FREE INFINITE DIVISIBILITY FOR R-DIAGONAL DISTRIBUTIONS

KAMIL SZPOJANKOWSKI

We say that the distribution of a non-commutative and in general non-normal random variable a is R-diagonal if

$$\kappa_n(a_1,\ldots,a_n)=0$$

whenever $a_1, \ldots, a_n \in \{a, a^*\}$ are not alternating in a and a^* . Where by $(\kappa_n)_{n\geq 1}$ we denote the free cumulant functionals.

The class of R-diagonal *-distributions is fairly well understood in free probability. It was introduced in [3] and sice then it has received quite a bit of attention in the free probability literature. In particular, elements with R-diagonal *-distributions were among the first examples of non-normal elements in W^* -probability spaces for which the so-caled 'Brown spectral measure' was calculated explicitly (in [2]), and for which the Brown measure techniques could be used to find invariant subspaces (in [4]).

In this class, we consider the concept of infinite divisibility with respect to the operation \boxplus of free additive convolution. One way to approach \boxplus -infinite divisibility is to construct a (suitable for *-distributions) version of a bijection constructed in [1] which relates free independence to another form of noncommutative independence, namely Boolean independence. In the next step we introduce the concept of an η -diagonal distribution that is the Boolean counterpart of an R-diagonal distribution. We establish a number of properties of η -diagonal distributions, then we examine the canonical bijection relating η -diagonal distributions to infinitely divisible R-diagonal ones. The overall result is a parametrization of an arbitrary \boxplus -infinitely divisible R-diagonal distribution that can arise in a C^* -probability space, by a pair of compactly supported Borel probability measures on $[0, \infty)$.

As an application of the parametrization we prove that the set of \boxplus -infinitely divisible R-diagonal *-distributions is closed under the operation \boxtimes of multiplicative convolution. The talk is based on joint work with H. Bercovici (Indiana University, USA), A. Nica (University of Waterloo, Canada) and M. Noyes (Bard College, USA).

REFERENCES

- [1] H. Bercovici, V. Pata. Stable laws and domains of attraction in free probability theory. With an appendix by P. Biane, The density of free stable distributions, *Annals of Mathematics* 149 (1999), 1023-1060.
- [2] U. Haagerup, F. Larsen. Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras, *Journal of Functional Analysis* 176 (2000), 331-367.
- [3] A. Nica, R. Speicher. R-diagonal pairs a common approach to Haar unitaries and circular elements, Fields Institute Communications 12 (1997), 149-188.
- [4] P. Sniady, R. Speicher. Continuous family of invariant subspaces for R-diagonal operators, *Inventiones Mathematicae* 146 (2001), 329-363.