) of r-spaces in A ®j K, defined
by the relations stating that each L is a left ideal of A.

If A is a division ring, then P is a variety without rational points.
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If A = M, (k) is a matrix algebra and e; = ¢;; are the usual idempotents (e;;
is a matrix which differs from zero matrix by exactly one 1 at place 4,75), then
each left ideal L may be decomposed as L = e;L & --- ® e, L, when viewed as a
k-module. Matrices in e;L differ form zero matrix by ¢-th row. Since ej;e;L = e;L,
dimy e;L = 1 for each 1 < ¢ < r. Thus all i-rows of matrices in e; L form a line
in k", and for ¢ = 1,2,...,r this is the same line - the common image k" - = of all
nonzero x € L. Choose x # 0 in ey L; then x may be written as = ) aje; for
some (ai,...,a,) € k", where at least one a; # 0. For another choice of z, we have
x’ = Azx. Tt follows that each left ideal L of A corresponds to a point (ay : ... : a,)
of ]P’;_l, which is the common image of rank 1 matrices in L. On the other hand,
pick (a1 : ... :a,) in Py7" and let [ = Y ajer;. Then we associate to it the left
ideal L it generates in M,.(k), which is L = kl+ kea1l+ ... + ke,1l. Thus the Brauer
Severi-variety associated to M, (k) is just a projective (r — 1)-space over k. In
particular, a Brauer-Severi variety over an algebraically closed field is a projective
space, and a Brauer-Severi variety over a field £ becomes isomorphic to a projective
space over k.

Brauer-Severi varieties may also be defined by descent. By descent theory, if
G = Gal(k/k), then the pointed set of isomorphism classes of k-varieties P with
the property that P = IP’%71 is isomorphic to H'(G, PGL,), because AutP =
PGL,. On the other hand, each k-automorphism of M, (k) is inner (Noether-Skolem
Theorem, [24, Chapter 8, Theorem 4.2]), AutM, (k) = PGL,(k). Now, let A be a
central simple k-algebra and k the algebraic closure of k. Then A ®; k = M,(k).
So by descent theory the pointed set of isomorphism classes of central simple k-
algebras of rank 2 is isomorphic to H*(G, PGL,), too. We associate to a k-variety
P as above the central simple algebra A of the same class in H!(G, PGL,). If one
looks at the explicit action of PGL, on P"~! and the variety of left ideals of rank
r of M, then it is easy to see that both constructions yield the same result.

Example 6.2. Conic and quaternion algebra.

Let r = 2. Then there exists a quadratic extension F' = k (y/a) of k such that
Pp =2 PL and A ® F = M>(F). One may check explicitely that if P and A are
defined by the same cocycle, then there exists b € k* such that A has a basis 1,1, j, k

such that

i’=a, j2=0b, ij=—ji=kF.

Such A is the quaternion algebra (%), these are classified up to isomorphism by

isomorphism classes of quadratic form (their reduced norm - see the final section
below for a definition)

(6.8) Nrd(z4yi+zj+tk) = (x+yitzj+tk)(z—yi—zj—tk) = 22 —ay®—bz*+abz>.

This is a very special quadratic form (two-fold Pfister form), its isomorphism class
is uniquely defined by isomorphism class of its subform

Nrd(yi+ zj + tk) = — (yi+ zj + tk)2 = —ay® — bz® + abz?

(in the quadratic form theory it is called a pure subform of (6.8); a quaternion of
the form yi 4+ 25 + tk is called a pure quaternion.) We show that Brauer-Severi
variety P is the projective conic defined by the equation ay? + bz% — abz?2 = 0. A
left ideal L is of the form Aa for a@ € A; if N (a) # 0, then « is invertible, so
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N (o) =0 for dim L = 2; if a = & + yi + 2j + tk and = # 0 and, say, 2% — ay® # 0,
then = — yi is invertible and

L= Ai(z —yi) (x4 yi + zj + th) = Ai (2% — ay® + (z2 — byt) j + (vt — y2) k)
:A((J:2—ayQ)i—l—a(mt—yz)j—i—(xz—byt)k—i—(Jct—yz)k)
=AWi+25+tk).

One easily checks that A (y'i+ 25 +t'k) = A(y"i+2"j+t"k) iff (y :2':¢) =
(yll . Z” . t”) I

There are relative versions of notions above. For a scheme T we introduce the
following definitions:

o A sheaf A of Orp-algebras of rank r? over T is an Azumaya algebra iff A is
locally isomorphic to the sheaf M, (Or) with respect to étale topology
(cf. [3, §5].

e A T-scheme f : X — T is a Brauer-Severi scheme of relative dimension
r — 1 iff it is locally isomorphic to the projective space ]P’TT*1 with respect
to étale topology on T

(cf. op. cit., §8.)

By descent, the connection between central simple algebras and Brauer-Severi
varieties remains valid for Azumaya algebras and Brauer-Severi schemes - for details
see [8, §8]. Moreover, Quillen ([23, §8.4]) has generalized the Projective Bundle
Theorem 6.9 to this situation.

So let f: X — T be a Brauer-Severi scheme of relative dimension r — 1 corre-
sponding to the Azumaya algebra A over T'.

If there exists a line bundle £ on X which restricts to O(—1) on each geometric
fibre, then one has X = P (&), where £ is the vector bundle f.£ on T. In general
such a line bundle £ exists only locally for the étale topology on X. However,
we shall now show that there is a canonical vector bundle of rank r on X which
restricts to O(—1)" on each geometric fibre.

Let the group scheme GL(r,T) act on OF in the standard way, and put ¥ =
Pi~! = P(O%). The induced action on Y factors through the projective group
PGL(r,T) = GL(r,T)/Gy,,r. Since the multiplicative group G,, 1 acts trivially
on the vector bundle Oy (—1) ®¢o, g*(O7), where g : Y — T is the structural map,
the group PGL(r,T) operates on this vector bundle compatibly with its action
on Y. As X is locally isomorphic to Y with respect to the étale topology on
T and PGL(r,T) is the group of authomorphisms of Y over T, one knows that
X is the bundle over T with fibre Y associated to a torsor A under PGL(r,T)
locally trivial for the étale topology. Thus by a faithfully flat descent, the bundle
Oy (—1) ®0o, g*(O7) on Y gives rise to a vector bundle J on X of rank r.

It is clear that the construction of 7 is compatible with the base change, and
that J = Ox(—1) ®o, [*(€) if X = PE. In the general case, there is a cartesian
square

X’LX

ol

T ——T
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where h is faithfully flat (e.g. an étale surjective map over which A becomes trivial)
such that X’ =P (&) for some vector bundle &£ of rank r on 7", and further

W*(J) = Ox/(—-1) ®o,, [ (£).
Let A be the sheaf of (non-commutative) Or-algebras given by
A= [ (Endoy (T))7

where 'op’ denotes the opposed ring structure. As h is flat, we have h* f, = fLh'*.
Hence

h*(A)*P W' e (Endo, (7)) = IR (Endoy (7))
fi(Endoy (Ox/(=1) ®o,, [ (£))) = fif" (Endo,, (€)) = Endo,, (€).
Thus A is an Azumaya algebra of rank r2 over T. Moreover one has

[FA=Endo, (T)7

as one verifies by pulling back both sides to X’.
Let J, (resp. A;) be the n-fold tensor product of J on X (resp. A on T), so
that A,, is an Azumaya algebra of rank (r™)? such that

Ay, = f* (E’I’Ldox (jn))op, f*-An = 8ndox (jn)op'

Let P(T,A,) be the category of vector bundles on T which are left modules for
A,. Since 7, is a right f* (A, )-module, which locally on X is a direct summand
of f*(A,), we have an exact functor

TIn®a, —:P(T,An) = P(X), Mr—Ty®pa, f* (M)

and hence an induced map of K-groups.

