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Bȩdlewo, Poland

Susanna Terracini Phase Separation



Motivations The general model with Lotka-Volterra type interactions The symmetric case The asymmetric case Elements of the proof The parabolic problem: rotating spirals

Table of contents

1 Motivations

2 The general model with Lotka-Volterra type interactions

3 The symmetric case

4 The asymmetric case

5 Elements of the proof

6 The parabolic problem: rotating spirals

Susanna Terracini Phase Separation



Motivations The general model with Lotka-Volterra type interactions The symmetric case The asymmetric case Elements of the proof The parabolic problem: rotating spirals

Competition diffusion systems with Lotka-Volterra
interactions: symmetric competition rates

With large and symmetric interspecific competition rates βi,j = βj,i and
three populations:

∂ui
∂t
− div(di∇ui ) = fi (ui )− ui

∑h
j=1
j 6=i
βi,juj in Ω,
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Competition diffusion systems with Lotka-Volterra
interactions : asymmetric competition rates

With large and symmetric interspecific competition rates βi,j = βj,i and
five populations:
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Energy minimizing segregated configurations

Let Ω be a bounded open subset of RN (N ≥ 2) and let us call
segregated state a k–uple U = (u1, . . . , uk) ∈ (H1(Ω))k where

ui (x) · uj(x) = 0 i 6= j , a.e. x ∈ Ω

We define the internal energy of U as

J(U) =
∑

i=1,··· ,k

{∫
Ω

(
1

2
d 2
i (x) |∇ui (x)|2 − Fi (x , ui (x))

)
dx

}
,

Our goal is to minimize J among a class of segregated states subject to
some boundary and positivity conditions.
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A weak reflection law

Theorem (M. Conti, S. T. Terracini, G. Verzini 2005, L. Caffarelli, F. Lin
2008)

For reasonable F ’s, the minimization problem has a (unique) segregated
solution U, which is Lipschitz. Let ΓU its nodal set, Then, there exists a
set ΣU ⊆ ΓU the regular part, relatively open in ΓU , such that

Hdim(ΓU \ ΣU) ≤ N − 2, and if N = 2 then actually ΓU \ ΣU is a
locally finite set;

ΣU is a collection of hyper-surfaces of class C 1,α (for every
0 < α < 1).
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Furthermore for every x0 ∈ ΣU

lim
x→x+

0

|∇U(x)| = lim
x→x−0

|∇U(x)| 6= 0,

where the limits as x → x±0 are taken from the opposite sides of the
hyper-surface. Furthermore, if N = 2 then ΣU consists in a locally finite
collection of curves meeting with equal angles at singular points.
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The general model

We consider the semilinear system:

−∆ui = fi (x , ui )− βui
∑
j 6=i

aijuj in Ω, i = 1, . . . , k, (LV)

where ui ≥ 0, β > 0, aij > 0 (+ boundary conditions).
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The general model

We consider the semilinear system:

−∆ui = fi (x , ui )− βui
∑
j 6=i

aijuj in Ω, i = 1, . . . , k, (LV)

where ui ≥ 0, β > 0, aij > 0 (+ boundary conditions).

(LV) is the stationary version of the
competition-diffusion system with Lotka-Volterra interactions:

∂tu −∆ui = fi (ui )− βui
∑
j 6=i

aijuj .

(LV) is never variational. It can be
either symmetric (aij = aji ) or asymmetric (aij 6= aji ).
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The general model

We consider the semilinear system:

−∆ui = fi (x , ui )− βui
∑
j 6=i

aijuj in Ω, i = 1, . . . , k, (LV)

where ui ≥ 0, β > 0, aij > 0 (+ boundary conditions).

Starting from [Dancer-Du, JDE (1994), Nonl. Anal. (1995)] two main issues has
been addressed:

existence

asymptotics as β → +∞ (segregation, i.e. uiuj → 0)

The reactions fi and the boundary conditions are crucial for existence, less
important for segregation.

Here we mainly deal with the segregation limit: free boundaries, nodal
structure, in particular in dimension N = 2 (also in connection with entire
solutions on R2 or R2

+).
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The general model

We consider the semilinear system:

−∆ui = fi (x , ui )− βui
∑
j 6=i

aijuj in Ω, i = 1, . . . , k, (LV)

where ui ≥ 0, β > 0, aij > 0 (+ boundary conditions).

