ZERO-SUM DISCOUNTED MARKOV GAMES WITH IMPULSE CONTROLS

ARNAB BASU* AND ŁUKASZ STETTNER †

1. Introduction. Given a locally compact separable metric space E, let $\Omega \stackrel{def}{=} \mathcal{D}([0,\infty);E)$ be the space of cadlag functions from \mathbb{R}_+ to E. We consider the state process $\{X_s\}_{s\geq 0}$ to be a standard Markov process $(X_s(\omega)=\omega(s),\omega\in\Omega)$ defined on a probability space $(\Omega,\mathcal{F},\{\mathcal{F}_t\},P)$ taking values in E. For any space S, we denote by C(S) the space of bounded, continuous and real-valued functions on S. Let $f\in C(E)$ and $h_1,h_2\in C(E\times E)$ be given. Let \mathcal{F}_t^X and \mathcal{F}^X (resp.) denote the completions of $\sigma\{X_s:s\leq t\}$ and $\sigma\{X_s:s\leq\infty\}$. Let U_1,U_2 be compact subsets of E. We consider a zero-sum game between two players I and II where player I chooses strategy $V_1\stackrel{def}{=} \{\tau_1,\xi_1;\tau_2,\xi_2;\ldots\}$ to maximize his payoff (described below) and player II chooses strategy $V_2\stackrel{def}{=} \{\sigma_1,\zeta_1;\delta_2,\zeta_2;\ldots\}$ to minimize the same where $\{\tau_i\}_{i=1,2,\ldots},\{\sigma_i\}_{i=1,2,\ldots}$ are $\{\mathcal{F}_t^X\}$ -measurable stopping times and $\{\xi_i\}_{i=1,2,\ldots},\{\zeta_i\}_{i=1,2,\ldots}$ are (resp.) $\{\mathcal{F}_{\tau_i}^X\},\{\mathcal{F}_{\sigma_i}^X\}$ -measurable random variables taking values in (resp.) U_1,U_2 . To describe the evolution of the controlled Markov process under impulse controls V_1 and V_2 we have to consider an extended probability space $\tilde{\Omega}$ together with probability measure P^{V_1,V_2} (see [3] or [1] for the construction). We denote by $V_i^{>(n)}$ the suffix of V_i starting after the n-th impulse i.e. $V_i^{>(n)} = \Theta_{\rho_n} \circ V_i', V_i' \in \mathcal{V}_i$ and Θ_t is the time-translation operator with $\rho = \tau$ or σ (resp.) depending upon i=I,II. The infinite-horizon discounted payoff under strategy-tuple (V_1,V_2) starting at time t at the (random) point $X_t \in E$ is defined as

$$\mathcal{J}^{V_{1},V_{2}}(X_{t},t) \stackrel{def}{=} e^{\alpha t} E_{X_{t},t}^{V_{1},V_{2}} \left[\int_{t}^{\infty} e^{-\alpha s} f(X_{s}) ds + \sum_{i=1}^{\infty} e^{-\alpha(\tau_{i} \wedge \sigma_{i})} \left(\mathbf{1}_{\{\tau_{i} \leq \sigma_{i}\}} h_{1}(X_{\tau_{i}}^{-}, \xi_{i}) + \mathbf{1}_{\{\sigma_{i} < \tau_{i}\}} h_{2}(X_{\sigma_{i}}^{-}, \zeta_{i}) \right) | \mathcal{F}_{t}^{X} \right]$$
(1.1)

where, to avoid infinitely many shifts for gain by any player, $h_1(\cdot, \cdot) \leq c < 0$ and $h_2(\cdot, \cdot) \geq d > 0$, $\alpha > 0$ is the discount factor and X^- denotes the value just before the corresponding impulsive shift is made. The interpretation is that player I (resp. player II) chooses a random time τ_i (resp. σ_i) and shifts the process from $X_{\tau_i} \in E$ (resp. $X_{\sigma_i} \in E$) to a point $\xi_i \in U_1$ (resp. $\zeta_i \in U_2$) thereby incurring a negative payoff $h_1(X_{\tau_i}, \xi_i)$ (resp. positive payoff $h_2(X_{\sigma_i}, \zeta_i)$) and this goes on ad infinitum. There is a running payoff denoted by a bounded function $f(\cdot)$ which accumulates over the entire time horizon. We are interested to study the game which starts at t = 0 from a given

^{*}Decision Sciences and Information Systems Area, Indian Institute of Management Bangalore, India 560076, (arnab.basu@iimb.ernet.in).