Theorem 6.10. If T is quasicompact, one has isomorphisms (for all i):

r—1 r—1
[ & (A) = Ki(X),  (zo.21, . 20m1) — > (T @, —), (@)
n=0 n=0

This is actually a generalization of 6.9 because if two Azumaya algebras A, B
represent the same element of the Brauer group of T', then the categories P(T,.A)
and P(T,B) are equivalent (Morita equivalence), and hence have isomorphic K-
groups. Thus K; (P(T,A,)) = K;(T) for all n if X is the projectivization of some
vector bundle.

A proof of 6.10 is a modification of the proof of 6.9. One calls a sheaf F of
Ox-modules to be a regular sheaf if its inverse image on X’ = P (£) is regular. For
a regular F one constructs a sequence

(6.9) 0= Tr1®4, L1 (F) = -+ = Ox @0y [ (To (F)) = F — 0
recursively by

T, (]:) = Jfs (HOmoX (jnvzn—l («7:)))7

Zo(F) = ker(Jn®a, Tn (F) = Zp-1 (F))

starting with Z_; (F) = F. It is easy to see that this sequence, when lifted to X,
coincides with the canonical resolution (6.7) of inverse image of F on X’. Since X’
is faithfully flat over X, (6.9) is a resolution of F.
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We note also that there is a canonical epimorphism J — Ox obtained by de-
scending (6.1), and hence a Koszul complex

is an exact sequence of vector bundles on X, corresponding to (6.2). Therefore it
is clear that all of the tools used in the proof of Projective Bundle Theorem are
available in the situation under consideration.

This result was used to compute K-cohomology of Brauer-Severi variety in [14].
The field of fractions of Brauer-Severi variety is a generic splitting field for asso-
ciated central simple algebra, and K-cohomology computation was used to prove
that for arbitrary field F' and natural number n prime to characteristic of F', there
is a natural isomorphism Ks(F)/nKy(F) = H?(F, $?). We show below in 7.2 a
particular case of the key argument leading this result, to exhibit the flavour of
that kind of applications of the theory.

6.3. Quadric hypersurfaces. We give here a simplified account of Richard Swan
paper [27]. The setup of [27] is very general: quadric is defined over a ring R -
for a finitely generated projective R-module M with nonsingular quadratic form
q : M — R the quadric X(q) is Proj(Sym(M™*)) /(¢q) (here M* = Hompgr(M, R).)
The main Theorem 9.1 describes K-theory of the category P(X(q),A) of vector
bundles on X (g) with left action of a generalized Azumaya algebra A. With such a
general result it is possible to compute the K-theory of products of affine quadrics.

We content ourselves with the K-theory of P(X(q)) of smooth quadric hyper-
surface X (q) over a field F' with characteristic different from 2.

Let us outline one of the key ingredients - the classical notion of Clifford algebra
of a quadratic form.

6.3.1. Clifford algebras. The standard reference is [3]. [4, Chapter II §7] contains
all details we need. A more recent source is [24, Chapter 8§].

Let V' be a vector space over a field F' and let ¢ : V' — F be a quadratic form.
The Clifford algebra C(q) is a universal object for quadratic algebras of (V,q), i.e.
F-algebras containing V' as a subspace with the property

v? = q(v) for v € V.
Thus if T(V) = ]O_O[ V@n is the tensor algebra of V with natural grading, I is the
two-sided ideal o?zlg)(V) generated by all expressions v @ v — q(v) for v € V,
Definition 6.3. The Clifford algebra C(q) of (V,q) is
Clg) =T(V)/1L.
IfTo(V) = ]Ojo V®In s the even part of T(V), then the even Clifford algebra Co(q)

of (V.q) s
Colq) = To(V)/1.

Co(q) is a subalgebra of C(q) and C(q) is a direct sum of two Cp(g)-modules
C(g) = Colg) @ Ci(g)

each of rank 1; this decomposition defines a Zj-grading in C(q).
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It is clear that product of vectors with more that dim V factors may be written as
a shorter product, so if vy, vs,...v, is a base of V', then set of all ordered products
of distinct v; form a base of C(q); in particular dim C(g) = 24mV,

Example 6.3. If ¢ =0 is a zero form, then C(q) is the exterior algebra of V.

It is clear that for an orthogonal direct sum of quadratic forms (V, ¢q) = (V1,¢1) @
(‘/Qa QQ)

Clq) = Clq)®r Clg2),
Colq) = Co(q1) ®F Colq2) ® Ci(q1) ®F C1(q2).

A vector v € V is called isotropic iff ¢(v) = 0 and is called anisotropic iff g(v) # 0.
An anisotropic vector v is an invertible element of C(g) and if v is anisotropic, then
Ci(q) = Co(q)v = vCo(q).

The identity v? = ¢(v) for v € V yields in a standard way the formula

ww + wu = q(u+ w) — q(u) — g(w) = 2B(u, w)

where B is the symmetric bilinear form associated to q.

Given an anisotropic vector v, any vector w may be decomposed into sum of two
components: one parallel to v and one perpendicular to v. If w = tv 4+ u is such a
decomposition, then

—pwv Tt = — (tvvv_l + vuv_l) =—tv+u
is the reflection with respect to the hyperplane v orthogonal to v.

Example 6.4. If dimV = 2 and q has a matriz diag(a,b) with respect to the basis
{u,v} of V, then C(q) has the basis {1,u,v,uv} with multiplication table u® = a,
v2 =0b, vu = —uv so the Clifford algebra is a quaternion algebra: C(q) = (%b)

Example 6.5. If dimV = 3 and q has a matriz diag(a,b,c) with respect to the
basis {u,v,w}, then Cy(q) has basis {1,uv,uw,—avw} with multiplication table
(w)? = —ab, (uw)® = —ac, (vw) (ww) = —(w)(uw), so Co(q) = (#) The

~

“determinant” element § = uvw is in the centre of C(q), 62 = —abc; so F[§] =

F (\/ —abc) . Hence

—ab, —ac
C(q) =C DCo(q)d 2| ——— ] .
In particular if —abc is a square in F', then F (\/—abc) > F x F and C(q)

—ab,—ac —ab,—ac
(=) > (=22).

Exercise 6.1. Let {vi,vs,...,v,} be an orthogonal basis of (V,q) (i.e. a basis of
V', which is orthogonal with respect to q. Let further 6 = vy -vg - -+ - VUp, -

IR

(1) & commutes in C(q) with every vector iff n is odd and § anticommutes with
every vector if n is even.

(2) 6% = (—1)"("271) det(q) (this is the discriminant of the quadratic form q.)

(3) If {w1,wa,...,w,} is another orthogonal base, then wy -wg - -+ - w,y, differs
from § by a scalar factor.
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In general for a non-singular ¢ and V' of even dimension, C(g) is a central simple
F-algebra and is a tensor product of quaternion algebras; for a non-singular ¢ and
V of odd dimension, Cy(q) is a central simple F-algebra and is a tensor product of
quaternion algebras.

We record here three useful facts:

e for a scalar factor ¢, quadratic forms ¢ and tq have isomorphic even Clifford
algebras (quadratic forms ¢ and tq are usually called similar forms);
e if ¢ is an orthogonal direct sum (V,q) = (Vi,q1) @ (F,z — —22), then

Co(q) = Claqr);
e A pair of isotropic e, f € V such that B(e, f) = 1 gives two orthogonal

idempotents % (Itef)in Co(q) (in this case Fe® F'f is called a hyperbolic
plane.)

6.3.2. Cohomology of quadric hypersurfaces. Let B = Flxg,x1,...,2441) and let
as usual Pﬁl,“ =ProjB. Let ¢ € By be a nonzero (homogeneous of degree k)
polynomial.

Lemma 6.11. Let X C Pifl be a hypersurface defined by q € By; i.e. X =ProjA
where A= B/(q). Then H? (X,0x(n)) =0 for p #0,d and, frord > 1,

(1) H° (X,0x(n)) = A,

(2) H' (X, Ox(n)) = A} 5 4,

If d =0, we have an ezxact sequence

0— A, — H°(X,0x(n)) — A;_,_, — 0.
Here A} = Homp(A,, F) is a dual space.
Proof. The exact sequence
0— B(n—k) - B(n) — A(n) — 0
induces an exact sequence of sheaves
0 — Opn(n—k) 5 Opy (n) — Ox(n) — 0.

