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The mathematical model

I We consider the energy functional:

E (u) =

∫
R2

1

2
|∇u|2 − 1

2ε2
µ(x)|u|2 +

1

4ε2
|u|4 − a

ε
f (x) · u, (1)

I where u = (u1, u2) ∈ H1(R2,R2) and ε > 0, a ≥ 0 are real
parameters,

I µ ∈ C∞(R2,R) ∩ L∞(R2,R) is radial i.e. µ(x) = µrad(|x |),
µ′rad < 0 in (0,∞), and µrad(ρ) = 0 for a unique ρ > 0.

I f = (f1, f2) ∈ C∞(R2,R2) ∩ L1(R2,R2) ∩ L∞(R2,R2) is also
radial i.e. f (x) = frad(|x |) x

|x | , and frad > 0 on (0,∞).
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The mathematical model

I E admits a global minimizer v solving

ε2∆v + µ(x)v − |v |2v + εaf (x) = 0, x ∈ R2. (2)

I This mathematical model was proposed by Marcel Clerc to
describe the light-matter interaction in a liquid crystal:

I the parameter a represents the intensity of the light,

I the vector field v is related to the orientation of the molecules
in the liquid crystal.

I The model seems to be good since it confirms the
experiments.
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Problems

I Qualitative properties of the global minimizers v as ε > 0 is
small and a(ε) ≥ 0 is bounded uniformly in ε. More precisely:
existence and location of zeros; profile of v in the regions
where µ > 0, |µ| � 1, and µ < 0.

I Symmetry breaking and restoration phenomena as a and ε
vary. The energy (1) and equation (2) are invariant under the
transformations v(x) 7→ g−1v(gx), ∀g ∈ O(2). In addition,
∀ε > 0, ∀a > 0 there exists a unique radial solution
u(x) = urad(|x |) x

|x | , (i.e. a solution invariant under the

previous transformations).

I However, the symmetry is broken as soon as a > 0; it is
restored for sufficiently large values of a.

I The case a = 0 is special since the global minimizer inherits
the radial and one dimensional profile of µ:
v(x) = (vrad(|x |), 0) up to change of v by gv with g ∈ SO(2).
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Method to determine limε→0 vε,a(ε)

I We rescale the global minimizers and compute uniform
bounds on compact sets up to the second derivatives.

I Next, by the theorem of Ascoli we obtain the convergence of
the rescaled minimizers to a minimal solution η of a new
equation:

∆η = ∇W (η), η : R2 → R2, W : R2 → R, (3)

that is, EW(η, suppφ) ≤ EW(η + φ, suppφ), for all
φ ∈ C∞0 (R2,R2), where

EW(u,Ω) :=

∫
Ω

(1

2
|∇u|2 + W (u)

)
is the energy associated to (3).

I To determine the limit η we need to know the classification of
all minimal solutions of (3) and some properties of v .
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Method to determine limε→0 vε,a(ε)

I In particular, in the case of the Ginzburg-Landau equation

∆η = (|η|2 − 1)η, η : R2 → R2, W (u) =
1

4
(|u|2 − 1)2, (4)

we utilize a result of Mironescu (1996): any minimal solution
of (4) is either a constant of modulus 1 or (up to orthogonal
transformation in the range and translation in the domain) the
radial solution η(x) = ηrad(|x |) x

|x | .

I In many situations the limiting equation is trivial, for instance
when W is convex.

I Finally, if the classification of minimal solutions to (3) is not
available, our method only establishes the existence of a
minimal solution to (3) (but we cannot determine it).



Method to determine limε→0 vε,a(ε)

I In particular, in the case of the Ginzburg-Landau equation

∆η = (|η|2 − 1)η, η : R2 → R2, W (u) =
1

4
(|u|2 − 1)2, (4)

we utilize a result of Mironescu (1996): any minimal solution
of (4) is either a constant of modulus 1 or (up to orthogonal
transformation in the range and translation in the domain) the
radial solution η(x) = ηrad(|x |) x

|x | .

I In many situations the limiting equation is trivial, for instance
when W is convex.

I Finally, if the classification of minimal solutions to (3) is not
available, our method only establishes the existence of a
minimal solution to (3) (but we cannot determine it).



Method to determine limε→0 vε,a(ε)

I In particular, in the case of the Ginzburg-Landau equation

∆η = (|η|2 − 1)η, η : R2 → R2, W (u) =
1

4
(|u|2 − 1)2, (4)

we utilize a result of Mironescu (1996): any minimal solution
of (4) is either a constant of modulus 1 or (up to orthogonal
transformation in the range and translation in the domain) the
radial solution η(x) = ηrad(|x |) x

|x | .

I In many situations the limiting equation is trivial, for instance
when W is convex.

I Finally, if the classification of minimal solutions to (3) is not
available, our method only establishes the existence of a
minimal solution to (3) (but we cannot determine it).



Theorems

Theorem
Let vε,a be the global minimizer of E , let a ≥ 0 be bounded
(possibly dependent on ε), let ρ > 0 be the zero of µrad and let
µ1 := µ′rad(ρ) < 0. The following statements hold:

(i) Let Ω ⊂ D(0; ρ) be an open set such that vε,a 6= 0 on Ω, for
every ε� 1. Then |vε,a| →

√
µ in C 0

loc(Ω).
(ii) For every ξ = ρe iθ, we consider the local coordinates

s = (s1, s2) in the basis (e iθ, ie iθ), and the rescaled minimizers:

wε,a(s) = 2−1/2(−µ1ε)
−1/3vε,a

(
ξ + ε2/3 s

(−µ1)1/3

)
.