Figure: on the left k = 3, on the right k = 5; in both aij = aji and β large.
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The symmetric case for k ≥ 3 populations

We assume aij = aji (= 1 w.l.o.g.). The system becomes

−∆ui = fi (x , ui )− βui
∑

j 6=i uj in Ω, i = 1, . . . , k,

Theorem (Conti, Terracini, Verzini ’05)

Let Uβ be a family of H1–bounded solutions. For every α < 1 there
exists Lα > 0 such that

sup
x,y∈Ω

|ui,β(x)− ui,β(y)|
|x − y |α

< Lα

for all i = 1, . . . , k and for all β > 0.

This allows to pass to the limit as β → +∞.

Recently, (optimal) uniform Lipschitz bounds have been obtained
[Soave-Zilio, ARMA 2015]
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Segregation limit in the symmetric case

Theorem (Conti, Terracini, Verzini ’05)

Let Uβ = (u1,β , ..., uk,β) be a solution of the system at fixed β, and
β →∞. There exists U such that, for all i = 1, . . . , k:

1 up to subsequences, ui,β → ui strongly in H1 and in Cα, for any
α ∈ (0, 1)

2 if i 6= j then ui · uj = 0 a.e. in Ω

3 −∆ui ≤ f (x , ui )

4 −∆

ui −
∑
j 6=i

uj

 ≥ f (x , ui )−
∑
j 6=i

f (x , uj)

5 the segregated limiting profiles are Lipschitz.

This agrees with the case k = 2, which reads

−∆(u1 − u2) ≥ 0, −∆(u2 − u1) ≥ 0.
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The class S
Define

ûi = ui −
∑
j 6=i

uj

and similarly

f̂ (x , ûi ) =

{
fi (x , ui ) if x ∈ supp(ui )

−fj(x , uj) if x ∈ supp(uj), j 6= i .

Then the segregation limits belong to the class

S =

(u1, · · · , uk) :

ui ≥ 0, ui · uj = 0 if i 6= j

−∆ui ≤ f (x , ui )

−∆ûi ≥ f̂ (x , ûi ), ∀i


(+ boundary conditions)
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Basic properties in S
The multiplicity of a point x ∈ Ω is

m(x) = ] {i : meas ({ui > 0} ∩ B(x , r)) > 0 ∀ r > 0} .

Proposition

Let x0 ∈ Ω:

(a) If m(x0) = 0, then there is r > 0 such that ui ≡ 0 on B(x , r), for
every i .

(b) If m(x0) = 1, then there are i and r > 0 such that ui > 0 and

−∆ui = fi (x , ui ) on B(x , r).

(c) If m(x0) = 2, then are i , j and r > 0 such that uk ≡ 0 for k 6= i , j
and

−∆(ui − uj) = gij(x , ui − uj) on B(x , r),

where gi,j(x , s) = fi (x , s
+)− fj(x , s

−).
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Multiple junctions of nodal lines

We wish to analyze the structure of the zero set of a k-tuple U ∈ S, i.e.
the set

Z = {x : ui (x) = 0 for every i = 1, . . . , k}.

Such set naturally splits into the union of the regular part
Z2 = {x ∈ Z : m(x) = 2}, which is itself the union of the interfaces

Γij = ∂ωi ∩ ∂ωj ∩ Z2,

and of the singular part

W = Z \ Z2.

With this respect, the sets ωi and ωj are said to be adjacent whenever
Γij 6= ∅.
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Structure of the nodal set

Theorem (Conti-Terracini-Verzini ’05, Caffarelli-Karakayan-Lin ’08,
Tavares-Terracini ’12)

Let U be in the class S, and let Z = {x ∈ Ω : U(x) = 0}. Then, there
exists a set Z2 ⊆ Z = the regular part, relatively open in Z, such that

Z2 is a collection of hyper-surfaces of class C 1,α (for every
0 < α < 1). Furthermore for every x0 ∈ Z2

lim
x→x+

0

|∇U(x)| = lim
x→x−0

|∇U(x)| 6= 0,

where the limits as x → x±0 are taken from the opposite sides of the
hyper-surface;

Hdim(Z \ Z2) ≤ N − 2, and limx→x0 |∇U(x)| = 0.