The Lemma follows immediately from the corresponding cohomology sequence and
Lemma 6.1. 1

It follows that Ox(n) is regular for n > k — 1.

Lemma 6.12. If X and d are as in 6.11 and F is a vector bundle on X then
HP (X,F) =0 forp>d.

Proof. There exists an exact sequence
0—-F —Ox(—n)" = F —0.

For p > d+ 1 we have HP = 0 as a functor on quasi-coherent sheaves on ]P"Ii,fl, SO
the exact cohomology sequence shows that H! (X, F) =0. I

Lemma 6.13. If F is reqular, then the canonical map f*f. (F) — F is surjective.

Proof. The difference between the Lemma and Lemma 6.4 is that here we have
different f*. Nevertheless the proof remains valid. i
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From here on we assume that ¢ is a nonsingular quadratic form (i.e. k = 2.)

The first difference between the case of projective bundle and the case of quadric
hypersurface is that Ox is no longer regular, although Ox(1) still is. One may
recursively construct the canonical resolution of a regular sheaf as in the case of
projective bundle. Nevertheless, one should remember that Ox here is different
from Ox in Example 6.1. The second difference is that the recursive process (6.4)
does not terminate.

6.3.3. Generating function for the canonical resolution. We introduce here a com-
putational tool which is not needed to prove the Swan Theorem, but will be helpful
for its applications. Let

= Ox(—p)kr —» - 5 Ox (-1 - 0xf - F—0

be the canonical resolution of a regular sheaf F.

Since the functor of global sections is exact on regular sheaves, there is the
following recurrence for k41 = dimI'(X, Z,(p+ 1)) in the process (6.4) of building
the canonical resolution:

(6.10) dimI(X, F(p+1)) — ko -dimI'(X,Ox(p+1)) + -
+ (=1)P" 'k, - dimT(X, Ox (1)) + (=1)Pkps1 = 0.

Recall that the Poincaré series IIz(t) of a sheaf F is the formal power series

r(t) ==Y dim (X, F()) -t € Z[[t]].
=0

The Poincaré series IIx(t) of a variety X is the Poincaré series of its structural
sheaf:

Iy (t) Y o, (1).

In particular if X = Proj A for a graded algebra A, then IIx (¢) is the usual Poincaré
series of A.

Example 6.6. If S is the projective space, S = P}, then dimT'(S,Og(i)) =

(n—f—i)
), so
i

Po(t) = TIs(t) = f: (” + Z) = (1= )

i=0 !
Example 6.7. Let ¢ be a homogeneous polynomial of degree k in homogeneous
coordinates in ]P"I{fl = ProjB, B = Flxo, x1, ..., Tat1], A= B/(p), X =ProjA
- a hypersurface p =0 in ]Pf;“ . Since the exact sequence
OHBnﬂ’Bn+k_)An+k_’O
splits for every n, the following equality holds:
Mx (t) = Pyy1(t) — t" Py ().

1—th 14t+.. !
(1—t)d+2 (1 —¢)dt?

Thus Mg (t) =
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Lemma 6.14. For a projective quadric X of dimension d

Qult) = Tx () = (11_%

Proposition 6.15. If 0 — F' — F — F" — 0 is an exact sequence of Ox -
modules and either F', F" are regular or F, F'(1) are regular, then

Iz (t) = W () + e ().

Proof. By Lemma 6.2, either ', F, F" are regular or F'(1), F, F" are regular.
Hence each exact sequence of sheaves

0— F'(i) — F(i) — F"(i) —» 0
induces an exact sequence of the corresponding spaces of global sections. i

The recursive method of finding a canonical resolution of a regular sheaf F
described above, namely the identity (6.10), yields the following identities for the

generating function Gz(t) := Z Kt
=0

H]:(t) = G]:(—t) 'Hx(t) and G]:(t) =

Example 6.8. The Poincaré series of the sheaf Ox (1) is

IIp (t) -1
Hox(t) = ——
S0
o=t Qu(-) -1 wmgmwr — 1 (14" —(1-1)
Gox(t) = = = — = .

Qa(—t) —tQa(—t) —taparr t(1 —1t)
One may easily check that

(1484 —(1—¢) 20F1dHl
t(1—t) Ct(1—t)

is a polynomial of degree d — 1, so k; = 24+! for i > d.

6.3.4. The canonical resolution of a reqular sheaf.

Lemma 6.16. Assume that H4(X,F) = 0 for ¢ > d and all vector bundles F. Let
Z, = Z,(F) be as in 6.4 above. If G is d-regular, then Ext? (Z4_1,G) = 0 for all
q > 0.

Proof. The sequence 0 — Z, — f*(7,) ® Ox(—p) — Zp—1 — 0 gives
o — Extf? (f*(,z;?) ® OX(_p)a g) — Ext? (Zpa g) - Eth+1 (Zp—la g)
— Ext™ (f*(T,) @ Ox(~p),G) = -+

Now Ext? (f*(7,) ® Ox(—p),G) =T, @ H1(X,G(p)) = 0 for ¢ > 0, p+ ¢ > d; s0
for ¢ > 0 we have

Ext?(Z4.1,G) 2 Ext™™ (24 5,G) = . 2 Ext™™(Z2_1,6) =0 1
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Corollary 6.17. Assume H4(X,F) = 0 for ¢ > d and all vector bundles F. If
0—-F —F—F"— 0 is an exact sequence of reqular sheaves, then

0— Zqg-1(F)— Z4-1(F) = Z4-1 (F") =0
is split exact.
Proof. Here Z4_1 (F') is d-regular, so the appropriate Ext' is 0. I
Corollary 6.18. Ky(X) is torsion-free.

Proof. Let Ko(X,®) be the K-group of exact category of vector bundles on X with
only split exact sequences being admissible. The natural map Ko(X,®) — Ko(X)
has a right inverse given by
[F] = D (1P [Ox(=p) @ f* (Tp(F)] + (1) 20 (F)]
p=0
for n large enough and regular F. Since Ko(X,®) is torsion-free by the Krull-
Schmidt Theorem, the same is true for Ko(X). I

Swan’s method of computing K-theory of quadric hypersurfaces uses truncation
of the canonical resolution of a (—1)-regular sheaf.
If F is (—1)-regular, then F(—1) is regular; so we have an epimorphism

Ox @I'(X,F(-1)) - F(-1).

Since I' (X, F(—1)) has finite dimension m, this is an epimorphism O% — F(—1).
Therefore there is an exact sequence of vector bundles 0 - G — Ox(1)™ — F — 0.
If d is as in Lemma 6.16, then Z;_1 (G) & Z4—1 (F) & Z4-1 (Ox(1))™. Note that
G is regular, so its canonical resolution is defined. Let U = Z;_; (Ox (1)) and let
E = Endx (U) acting on U from the right. For any vector bundle W, Homx (U, W)
is a left E-module.

Lemma 6.19. If W is a direct summand of U™ for some m < oo then
URg Homx(u,W) Sow.

Proof. This is clear for W = U and the property is obviously preserved by direct
sums and inherited by direct summands.

Note that if W is a direct summand of U™, then Homx (U, W) is a finitely
generated projective E-module since it is a direct summand of Homx (U,U™) =
E™.

Definition 6.4. For a projective quadric X of dimension d:

o the Swan bundle of X isU := Z4_1 (Ox(1));

o the functor T from R_1(X) to F-modules is T (F) = Homx (U, Z4-1 (F));
o the truncated canonical resolution of F € R_1(X) is

0—-URET (F) = O0x(1—d)@Tg_1(F) —---
= Ox @Ty (F) = F — 0.
Each 7, is an exact functor from R_,(X) to P(F) and 7 is also an exact functor.

We omit technical details of Swan’s computations with several kinds of resolu-
tions and state the result.



