Title: Algebrability of classes of Sierpiński-Zygmund-like functions Author: Artur Bartoszewicz

We say that a subset E of a commutative linear algebra B is strongly κ -algebrable if there exists a κ -generated free algebra A contained in $E \cup \{0\}$.

Theorem 1 (Sierpiński-Zygmund) There exists a function $f: \mathbb{R} \to \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality continuum, the restriction $f|_Z$ is not a Borel map (and, in particular, not continuous).

Theorem 2 [1] The set of Sierpiński-Zygmund functions is strongly κ -algebrable, provided there exists a family of κ almost disjoint subsets of \mathfrak{c} .

We say that a function $f: \mathbb{R} \to \mathbb{R}$ is a strong Sierpiński-Zygmund function, if for every set $A \subseteq \mathbb{R}$ of cardinality ω_1 the restriction $f|_A$ is not a Borel map. Let us denote by $s\mathcal{SZ}(\mathbb{R})$ the set of all strong Sierpiński-Zygmund functions.

Theorem 3 [2] If $sSZ(\mathbb{R}) \neq \emptyset$, then it is strongly c-algebrable.

One can ask, if the assumption of the above Theorem can be fulfilled under the negation of the Continuum Hypothesis. Gruenhage proved that if model Vof ZFC satisfies $2^{\omega} = \kappa$ and $\lambda \geq \kappa$ is a cardinal with $\lambda^{\omega} = \lambda$, then, after adding λ Cohen or random reals to V, there exists sSZ function in the extension.

By $\mathcal{SZ}(\Phi) \subseteq \mathbb{K}^{\mathbb{K}}$ we denote the family of all functions $f : \mathbb{K} \to \mathbb{K}$ with $f|Z \notin \Phi$ for any $Z \in [\mathbb{K}]^{\mathfrak{c}}$ (the symbol $[\mathbb{K}]^{\mathfrak{c}}$ stands for the family of all subsets of \mathbb{K} that have cardinality \mathfrak{c}).

Theorem 4 [3] Assume CH. The family $\mathcal{ES}(\mathbb{C}) \cap (\mathcal{SZ}(\mathcal{C}) \setminus \mathcal{SZ}(\mathcal{B}or)) \subseteq \mathbb{C}^{\mathbb{C}}$ is strongly c-algebrable.

References

- [1] A. Bartoszewicz, S. Głąb, D. Pellegrino, J.B. Seoane-Sepúlveda, Algebrability, non-linear properties and special functions, Proc. Amer. Math. Soc, 141 (2013), 3391–3402.
- [2] A. Bartoszewicz, M. Bienias, M. Filipczak, S. Głąb, Strong c-algebrability of strong Sierpiński-Zygmund, smooth nowhere analytic and other sets of functions, J. Math. Anal. Appl. 412 (2014), no. 2, 620–630.
- [3] A. Bartoszewicz, M. Bienias, S. Głąb, T. Natkaniec, Algebraic structures in the sets of surjective functions, J. Math. Anal. Appl. 441 (2016), 574–585.