Furthermore, if N = 2 then Z consists in a locally finite collection of
curves meeting with equal angles at a locally finite number of singular
points.
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Nodal set: regular points

x0

Br (x0)

{uj > 0}

{ui > 0}

lim
x→x0

x∈{ui>0}

∇ui (x) = − lim
x→x0

x∈{uj>0}

∇uj(x)
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Nodal set: singular points (N = 2)

x0

{u1 > 0}

{u2 > 0}

{u3 > 0}

{u4 > 0}

lim
x→x0

|∇U(x)| = 0
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Asymptotic expansion near multiple points

An heuristic argument without reactions:

+u1−u2

+u3 −u4

Br (x0)

−∆(u1 − u2 + u3 − u4︸ ︷︷ ︸
w

) = f1 − f2 + f3 − f4 = 0

Then w(r , ϑ) =
∑
k∈Z

[ak cos (kϑ) + bk sin (kϑ)] rk

and

a2
k + b2

k = 0 for k < 0 as w is not singular in x0,

a2
k + b2

k = 0 for k = 0, 1 as m(x0) = 4,

w(r , ϑ) = r2 cos (2ϑ+ ϑ0) + o(r2) as r → 0.

In general, w ∼ rm(x0)/2, also in the odd case.
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The limiting profiles

Back to the original problem

−∆ui = fi (x , ui )− βui
∑

j 6=i aijuj in Ω, i = 1, . . . , k,

assume now aij 6= aji

Passing to the limit as β →∞ we find a new class S:

Define, for every i = 1, . . . , k ,

ûi := ui −
∑
j 6=i

aij
aji

uj ,

and f̂i accordingly. The differential inequalities take the usual form

−∆ûi ≥ f̂i (x , ûi ) in Ω.
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Asymptotics and nodal set

What doesn’t changes:
equi–hölderianity w.r.t. β
proportional gradients at points x0 with m(x0) = 2:

lim
x→x0

x∈{ui>0}

aji∇ui (x) = − lim
x→x0

x∈{uj>0}

aij∇uj(x)

vanishing of the gradient at points x0 with m(x0) ≥ 3

What changes:
local expansion at multiple points (in dimension N = 2).

Near an isolated point x0 with (e.g.) m(x0) = 4
we have that

w = u1 −
a12

a21
u2 +

a12a23

a21a32
u3 −

a12a23a34

a21a32a43
u4

satisfies

−∆w = 0 in Br0 (x0)\
(
{u1 > 0} ∩ {u4 > 0}

)
︸ ︷︷ ︸

Γ̃

.

u1u2

u3 u4
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The main Theorem

Let (u1, . . . , uk) be a segregated limiting profile in the asymmetric case.

Theorem (S. T. , G. Verzini, A. Zilio, 2017)

Let Z be a compact connected component of {x : m(x) ≥ 3}. Then
Z = {x0}.

Theorem (S. T. , G. Verzini, A. Zilio, 2017)

Let x0 ∈ Ω with m(x0) = h ≥ 3. Then there exists α ∈ R and ϑ0 such
that

w(r , ϑ) = Crh/2 exp (αθ) cos

(
h

2
θ − α log r + ϑ0

)
+ o(rh/2)

as r → 0, where (r , θ) denotes a system of polar coordinates about x0

and Ũ is a suitably weighted sum of the components ui .
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The value of α

The value of α is explicit in terms of the coefficients aij , with i and j
belonging to the set of indexes associated to the h ≤ k densities which
do not identically vanish near x0. For instance, when u1, u2 and u3 meet
at x0, with m(x0) = 3, then (up to a change of sign)

α =
1

2π
log

(
a12

a21
· a23

a32
· a31

a13

)
.