42 MAREK SZYJEWSKI

Let {vo,v1, ...,v4+1} be an orthogonal basis of the vector space V; let {29, 21, ..., Zd+1}
be the dual basis of V*. Denote by C; the odd part of the Clifford algebra C(q).
The subscripts in C; will be taken mod 2. Put

d+1
@ZZ%‘@Un pel'(X,0x(1)aV).
i=0
The complex
6 -2 Ox(—n) @ Crparr 2 Ox(1—n) @ Crya
' 5 0x2-n)®@Cpia—1 -+

is exact and locally splits ([27, Proposition 8.2.(a)].) Moreover, its part for n > d—1
coincides with the n > d — 1 part of the canonical resolution of Ox(1). Thus if we
denote

U,, := Coker ((’)X(—n —2)® Chidrs #, Ox(-n—-1)® Cn+d+2>

then U = Uy—1 ([27, Corollary 8.6].)
Since the complex (6.11) is - up to twist - periodical with period two, we have

UnJrQ = Un(—Q)
Consider the exact sequences
Ox(—n — 2) ® Cn+d+3 2, Ox(—n - 1) ® Cn+d+2 —U, — 0

for two consecutive values of n; twist the first of them by 1. For any anisotropic
vector w € V the isomorphism given by right multiplication by 1 ® w fits into
commutative diagram:

Ox(—n=2)® Cpygsa —— Ox(—n—1) @ Cryars —— Upy1(1) —— 0

%ll@w %l-l@w

Ox(—n—2)® Cpyays —— Ox(—n—1) @ Chigio —— U, —— 0.
Thus we have proven the following Lemma:
Lemma 6.20. One has
Unt1 2 U (1) and U, ZUy(—n)
for an arbitrary integer n. 1
There is an exact sequence
(6.12) 0—Uy L Ox2CH —U1 —0

where the isomorphism -(1 ® w) was used to replace Ox ®C1 by Ox ®Cjy for even
d. In particular

1
(6.13) rank (U) = 5 dim Co = 24,

Lemma 6.21. Endx (U,) = Cy acts on U,, from the right.
Proof. [27, Lemma 8.7]. I
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Now we can compute the K-theory of the quadric hypersurface X. For n =
0,1,...,d—11let U, : P(F) — P(X) be Up(M) := Ox(—n) ® M; moreover define
U : P(Co(q)) — P(X) by UM) := U @c,q) M. These functors induce maps
Up  KG(F) — Ki(X) and u : K;(Co(q)) — K;(X). Therefore we get

u= (uo,ul, coo,Ud—1, u) : Kl(F)d D Kl(CO(q)) — KZ(X)

Theorem 6.22. Let X = X(q) C ]Pf;“ be a quadratic hypersurface of dimension
d defined by a nonsingular quadratic space (V,q). Then the map U : K;(F)¢ @
K;(Co(q)) — K;(X) is an isomorphism.

Proof. We already know that K;(R,) = K;(P,) = K;(P(X)). Moreover, we have
exact functors 7,, : R_1(X) — P(F) and T : R_1(X) — P(Co(q)), and induced
maps t, : K;(X) — K;(F), t: K;(X) — K;(Co(q)); therefore

t:= (to,t1,...,ta—1,1)

sends K;(X) to K;(F)¢ @ K;(Co(q)). The truncated canonical resolution shows
that ut is the isomorphism K;(R,,) = K;(B,). This shows that u is onto.

Now define functors W, : Po(X) — P(F) by W,,(F) = I'(X, F(n)) and W :
PBo(X) — P(Colq)) by W(F) = Homx (U, F) =T(X,U  ® F). Since

WiU;(M) = T'(X,(Ox(=j) @ M) (i) = T (X, Ox (i = j)) ® M,
WU(M) = Homx (U,[/{@CO(Q) M):Homx(u,l/{) ®Co(q)M:M7
(X, Un)) = Oforn=0,1,...,d—1,

the induced map w : K;(X) — K;(F)? @ K;(Co(q)) has the property that wu
is given by a triangular matrix with the identity maps on diagonal. Thus u is
injective. i

Swan gave also an explicit formula for the map induced by an embedding of a
nonsingular hyperplane section into X [27, Theorem 10.5], and hence computed the
K-theory of a smooth affine quadric. Moreover, Swan computed the K-theory of a
cone like ProjR[z1,x2, ..., zn]/ (¢(z2, ..., zy)) - [27, Theorem 11.7].

7. APPLICATIONS

7.1. Chow ring of a split smooth quadric. In theory of quadratic forms a
subspace U of a space V with a quadratic form ¢ is said to be an isotropic subspace
iff U contains a nonzero isotropic vector; a subspace U is said to be a totally
isotropic subspace iff gy = 0. This convention is convenient if one is interested
in classification of quadratic forms, since nonsingular isotropic space contains a
hyperbolic plane. Geometers prefer term “isotropic subspace” for a totally isotropic
space. The dimension of maximal totally isotropic subspace is called a Witt index
of g, or simply an index of q. A quadric ¢ = 0 is split iff the index of ¢ is maximal
possible for quadratic forms of given dimension.

We shall apply the results of section 6.3 in the simplest possible case of a split
quadric: X is a projective quadric hypersurface over a field F', char F' # 2, defined
by the quadratic form of maximal index.
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7.1.1. Notation. Consider a vector space V with a basis {vo,v1,...,v44+1} over
a field F, char F # 2. Denote by {zo,21,...,24+1} the dual basis of V* =
Homp(V,F). Let ¢q be the quadratic form

d+1

¢= (-1)'z.

i=0
Moreover, let €; = 3 (v2i —v2i41), fi = % (v2i+v2i41) for all possible values of i. Thus
€0, €1,---,€mn Span a maximal totally isotropic subspace and fo, f1,..., fin span a
maximal totally isotropic subspace. The index of ¢ is m + 1, which is maximal
possible value for quadratic forms of dimenssion d + 2.
e if d = 2m, then eq, fo, €1, f1,---,€m, fm form a basis of V' with the dual
basis {0, Yo, T1,Y1, - - -y Lm, Ym} and

m
q=> iy
=0

o if d =2m + 1, then fy,e1, f1,...,€m, fm,vq+1 form a basis of V' with the

dual basis {zo, Y0, 1, Y1, - - - s T, Ym, 2d+1} and
m
2
q= szyz —+ Zd—i—l'
i=0

Note that ve; 11 = fi — e;, and ¢(fi) = ¢(e;), so that we have:

Lemma 7.1. The reflection with respect to the hyperplane v2i+1l interchanges f;
with e; and interchanges x; with y;. 1

We shall compute table of multiplication in Ky(X) for a d-dimensional projective
quadric X defined by the equation ¢ = 0 in ]P’lefl, i.e., for

X =ProjS(V*)/(q) = Proj Flzo, 21, -..,za+1)/(q).

7.1.2. Clifford algebra. In the case of d = 2m + 1 the even part Cy = Cy(q) of the
Clifford algebra C(q) is isomorphic to the matrix algebra Mym+1(F) (a standard
fact),

Co = Mym—+1 (F)

In particular, the Morita equivalence

M +—— Homp(FN,F)®c, M € Ob(P(F))
W FN®FW€Ob(P(Co))

of categories of Cy-modules and F-modules induces isomorphisms K, (Co) = K,(F)
for all p.

In the case of even d = 2m, the algebra Cy has the centre F' & F - 6, where
§=1vy-v1 ... vgp1 and 6> = 1. Thus (1 + 6), 2(1 — J) are orthogonal central
idempotents of Cy, so

1
T2

where each direct summand is isomorphic to the matrix algebra Mam (F') (yet an-
other standard fact).

1
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For every anisotropic vector w € V, the reflection a — —woaw ™! with respect to
the hyperplane w induces an automorphism p,, of Cy, which interchanges § with
its opposite:

(7.1) Pw(0) = —0.
Regarding subscripts ¢+ mod 2 denote
P; = (1 + (=1)¥)Cy for even d.
Lemma 7.2. For any anisotropic vector w €V, py(P;) = Pit1. 1

We are now ready to compute U,, .

Lemma 7.3. U, = U,(2n+1); in particular, U =U(2d —1).