[†]Department of Probability Theory and Mathematics of Finance, Institute of Mathematics, Polish Academy of Sciences, Warszawa, Poland 00-656, also Vistula University. (stettner@impan.pl).

arbitrarily fixed $x \in E$ with payoff

$$\mathcal{J}^{V_{1},V_{2}}(x) \stackrel{def}{=} E_{x}^{V_{1},V_{2}} \left[\int_{0}^{\infty} e^{-\alpha s} f(X_{s}) ds + \sum_{i=1}^{\infty} e^{-\alpha(\tau_{i} \wedge \sigma_{i})} \left(\mathbf{1}_{\{\tau_{i} \leq \sigma_{i}\}} h_{1}(X_{\tau_{i}}^{-}, \xi_{i}) + \mathbf{1}_{\{\sigma_{i} < \tau_{i}\}} h_{2}(X_{\sigma_{i}}^{-}, \zeta_{i}) \right) \right]$$

$$(1.2)$$

Note that we omit the notational dependence on t when t = 0. The upper and lower values of such a game, starting at $x \in E$, are defined (resp.) as follows:

$$\overline{v}(x) \stackrel{def}{=} \inf_{V_2 \in \mathcal{V}_2} \sup_{V_1 \in \mathcal{V}_1} \mathcal{J}^{V_1, V_2}(x),$$

$$\underline{v}(x) \stackrel{def}{=} \sup_{V_1 \in \mathcal{V}_1} \inf_{V_2 \in \mathcal{V}_2} \mathcal{J}^{V_1, V_2}(x) \tag{1.3}$$

where \mathcal{V}_1 and \mathcal{V}_2 (resp.) denote the space of strategies of player I and II. It is to be noted here that the game described above is an *online* (and not *offline*) game as might be incorrectly interpreted from the value functions defined in (1.3) above. What this actually means is that the upper value game is as follows:

$$\overline{v}(x) \equiv \inf_{(\sigma_{1},\zeta_{1})} \sup_{(\tau_{1},\xi_{1})} E_{x}^{V_{1},V_{2}} \left[\int_{0}^{\tau_{1}\wedge\sigma_{1}} e^{-\alpha s} f(X_{s}) ds + e^{-\alpha(\tau_{1}\wedge\sigma_{1})} \left(\mathbf{1}_{\{\tau_{1}\leq\sigma_{1}\}} h_{1}(X_{\tau_{1}}^{-},\xi_{1}) + \mathbf{1}_{\{\sigma_{1}<\tau_{1}\}} h_{2}(X_{\sigma_{1}}^{-},\zeta_{1}) \right) + e^{-\alpha(\tau_{1}\wedge\sigma_{1})} ess \inf_{V_{2}^{>(1)}\in\mathcal{V}_{2}} ess \sup_{V_{1}^{>(1)}\in\mathcal{V}_{1}} J^{V_{1}^{>(1)},V_{2}^{>(1)}}(\xi_{1} \mathbf{1}_{\{\tau_{1}\leq\sigma_{1}\}} + \zeta_{1} \mathbf{1}_{\{\sigma_{1}<\tau_{1}\}}, \tau_{1}\wedge\sigma_{1}) \right]$$
(1.4)

where the essential optima are to be understood again in a recursive sense and the lower value $\underline{v}(x)$ can be correspondingly interpreted. The main results of this paper are to show that such a game has a value $v(\cdot)$ i.e. $\overline{v}(x) = \underline{v}(x) \equiv v(x)$ for all $x \in E$ and that there exists optimal saddle-point strategies attaining this value obtained via the unique solution to a corresponding Isaacs' equation for this game. The paper generalizes [1] where similar game was considered under the assumption that the players make their decisions with a deterministic constant delay h > 0. In the proofs we also use some results from [2].

REFERENCES

- L. Stettner, Zero-sum Markov Games with Stopping and Impulsive Strategies, J. Appl. Math. Optimiz. 9 (1982), 1-24,
- [2] L. Stettner, Penalty method for finite horizon stopping problems, SIAM J. Control Optim., 49 (2011), 1078-1999
- [3] L. STETTNER, On Impulsive Control with Long Run Average Cost Criterion, Studia Math. 76 (1983), 279-298,