In particular, in case aij = aji for every j 6= i , then α = 0, and the spirals
reduce to straight lines; in this way we recover the equal-angles-property
for multiple points. On the other hand it is easy to construct examples in
which α 6= 0, see Fig. 25.
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Spirals

Figure: numerical simulations of functions belonging to the class S for different
values of α. In this particular case, we have considered a system of 3
components (labeled in counterclockwise order as u1, u2 and u3) in the unit
ball, with boundary conditions given by suitable restrictions of | cos(3/2ϑ)|. In
picture (a), aij = 1 for all i , j , which yields α = 0. In picture (b), aij = 4 if
j − i = 1 mod 3 and aij = 1 otherwise, which yields α = 3 log 4/2π (> 0,
which implies that the free-boundary is described asymptotically by rotations of
the clockwise logarithmic spiral ϑ = log 4/π log r). In picture (c), aij = 10 if
j − i = 1 mod 3 and aij = 1 otherwise, which yields α = 3 log 10/2π.
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Variational principles?

In the asymmetric case, the nodal partition determined by the
components supports can not be optimal with respect to any Lagrangian
energy (in particular, the Almgren monotonicity formula can not hold).
Indeed, it is known that boundaries of optimal partitions in two
dimension have the equal angle property . Hence they can not exhibit
logarithmic spirals. This fact is in striking contrast with the picture for
symmetric inter-specific competition rates: indeed, in such a case we
know that solutions to the reaction diffusion system are unique, together
with their limit profiles in the class S. Hence, though system does not
possess a variational nature, it fulfills a minimization principle in the
segregation limit, while this is impossible in the asymmetric setting.
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Finite vanishing order

Nevertheless, even in the asymmetric case, functions in the class S still
share with the solutions of variational problems, including harmonic
functions, the following fundamental features:

singular points are isolated and have a finite vanishing order;

the possible orders are quantized;

the regular part is smooth.

It is natural to wonder whether similar analogies still hold in dimensions
higher than two. However, in higher dimensions, new strategies and
unconventional techniques have to be designed to treat the asymmetric
case.
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Starting the proof

Lemma

We can reduce the problem to the case in which, for each i = 1, . . . , k,
∂ supp(ui ) ∩ Ω is made of two connected components and we call Γij

such connected arcs. Furthermore, we can assume that any Γij reaches
the boundary at most once, there are at least three non trivial densities in
Ω and W is not empty.

Lemma

Under the previous reductions, the set W is connected and Ω is simply
connected.

By Riemann Mapping Theorem we can the reduce furthermore to the
case when Ω is the unit ball and 0 ∈ W.
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Going to the universal covering

The conformal map

(r cosϑ, r sinϑ) 7→ (x , y) = (ϑ,− log(r/r0))

allows to map Br0 (x0) \ Γ̃ to the strip S ⊂ R2
+.

Γ̃
Γ

Γ + (2π, 0)
S

Then a suitably weighted sum of the components ui corresponds to v ,
which can be extended from S to R2

+, with


v∆v = 0 in R2

+

v = 0 on Γ

v(x + 2π, y) = λv(x , y).

where λ =

∏
i ai,i+1∏
i ai+1,i

.
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A representation formula in R2
+

To start with, we wish to solve the simplest case, when W = {0}. In this
case,


∆v = 0 in R2

+

v = 0 on Γ

v(x + 2π, y) = λv(x , y)

⇐⇒


∆z + 2αzx + α2z = 0. in R2

+

z = 0 on Γ

z(x + 2π, y) = z(x , y)

z(x , y) := e−αxv(x , y), α =
lnλ

2π
.

Separating the variables we obtain

v(x , y) =
∑
k∈Z

[ak cos (kx + αy) + bk sin (kx + αy)] exp(αx − ky).

From now on, for concreteness, we suppose

λ =

∏
i ai,i+1∏
i ai+1,i

> 1, i.e. α > 0.
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Asymptotic spirals

v(x , y) =
∑
k∈Z

[ak cos (kx + αy) + bk sin (kx + αy)] exp(αx − ky)

=
∑
k≥k̄

· · ·+
∑
k<k̄

· · ·

︸ ︷︷ ︸
evil

GOAL: show that a2
k + b2

k = 0 for k < k̄ = m(x0)/2, a2
k̄

+ b2
k̄
6= 0.

Then

v(x , y) ∼
[
ak̄ cos (k̄x + αy) + bk̄ sin (k̄x + αy)

]
e(α−k̄)y as y → +∞

S asymptotically lies in the strip C1 ≤ k̄x + αy ≤ C2

and finally

w(r , ϑ) = Cr k̄ exp (αϑ) cos(k̄ϑ− α log r + ϑ0) + o(r k̄) as r → 0

where w is a suitably weighted sum of the components ui : asymptotic
logaritmic spirals!
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How to kill the evil part?