Proof. We have chosen a basis {vg,v1,...,0441} of V in 7.1.1 above. The set of
naturally ordered products of several v;’s with even number of factors forms a basis
of Cy. Define a quadratic form @ on Cj as follows: let the distinct products of
elements of the basis {vg,v1,...,va+1} be orthogonal to each other and let

Q(Uh Uiy e vik) = Q(Uil) : Q(viz) Tl Q(vik)'
The form @ is nonsingular and defines - by scalar extension - a nonsingular sym-
metric bilinear form A on Ox ®Cy. Since (g(v;))? = 1, a direct computation shows
that Im(Ox (1) ® C; 2 0x ®Ch) = ¢ Uy = Uy is a totally isotropic subspace of
Ox ®Cy. Therefore

Up = - Uo = (9 Uo)" = ((Ox ®C0) /(¢ - Up)) ~ = U-

Thus
Uy U1 2U(1)
and, in general,
U, = U(-n)) ZUy (n)=Up(n+1)=U,(2n+1). &
Corollary 7.4. i) U ]=URd-1)] and [Ud—1)]+[U(d—1)]" =2 in
Ko(X);
ii) rankyf = £ dimCp = 2. 1

In case of d = 2m the algebra Endx () = Cy splits into the direct product of

subalgebras defined in 7.1.2 above: Cy = Py x P;.

Definition 7.1. In case of even d:
u':L = I/ln@COPQ, urlll = un®CoP17
u = M®COPO7 Uu" = U®COP1-

Note that U, = U], U, and U = U’ ®U". The summands U}, and U/ correspond
to spinor representation and we shall use here the standard argument on dualization.

In the case of an even d = 2m, another property of ¢ and the quadratic form @
introduced in the proof of Lemma 7.3, may be verified by a direct computation:
Lemma 7.5. In case of d = 2m

i) if m is even, then P; = (1 £ 0)Cy are orthogonal to each other, hence
self-dual;

ii) if m is odd, then P, = (1 £0)Cy are totally isotropic, hence dual to each
other;
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it}) p(1:+6) = (1F 0)p. W

Corollary 7.6. In case of d = 2m,

i) U =U2d—1) andU"" =U"(2d — 1) for even m;
i) U =U"(2d—1) and U"" = U'(2d — 1) for odd m;
iii) Endx(U') = Endx (U") = Man (F);
iv) the ezact sequence (6.12) splits into two exact sequences

0—Uy L Ox 0Py — U (1) — 0,
0— U 25 Ox @P — U)(1) — 0. I

The trivial observation, that an automorphism of X induced by a reflection with
respect to a nonsingular hyperplane interchanges U4’ with 4", will be important in
the following.

A standard way to determine indecomposable components is tensoring by the
simple left module over an appropriate endomorphism algebra.

Definition 7.2. .
i) in case of d=2m+1: V=URc,F?" ;

’

i) in case of d = 2m: Vo =U'O\ym(m) 2, V1 = U O\t (1) F?

For convenience we will use mod 2 subscripts in V;. Since M,,(F) = (F™)" as

a left M, (F)-module, indecomposable components inherit properties of the Swan
bundle. We have:

Proposition 7.7. a) In case of d =2m + 1:

U=y

iy VvV =V(2d-1);

ili) Endx (V) =2 F and rankV = 2™;

iv) V(d-1)]+[V(d)] =2" in Ko(X).

b) In case of d = 2m:

i) U =V" andUu" =V:¥";

i) Vi =Vigm(2d—1);

iii) Endy (Vi) & F and rankV; = 2m~1;

’

iV) [Vl(d - 1)] + [VlJrl(d)] =2"in K()(X) I
In particular Homx (V;,Viy1) = 0. Moreover, once again a reflection inter-

changes V; with V4.

Example 7.1. If d = 1 the conic X < p2 given by woyo + 25> = 0 is isomorphic
to the projective line P':

x : PP 5 X,
Xt :ow) = (% —u®:ww).
In this case
Ox(=1) =" (Op2(-1)),

and the canonical truncated resolution of Ox (1) is

0—=U— 0= O0x(1) = 0.
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It follows that U has rank 2, and
3
/\ 0%’

2
AU = Ox(-1).

2
/\Z/{ ® O0x(1),

1%

Moreover,

V=X (Op1(=1)) = (x )" (Op1(-1)),
Vev-=u,

vev=N\u=0x-1).1

Example 7.2. In the case d = 2, the quadric surface X — P3 given by xoyo +
x1y1 = 0 has two projections

X — P To:T1 Yo = (wo : 71) ,
Po po( 0:%1:Y0 Y1) { (=1 : ¥o)

. X — P! TX1 Yo = (o : 1)
p1 ) p1 (a?o T1 Yo Y1) { (=21 1 o)

which define an isomorphism
P X — Pt x PL
In this case one may check that
Vo(1) =po" (O (=1)),  Vi(1) =p," (Opi(=1))
or vice versa, and
Ox(=1)=W(1l)®@Vi(1). 1
Let H = [Ox] — [Ox(—1)] be the class of a hyperplane section in Ko(X).
Corollary 7.8. In case of d = 2m the following identities hold in Ko(X):

D (Do) =D)) - H =0;
i) (o] = 1)) - [Ox(n)] = o] = Dl

i) (Do] =) = (D)™ (Vo] = ).
Proof. Proposition 7.7.b) iv) yields
Vo(d = D]+ Vi(d)] = Vi(d = D]+ Do(d)]-
Tensoring by Ox (—d) one obtains
Vol = 1] = (Vo] = W1]) - [Ox (=1)],
hence i) and ii). Thus iii) results from 7.7. b) ii). I

Proposition 7.9. K.(X) is a free Ko(F)-module of rank 2m + 2; moreover

i) in the case of d = 2m + 1 the classes [Ox], [Ox(-1)], ..., [Ox(1 —d)],
[V] form a basis of Ke(X);
ii) in the case of d = 2m the classes [Ox], [Ox(-1)], ..., [Ox(1 =d)], Vo],

V1] form a basis of K¢ X.
Proof. Apply Theorem 6.22. i
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In case of a (—1)-regular F to obtain an expression for [F] € Ko(X) in terms of
the basis from Proposition 7.9 one truncates the canonical resolution of F:

0— 21— Ox(1—d)fer — ... - OX(—l)kl —OxP S Foo0

and replaces Z4_1 by U®¢c, Homx (U, Z4-1) = Z4_1. Then in Ky(X)
d—1
7] = (-1)'ki[Ox (—i)] + U c, Homx (U, Z4-1)].
i=0
Depending on the parity of d we have either
[I/l@co Hom x (Z/{, Zd—l)] = G[V]

or

[U®Co Hom x (Ll, Zd—l)] = a[VQ] + b[Vl],
where the integers a, b in turn depend on the decomposition of Homx (U, Z4-_1)
into a direct sum of simple left Cy - modules. Conversely, if for a given F the

equality
d—1

[F] = (~D)'k[Ox (=) + W
i=0
holds, where W is either a[V] or a[Vy] + b[V1], then k¢ is the Euler characteristic
S (—=1)*dim HY(X,F) of F. So if F is regular, then kg = dimI'(X,F). Next,
Zy(1) = Ker (Ox(1)k — F(1)) is regular, and iterating this as in the recursive
process of constructing the canonical resolution, one obtains that for a regular F
the congruence
d—1
7= (—1)'ki[Ox (—i)] mod Im(Ky(Cp) 2 Ko(X))
i=0

holds if and only if the integers the k; satisfy (6.10). In case of d = 2m + 1, in
order to express class [F] of a regular sheaf F in terms of the basis of Proposition
7.9, it is enough to know the dimensions of I'(X, F(i)) for ¢ = 0,1,2,...,d — 1 to
determine the k;’s. Then the rank of F is sufficient to determine the coefficient a of
[V]. An analogous statement remains valid for an arbitrary sheaf F with the Euler
characteristic of F (i) in place of dimI'(X,F(i)). In case of d = 2m, in view of
Corollary 7.8 ii) and Proposition 7.7 ii), the bundles Vy and V; have the same Euler
characteristic, rank and even the highest exterior power. Thus, without special
considerations, one can express a class [F] in terms of the basis of Proposition 7.9
only up to a multiple of [Vo] — [V1].