As ε→ 0, the function wε,a converges in C 2
loc(R2,R2) up to

subsequence, to a bounded in the half-planes [s0,∞)× R
solution of

∆y(s)−s1y(s)−2|y(s)|2y(s)−α = 0, ∀s = (s1, s2) ∈ R2,
(5)

with α = limε→0
a(ε)f (ξ)√

2µ1
.



Theorems

(iii) For every r0 > ρ, we have

limε→0
vε,a((r0+tε)e iθ)

ε = − a0
µrad(r0) f (r0e iθ) uniformly when t

remains bounded and θ ∈ R, with a0 := limε→0 a(ε).

Theorem
Assume that a(ε) > 0, a is bounded and limε→0 ε

1− 3γ
2 ln a = 0 for

some γ ∈ [0, 2/3).

(i) For ε� 1, the global minimizer vε,a has at least one zero x̄ε
such that

|x̄ε| ≤ ρ+ o(εγ).

In addition, any sequence of zeros of vε,a, either satisfies (6)
or it diverges to ∞.

(ii) For every ρ0 ∈ (0, ρ), there exists b∗ > 0 such that when
lim supε→0

a
ε| ln ε| < b∗ then any limit point l ∈ R2 of the set of

zeros of the global minimizer satisfies

ρ0 ≤ |l | ≤ ρ.



Theorems

In addition if a = o(ε| ln ε|) then |l | = ρ, and
limε→0 |v(x)| =

√
µ+(x) uniformly on R2.



Theorems

(iii) On the other hand, for every ρ0 ∈ (0, ρ), there exists b∗ > 0
such that when lim supε→0

a
ε| ln ε|2 > b∗, the set of zeros of the

global minimizer has a limit point l such that

|l | ≤ ρ0.

If vε,a(x̄ε) = 0 and x̄ε → l then up to a subsequence

lim
ε→0

vε,a(x̄ε + εs)→
√
µ(l)(g ◦ η)(

√
µ(l)s),

in C 2
loc(R2), for some g ∈ O(2). In addition if

lim supε→0
a

ε| ln ε|2 =∞ then l = 0.



Theorems



Theorems

Theorem

(i) Given ε > 0, there exists A > 0 such that for every a > A, the
global minimizer vε,a is unique and radial i.e.
v(x) = vrad(|x |) x

|x | .

(ii) When a = 0 the global minimizer can be written as
v(x) = (vrad(|x |), 0) with vrad ∈ C∞(R) positive. It is unique
up to change of v by gv with g ∈ SO(2).



How we locate the vortices

I It is convenient to renormalize the energy:

E(u) := E (u) +
∫
|x |<ρ

µ2

4ε2 =∫
R2

1
2 |∇u|2 +

∫
|x |<ρ

(|u|2−µ)2

4ε2 +
∫
|x |>ρ

|u|2(|u|2−2µ)
4ε2 − a

ε

∫
R2 f · u

I We compute an upper bound of E(v) by choosing an
appropriate test function:

E(vε,a) ≤ π|µ1|ρ
6
| ln ε|+O(1).

I Then we proceed by contradiction. If v has a zero x̄ε such
that |x̄ε| ≤ ρ0 < ρ, it follows that

lim inf
ε→0

E(vε,a) ≥
(
λ(ρ0) +

π|µ1|ρ
6

)
| ln ε| − K

a

ε
+O(1).

I We reach a contradiction if lim supε→0
a(ε)
ε| ln ε| <

λ(ρ0)
K .



How we locate the vortices

I On the other hand, if v does not vanish in D(0; ρ0) with
ρ0 < ρ, we have

L2
({

x ∈ D(0; ρ0) : x
|x | ·

v
|v | ≤

1
2

})
≤ K2ε| ln ε|

a .

I Since the degree of v on the circles |x | = r ∈ (0, ρ0) is 0 we
obtain an increase of energy∫

D(0;ρ0)

∣∣∣∇ v

|v |

∣∣∣2 ≥ (πρ0)2a

62K2ε| ln ε|
− 4π

3
,

which contradicts the upper bound
∫
D(0;ρ0)

∣∣∇ v
|v |
∣∣2 ≤ K1| ln ε|

when lim supε→0
a(ε)
ε2| ln ε| <

62K1K2
(πρ0)2 .



The vector Painlevé equation y : R2 → R2

∆y(s)−s1y(s)−2|y(s)|2y(s)−α = 0, ∀s = (s1, s2) ∈ R2, (6)

with α = limε→0
a(ε)f (ξ)√

2µ1
∈ R2,

I generalizes the second Painlevé O.D.E. y : R→ R

y ′′ − sy − 2y 3 − α = 0, s ∈ R. (7)

I In a previous paper we showed that this last equation plays an
analogous role in the one dimensional, scalar version of the
problem.





Open question

I Numerical simulations suggest that in 1D and 2D, the
rescaled profile of the shadow vortex comes from the
generalized second Painlevé equation, and not from the
Ginzburg-Landau equation (like the standard vortex).

I To deduce this, it is sufficient to show that the zero of the
globsl minimizer satisfies |x̄ε| = ρ+O(ε2/3).



Related problems

I The energy E belongs to the class of Ginzburg-Landau type
functionals that appear for example in the theory of
superconductivity or in the theory of Bose-Einstein
condensates.

I For these problems there also exist threshold values of the
parameters that determine the structure of the global
minimizers. According to these values, the global minimizer
may or may not have vortices.
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