Further condition on

v(x , y) =
∑
k∈Z

[ak cos (kx + αy) + bk sin (kx + αy)] exp(αx − ky).

By conformality ∫
S

|∇v |2 < +∞.

In terms of z , which is 2π-periodic in y , this reads

∫
S

e2αx |∇z(x , y)|2 dxdy < +∞.

Since we do not know the actual position of S , we can not exclude the
integrability on S of quantities of order e2(αx+ky), k > 0, even for
arbitrarily large k.
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Description of the strip S

We denote by
Sy := {(x , y) ∈ S}

the horizontal sections of S , having endpoints Xmin(y) and Xmax(y).
While |Sy | ≤ 2π, diam Sy may be arbitrarily large.

0 Xmin(ȳ) 2π Xmax(ȳ)

ȳ

SΓ Γ + (2π, 0)

x

y
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The battle against evil - part I (the easy stuff)

v(x , y) =
∑
k∈Z

[ak cos (kx + αy) + bk sin (kx + αy)] exp(αx − ky),

∫
S

|∇v(x , y)|2 dxdy < +∞
(

or

∫
S

e2αx |∇z(x , y)|2 dxdy < +∞
)
.

Two cases can be easily ruled out:

S ⊂ {(x , y) : x ≥ my + q} for some m, q

inf
{
k ∈ Z : a2

k + b2
k 6= 0

}
> −∞.
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The battle against evil - part II (the angular A-C-F)

More difficult: rule out

S ⊂ {(x , y) : x ≤ my + q} for some m, q

Lemma∫
S\Ξ(ȳ)

|∇v |2 dxdy ≤ e−X
2
1 (ȳ)/ȳ

∫
S

|∇v |2 dxdy .

X1(ȳ) ξ 0 2π

η(ξ)

ȳ

S

Ξ(ξ)

Γξ

x

y
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The battle against evil - part II (the angular A-C-F)
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The battle against evil - part III (the bottlenecks argument)

Last case to rule out:

0 2π

S

Σ

x

y

Lemma ∫
above Σ

|∇v |2 dxdy ≤ C

| ln(|Σ|)|

∫
around Σ

|∇v |2 dxdy .
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The parabolic problem
With asymmetric interspecific competition rates βi,j 6= βj,i large and three populations:

∂ui
∂t
−∆ui = fi (ui )− ui

h∑
j=1
j 6=i

βi,juj in Ω,

H. Murakawa and H. Ninomiya, Fast reaction limit of a three-component reaction-diffusion
system. J. Math. Anal. Appl. 379 (2011), no. 1, 150-170,
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The spiralling wave ansatz in two-dimension

∂ui
∂t
−∆ui = fi (ui )− βui

h∑
j=1
j 6=i

ai,juj in C,

Ansatz:

ui (t, x) = vi
(
e iωtx

)
, x ∈ C

Then (v1, . . . , vi ) solve

ωx⊥ · ∇vi −∆vi = fi (vi )− βvi
h∑
j=1
j 6=i

ai,jvj in C.
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Spiralling limiting profiles:

ωx⊥ · ∇vi −∆vi = fi (vi )− βvi
h∑
j=1
j 6=i

ai,jvj in C, (∗)

Next we pass to the limit as β → +∞.

Theorem (Salort,Terracini,Verzini, Zilio 2016)

For every ω, for a codimension two set of boundary traces, there exists a
unique solution in the class S associated with (∗) in the unit disk.
Furthermore, there exists α ∈ R and θ0 such that

Ṽ (r , θ) = Crh/2 exp (αϑ)| cos

(
h

2
ϑ− α log r + ϑ0

)
|+ o(rh/2)

as r → 0, where (r , θ) denotes a system of polar coordinates about 0 and
Ũ is a suitably weighted sum of the components vi .
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Some numerical simulations (by courtesy of Alessandro Zilio)

Final remarks

Wave spirals appear in reaction-diffusion systems related with
ventricular fibrillation.

Work on the dynamics of spiral waves by Björn Sandstede, Arnd
Scheel, Claudia Wulff (no singular limit).
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