7.1.3. Generating function for a truncated canonical resolution. Now we compute
some generating functions for canonical resolutions.

Example 7.3. For a linear section H' = (1 — [Ox(=1)])! of codimension | in X
Gm(t)=01+t". 1

Example 7.4. We follow the notation of 7.1.1. Since X splits, it contains linear
subvarieties Sy, = Proj F[zo, ..., x| given by the following equations:
a) in case of d = 2m:

Y=+ - =Yn =Tt1 =...= Ty, =0 for k <m and

Yo=-..=Ym =0 for k=m;
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b) in case of d =2m + 1:
Y= . =Yn =2d =Tht1 = ... = Ty, =0 for k <m and
Yo =...=Ym =249 =0 for k =m.
Sy, is isomorphic to PX.  in particular its structural sheaf Ly, is reqular. Therefore

o B(-t) A+t (a4t
G, (t) = Q];(—t) S =)/ 40t 1t

Lemma 7.10.
2Ggz, —Ge,_, =1+ t)d*k. |

To obtain a compact formula for the truncated canonical resolution of a sheaf F,
we truncate Gz, neglecting all terms of degree > d. Truncating generating function
G £ one obtains a polynomial T's. For | < d the canonical resolution for H' is itself
truncated:

T(t) = (1+1t)  for I<d.

The sequence (¢;) of coefficients of the canonical resolution of the sheaf £, sta-

bilizes starting from the degree d — k onwards:

(1+t)i-k E = e
Gﬁk(t):ﬁ:(l“‘t)d k'ztzzl Citz
=0 =0
SO
Cd—k = Cd—k+1 = ... = 2d—k,
Thus

(14¢)9-F — 9d—hyd
1—t¢ '
Proposition 7.11. If, for a fized k, Ly, is the structural sheaf of a linear subvariety
Sk of dimension k in X, then in Ko(X):
a) in case of d =2m + 1

d—1 i
L] =) <Z (d B k)) (—1)'[Ox (=i)] + 2" *V);

i=0 \p=0 p

Ty, (t) =

b) in case of d = 2m for a suitable integer a,
d—1 / i
L= <Z (d N k)) (=1)'[0x (=0)] + aDo] + (2™ 7F = a) s
i—0 \p=o \ P
C} Q[Ek] — [,Ckfl] = Hik,

Proof. Substituting t = —[Ox(—1)] into the expansion for T, (t) yields, depending
on the parity of d, the expressions

-1/ i
L= (Z <d N k)) (=1)'[O0x (=4)] + alV];

i=0 \p=0 p

(Z ( p >> (—1)'[Ox (=i)] + a[Vo] + b[V1].

d7
i=0 \p=0

[Ly] =
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for suitable integers a, b. Thus
T (1) + (=1)%a-2m =

= (=1)4(2maq — 2¢-k-1) for d=2m +1
Tr(=1)+ (=1 a+b) 2" 1 =

= (—=1)42m a+b) —2¢7F1)  for d = 2m.

To prove c) it is enough to show that 27, (t) —T¢,_, (t) = (1+t)?*, which follows
directly from Lemma 7.10. i

0 = rank[L;] =

7.1.4. The topological filtration. Now we shall find a basis of Ky(X) which is con-
venient for computations. Since the quadric X is regular, K{(X) = Ko(X) and one
may transfer the topological filtration

F? K{(X) = subgroup generated by

vk the stalk F,, = 0 for all generic points
x of subvarieties of codimension < p

of K{(X) to Ko(X). We know that for a split projective quadric X the Chow groups
CHP(X) are isomorphic to the corresponding factors of the topological filtration:

CHP(X) = FP Ko(X)/FPT Ko(X).

We follow the notation of 7.1.1. The K-cohomology computation 5.3 yields Chow
groups of the quadric X.

Proposition 7.12. For a split projective quadric X of dimension d
a) in case of d = 2m,

CHY(X)=Z forp#m, 0<p<2m and CH™(X) = Z & Z;
b) in case of d =2m + 1,
CH? (X)X Z for all 0 <p <2m+1.

Explicit generators are given as follows:

Case d =2m:
i)  for p>m, the class of any linear subvariety of dimension d — p, e.g.,
Sa—p:iYo = . =Ym =Td—pt1 = ... = Ty = 0;

it)  for p < m, the class HP of a linear section of codimension p;
iti) for p=m, CH™(X) is generated by two classes of linear subvarieties
Sl ixy=...=xp=0and S : yo=x1=... =2 =0;
the classes in CH™(X) remain unchanged if an even number of x;’s is replaced by
corresponding y; in these equations.
Case d =2m + 1:
i)  for p>m, the class of any linear subvariety of dimension d — p, e.g.
Sa—p Y= ... =Ym = Zdt1 = Td—pt1 = .. = Ty = 0;
it)  for p <m, a class H? of a linear section of codimension p.

Note that the reflection of Lemma 7.1 interchanges one x; with y;; so it inter-
changes SJ,, with S//. Moreover, this reflection interchanges [Vo] with [V1].

Now we can give an explicit description of the ring structure in Ky(X). To do
this denote L, = [£,] the class of the structural sheaf of the linear subvariety S, of
dimension p. Moreover, in case of an even d = 2m denote by L], and L/ the class
of the structural sheaf of S, and S/, respectively.
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Theorem 7.13. Let X be a split projective quadric of dimension d. Then

i) in the case of d = 2m + 1 the classes 1, H, H?, ..., H™, Ly, ..., Lo
form a basis of the free Abelian group Ko(X);
ii) in the case of d = 2m the classes 1, H, H? ..., H™ ' L' L" L, 1,

, Lo form a basis of the free Abelian group Ko(X);
iii) in the case of d = 2m the classes of (co)dimesion m may be chosen as

follows:
d
i—0 <p—

0<

and for dimensions k < m

Lk:i (Z (d_k)>( D'[Ox (=)] + 2571 ([Vo] + D))

i=0 \p=0 p

I
-

(Zf)) FIOx (=) + V.
(Zj)) FlOx(=i)] +

~.
(e}

&
;..

"
Lm

<.
(=)

S

if d=2m, then H™ =L, + L' — Ly,_1;
H-Ly=L,, , H-L,=H L' =Ly y;

d-1
HY* =21, — Lj_, fork < —5 HY=2Ly, H*! = 0;
Ly Ly=1L, L =L, L' =0;
viii) if d = 2m and m is even, then L;nQ = L’,’n2 =Ly, L, - L' =0, ifd=2m
and m is odd, then L,> = L!'> =0, L, -L" = Lo .

Proof. Obviously H* belongs to i-th group F?Ky(X) of topological filtration. We
first check that H¥*1 = 0. If 7 : X — P is a two-fold cover ramified along non-
singular hyperplane section, then 7* : Ky (IP’%) — Ky(X) is a ring homomorphism
and

™ (OM (n)) — O0x(n)

som* (H) = H and H*! = 0.

Next, L, € FIPKy(X), L', L' € F"Ky(X). To verify iii), recall that the
reflection p,, fixes vg, w2, ..., vg41 and p,, (v1) = —vy (7.1.2 above). Thus,
this reflection induces an automorphism of the symmetric algebra S(V ), which
interchanges xg with yo and fixes other coordinates and ¢q. Therefore it induces an
automorphism of S(V ")/(q), X = ProjS(V " )/(q), a semilinear automorphism of
Ox(n) for all n, and an automorphism of Ky(X). By Lemma 7.2 ii), the reflection
po, interchanges the P;’s. So the induced automorphism of ¢/ interchanges direct
summands U’ = U ®c, Py and U" = U ®¢, P of U and their indecomposable
components Vg, Vi . Therefore, the induced automorphism of Ky(X) fixes the basic
elements [Ox], [Ox(-1)], ..., [Ox(1 —d)] and interchanges [Vo] with [V4]. This
automorphism fixes Lg, ..., L,,—1. The explicit description given in Proposition
7.12 ii) shows that this automorphism interchanges L/, with L!/ . Hence, by the
explicit formula of Proposition 7.11 ii), for k& < m, the integer a in the following
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formula

d—1 [
Li=[Ci] =Y (Z (d - k)) (—1)'[Ox (=i)] + a[Vo] + (2™ F — a)[W1]

i=0 \p=0 p

must be equal to 2 %=1, This same argument for k = m yields

d—1 1
L=y (Z (") '“)) (1O (—1)] + alVe] + (1 — )M,

=0 \p=0 p
d—1 [
2 (Z () k)) (1O (=0)] + (1 - a)[Vo] + a1 ).

