OPTIMAL UNIFORM APPROXIMATION OF LÉVY PROCESSES ON BANACH SPACES WITH FINITE VARIATION PROCESSES

RAFAŁ ŁOCHOWSKI

Let $X_t, t \ge 0$, be a cádlag Lévy Process on a Banach space V (i.e. a process with a.s. cadlag paths and independent and stationary increments), and let \mathcal{A}_X be the family of V-valued processes $Y_t, t \ge 0$, adapted to the natural filtration of X. By $|\cdot|$ we denote the norm in V. For T > 0 and two processes $T, Z: \Omega \times \mathcal{T} \to B$, where \mathcal{T} is an index set such that $[0, T] \subset \mathcal{T}$, we denote

$$||Y - Z||_{\infty,[0,T]} := \sup_{0 \le t \le T} |Y_t - Z_t|$$

and

$$TV(Y, [0, T]) := \sup_{n} \sup_{0 \le t_0 < t_1 < \dots < t_n \le T} \sum_{i=0}^{n} |Y_{t_i} - T_{t_{i-1}}|.$$

In this talk we will deal with the following optimisation problem. For given non-decreasing function $\phi: [0, +\infty) \rightarrow [0, +\infty)$ and $T, \theta > 0$, calculate (or at least estimate up to universal constants)

$$V_X(\psi,\theta,T) := \mathbb{E}\left\{\psi\left(\|X-Y\|\right) + \theta \cdot \mathrm{TV}(Y,[0,T])\right\}.$$
(1)

To make the problem non-trivial we assume that $\mathbb{E}|X_1| < +\infty$.

Such problems arise for example in financial mathematics when the process X denotes optimal hedging strategy while Y denotes approximation of this startegy in the presence of (proportional) transaction costs.

We will present formulas for $V_X(\psi, \theta, T)$ expressed in terms of simpler func-tionals, like $\mathbb{E}|X_{\tau^c}|\mathbf{1}_{\{\tau^c < T\}}$ and $\mathbb{E}\exp(-\tau^c/T)$, where

$$\tau^c := \inf\{t > 0 \colon |X_t| > c\}.$$

We will present also more explicit solutions in special cases when X is a Brownian motion with drift on \mathbb{R} , standard Brownian motion on \mathbb{R}^n or symmetric α -stable process on \mathbb{R} .