From the K-cohomology computation, by induction on m, it follows that the classes
L), mod F"M Ky(X), L mod F™MKy(X)

form a basis of CH™(X). Since statement ii) of the Theorem holds, the integer
a must be 0 or 1 (this also follows from the regularity of the structural sheaves of
S/, and S/.) Statements i) and ii) follow from Proposition 7.12. Statements iv) -
vii) are easy to see by explicit computations with generating functions for truncated
canonical resolution, like in Proposition 7.11. To prove viii) assume, without loss of
generality, that L], is the class of S/, and L/ is the class of S],. Consider the class
L,, of the subvariety Sy, : yo = ... = ym = 0. In the case of even m the classes L/,
and L, coincide, and S,,, S/, have no common points, so L’ - L” = 0. Moreover,
Sy, meets S transversally at the rational point Sp, so L;’QQ = Lg. Analogously,
L? = L.

In the case of odd m we have L/, = L,,, so L/, = L""* =0, L', - L' = Lo. I

To obtain multiplicative rule in CH*(X) it is enough to neglect the summand
of lower dimension in iv) and vi):

ifd = 2m,then H" =1L + L in CH™(X),

H¥F = 2[; for k < in CHYF(X).

Exercise 7.1. Refine the result to the form
CH*(X) = Zz,yl/ (2™ —2y,9°) ford=2m+1,
CH*(X) Zlz,y]/ (xmﬂ — 2xy, y2) for d = 2m, m odd,
CH*(X) Zlz,y]/ (xmﬂ —2zy, 9% — xmy) for d = 2m, m even.

1

1

Remark 7.1. Chow ring of a quadric over an algebraically closed field was com-
puted in 1883 by Segre (see [25]) as a cohomology ring of a quadric.

7.2. Hilbert 90 for K of fields. The celebrated Merkurjev Theorem from 1981,
asserting that:
Ky(F)/2Ky(F) = H?(F, u2)

where the latter group is H?(Gal(Fs/F), u2) = HZ (SpecF, us), and Fj is a sepa-
rable closure of F', was a prototype of several Theorems proved by Merkurjev and
Suslin. The main argument is “Hilbert 90 for K>”. We prove it for quadratic ex-
tensions; it remains valid for cyclic extensions of degree n provided F' contains a
primitive n-th root of unity.
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If E = F[y/a] is a quadratic extension, we denote by o the nontrivial automor-
phism of E/F. The automorphism o acts on K2(F) by

o{z,y} = {ox,0y}.

There is the canonical homomorphism 75/p : K2(F) — K»(E) induced by the
inverse image functor P(SpecF) — P(SpecE):

TE/F{bv C} = {bv C}'

The transfer map Ng/p : K2(E) — K»(F) is induced by direct image functor
P(SpecE) — P(SpecF). It may be expressed by o : Ko(E) — K»(F) as follows.

{b,c}—{b—kc,—g}

Lemma 7.14. The identity

holds in Ko(F) if b+ ¢ # 0.

Proof. The identity bL + F = 1 implies
b c

— —— L _—p 3

b—l—c’b—l—c} by (3-3)
{b,c}—{b—l—c,c}—{b,b+c}+{b+c,b+c}:O ( 1)
{b,c} —{b+c,c} +{b+c,b}+{b+c,—1} =0 by Exercise 3.1 (4) and (3)

b
{b,c}—f—{b—i—c,—g}:O by (3.1). I

Lemma 7.15. For a quadratic extension E = F[\/a], the map
Ki(F) @ Ki(E) — Ky(E),
{o@{z} — {bx}
18 surjective.

Proof. Consider a = {r + sy/a,t +u\/a} € Ko(E). If s =0 or u = 0, then « is the
value of this map. The last case {s+v/a, u\/a} is obvious by identity {z,z} = {—1, z}
(Exercise 3.1 (3)). In the remaining case by (3.1)

{r+sva,t +uva} = {ru+suva,t + uva} — {u,t +uva}
= {ru+ suv/a, —st — suy/a} — {ru + suv/a, —s} — {u,t + uy/a}

U + Suy/a
= {TU_St’_Tsu\{/_ﬁ} + {—s,ru+ suv/a} — {u,t +uya}. 1

Proposition 7.16. For b e F*, © € E*
Ng/pib,z} = (1 +o0){b,x} and Ng,p{z,b} = (14 0){z,b}.
Proof. Tt follows from the projection formula (Proposition 5.2) that:

Ng/p{b,a} = Ngip(rg/p{b}-{z}) ={b} - Np/p{z}
= {b} {Ng/rpz} ={b,(1 + o)z} = (1+0){bz}. I
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Theorem 7.17 (Hilbert 90 for quadratic extensions). For a quadratic extension
E = F[\/a] the sequence

1—0 Ng/r
Ka(E) ~2% Ky (B) 2% Ko (F)

18 exact.

It is obvious that the sequence of the Theorem is a complex which functorially
depends on F. Denote by V,(F') the homology group of this complex. To prove
that V,(F) is trivial for all F', we first consider a particular case.

Proposition 7.18. If the norm map Ng/p : E* — I is surjective, then Vo (I') =
0.
Proof. A map
F*@F* — KyFE)/(1-0)K(E)
bc — {ﬂ,C}IfNE/Fﬁzb

is well defined by classical Hilbert 90. To show that it factors through Ks(F')
providing the inverse for Ngp,p : K2(E)/(1 — 0)Ko(E) — K»(F), it is enough to
show that it is a symbol, i.e. that

if NE/Fﬁ—f—C: 1 then {ﬁ,C} S (1 —O')KQ(E)
o f Np/pB=b=1—cisasquarein F', b= d?, then

g b
Ng/p==-=1
E/F d b )
so by classical Hilbert 90 there exists a v € E" such that
B_o
b oy’

and
{6ac}: {6;1_b}: {gvl_b}
since {b,1 —b} =0,

{%,1 —b} = {0—771 —b} = (1—0){7,1—b} € (1 — 0)Ks(E).

o If Ng/pB =b=1—cisnot asquarein I, then let L = F(Vb), M = E(v/b)
and let 7 be the nontrivial automorphism of M/E. We denote by o the
nontrivial automorphism of M /L, which is harmless, since its restriction to
E is “the old” ¢. We have

{6ac}:{6a]—_b}: {gvl_b}
since {b,1 —b} =0,

(i

by bimultiplicativity, and

2 Lol { Lol D) iy
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by bimultiplicativity again. So
AR I AR
——,1-by = 7¢{—,1-0
{ Vb Vb

(- () = nonlio-

by Proposition 7.16, and finally
Vb

Now NM/L% = 1 and there exists v € M* such that
B _

Vb ooy
We have
{-1,1-b}=(1-0){Va,1 —b} € (1 —0)K2(E),

and

NM/E{%;l_b} = NM/E{%vl_b}_NM/E(l_U){'Vvl_b}
= (1=0)Nyye{y,1 -0} (1 —-0)Ks(E).

Thus there exists a homomorphism Ks(F) — K2(E)/(1 — 0)K2(FE) inverse to
Ng/p: Ko(E)/(1 — 0)K2(E) — Ko(F) and Vo (F) = 0. I

For a generalization to arbitrary cyclic extension of a field F' containing appro-
priate roots of unity, see [26].

Next step shows how to enlarge the image of N, p : K1(E) = E* — F* = K, (F)
not affecting V,,(F). Since

Ng/r (z+yva) = 2° — ay?,

any given b € F* is a value of Ng(x)/r(x) where X is a conic in IP’% given by the
equation x2 — ay?® — bz2 = 0.

Proposition 7.19. If for the projective conic X = ProjF|z,y, z]/(2* — ay® — bz?)
and X = X XgpecrSpecE, the induced map H* (X, Ks) — H' (X g, K2) is injective,
then the map Vo (F) — Vo (F (X)) is injective.

Proof. Denote by F(X) and E(X) the function fields of conics X and Xg respec-
tively. Since X has rational points, it is isomorphic to PL, which yields exactness
of the sequence

Ky(E) = H'(Xp, K2) — K2(B(X)) =[] Ki(B(@) » H'(XE, K2) = K1 (E).
z€(XE)

A coset a + (1 — 0)K3(E) is in the kernel of V,(F) — V,(F(X)) iff Ng/pa = 0
and there exists 8 € K2(E(X)) such that rg(a) = (1 — 0)5. A little chase in the
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commutative diagram:

H'(X, /C2)>—p> HY(Xg, (K2)

11 K1<F<x>>>&; [ K1E@) -0 [] Ki(E@)
reX1 :CEXEl xEXEl
o 1ol ST
Ka(F(X)) — 2 [, (B(X)) ——2— K»(E(X)) —Y— K,(F(X))

e J(1—0)8=0rg(a)=0;
o (1-0)0=0(1—-0)=0;
o there exists v € H K1 (F(x)) such that er('y) = Jp;
zeX?
o prp(y —&E(Hm )—/@E (08) = 0;
e nr(y) =0;
there exists 0 € Ko(F (X)) such that 9§ = ~;
B = er(')/) = er(aé) = Orx (0);
9 (B —rx(0)) =05
there exists € € Ko(FE) such that 5 — rx () = re(e);
re(a) =(1-0)f=(1-0)(f-rx(d) =1 —-0)re(e) =rs((1-0)e);
=(1-o0)e¢
shows that the coset o+ (1 —0)K2(FE) is trivial. Thus the map V,(F) — V,(F (X))
is injective. i

To show that the assumption of injectivity H*(X,K2) — H'(Xg,K2) is always
valid, i.e. to compute H!(X,K3), we need several simple facts on K-theory of
central simple algebras. First of all K¢(X) = Ke(F) ® K.(Cp) and Cj in this case

is a quaternion algebra (%b) This algebra has basis 1,1, j, k such that

i’=a, j2=0b,ij=—ji=k, k* = —ab,

and is a division algebra iff its reduced norm form z? — ay? — bz? + abt? has no
nontrivial zeros (,y, z,t), which is equivalent to the condition that the form 2% —

ay?® — bz? has no nontrivial zeros, or that the conic X has no rational points.

Remark 7.2. This equivalence is not so straightforward. It is so since the quadratic
surface % — ay? — bz? + abt?> = 0 in P3. is isomorphic to X x X. There is also
an elementary proof in quadratic form theory, using Witt Cancellation Theorem
(124, Chapter 1, Corollary 5.8]) and basic property of Pfister forms (|24, Chapter
4, Corollary 1.5].)

Any field extension L/F such that (“b) ®p L = (%b) splits (i.e. has zero

divisors, so is a matrix algebra) is called a splitting field of (%) Any maximal
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subfield F' («a) of (%b>, where « is a non-central element of the algebra, is its

splitting field. The function field F'(X) is also a (“generic”) splitting field of C.
Since modules over a division algebra D are classified up to isomophism by their
dimension,

Ko(D) =Z- [D].

The forgetful functor P ((%b)) — P(F) is exact. The induced homomorphisms
are norms Ng,/r : Ke(Co) — Ko(F'); Ney/r (Ko(Co)) has index 4 in Ko(F) = Z,
and N¢,/p : K1(Co) — K1(F) = F* is a polynomial map of degree 4.

If L/F is a splitting field of Cy which is finite over F, then consider the following
composite functor:

P(L) —uiomiee P (M (L)) ==P (Cor L)
lforgetful
P (Co)

which is obviously exact. Let 07 ,¢, : K¢(L) — Ko(Co) be the induced homomor-
phism. Another composition of functors for arbitrary splitting field M:
-®rM Morita
P(Co) —=P(Co®@p M) =—=—="P (M2(M)) ———— P(M)

equivalence

induces the homomorphism pas ¢, : Ke(Co) — Ke(L). Moreover, there is the
following commutative diagram

Nrp/r
K.(L) —25% K(F) .

] l

K.(Co) K. (M)

—
Pm/cy
The reduced norm Nrd : K,(Cy) — K,(F) is the homomorphism for which all
diagrams

Or./c,

KP(L) KP(CO)

zm Nrd

Kp(F)

commute. It is known that the reduced norm exists for p = 0, 1, 2, and for division
algebras C' of square-free degree, Nrd : K1(C) — K;(F) is injective. In the case
of quaternion algebra C, every nonzero element of K;(C) = C*/[C*,C*] is in the
image of 01, /c : Ki(L) — K;(C) for some quadratic extension L of F. Thus Nrd
for a quaternion algebra is a polynomial mapping of degree 2.

If L is a splitting field of Cy, then X, has rational points, so it is isomorphic to
the projective line. It is easy to check, on the level of functors, that for b : X, — X

« _ (T 0 )
he = ( 0" b ) L Ky (F) @ K, (Co) — Kp(L) @ Ky(L).
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If L/F is finite, then

= ( éVL/F 2L/Co ) K (L) © Ky(L) — Kp(F) © Ky (Co).

Moreover, if i, : © — X is a closed point, 1 : SpecF(X) — X is the generic point,
f X — SpecF is the structural map, then

, Nrp@)/F ) -

Lex — 5 1 = \TFr(z 5 x

: ( O (r) e Pr@) /o)
* % 1

no = (TF(X)/F;pF(X)/Co)v [f= ( 0 ) .

The BGQ spectral sequence for the conic X has two columns, so it is the exact
sequence

2T K (F) = K(F)  Ki(Co) s K (F(X)) 2 -
rx€X

1 Nrd
0 1

0
5
( —0r@)/co )
—

Applying the authomorphism ( ) to K;(F) @ K;(Cy) for i = 0,1,2, one

transforms it to

2T K(P@) Ki(F)@ki(Co) "2 k., (P(x) 2 -

rx€X
It follows that

HOX,K) = ker (Ki Fx) 211 Ki_l(F(a:))> = im(rp(x)/p, 0) = Ki(F)

H'(X, )

coker (K (Fx) 2 ] Kix (F(@)) ~ K;_1(Cy).
reX,

Thus H' (X, K)) = K1(Cp) is identified with the subgroup Nrd(K1(Cy)) of K1(F) =

F* and maps injectively into H'(X g, Kj) = K1(E) = E*.

Now we know that V,(F') injects into V,(F (X)) and standard arguments show
that V,(F) = 0. Namely, put Fy = F, F,,11 = compositum of F,,(X;) for all conics
X, given by 22 — ay? — bz2 = 0 for all b € F*. Thus

o I C N, (va)/Fu (Fas1(vVa)")
o Vo(Fn) = Va(Fry1);
and therefore V,(F) — V4 (Fy41). Next put Fo = J,, Fy; the map NFOO(\/E)/FDO :

Fy (va)" — FZ is surjective and V, (F) — V,(Fs). But V,(Fs) = 0 By Proposi-
tion 7.18. So V,(F') = 0 and the Hilbert 90 for K> holds. I
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Quadric, 26, 43

Quillen
-+-construction, 10
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Devissage, 20

canonical truncated, 41
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)

Serre conjecture, 4
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exact, 12 Steinberg
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Hyperbolic plane, 38 fundamental, 5, 20
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vector, 37 localization, 5, 20, 22
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Merkurjev, 52
Noether-Skolem, 33
projective bundle, 31
Projective Bundle Theorem, 6
Wedderburn, 32
Totally isotropic subspace, 43
Transfer, 8
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