Dynamic Signatures Generated by
 Regulatory Networks

Konstantin Mischaikow
Dept. of Mathematics, Rutgers
mischaik@math.rutgers.edu

ロபTLINE

I．Mativatian：Why we need a New APPRロACH Tロ NロNLINEAR DYNAMICS

Il．СロMBINATロRIAL MロDEL FロR DYNAMICS：THIS IS WHAT IS ᄃロMPUTABLE

Ill．DATABASES ロF NロNLINEAR DYNAMICS：A
GLロBAL APPRロACH Tロ DYNAMICS

IV．CロNLEY THEロRY：THIS PRロVIDES THE THEDRETICAL FロபNDATIロNS AND THE TIE Tロ CLASSICAL DYNAMICAL SYSTEMS

MロTIVATIロN

Three OPrablems

$$
\begin{aligned}
& \text { Invaluing } \\
& \text { Somlinear ODynamics }
\end{aligned}
$$

$$
\frac{d x}{d t}=f(x) \quad \frac{d x}{d t}=f(x) \quad \frac{d x}{d t}=? ?
$$

Differential EquATIロNS: ANALYTIC SaLUTIロNS

Restricted 3 Body Problem (Euler 1772)

W.S. Koon, M. W. Lo, J. E. Marsden, S. D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos, 2000

Motivation: "the design of trajectories for space missions such as the Genesis Discovery Mission."

DYNAMICAL SYSTEMS: QபALITATIVE THEロRY ロF
DIfferential EquAtians

The 3-body Problem ≈ 1890

Chaotic dynamics exists.
Understanding the solution of an single initial value problem is not sufficient.

Need to consider all solutions: $\frac{d x}{d t}=g(x), \quad x \in \mathbb{R}^{n}$

Flow: $\varphi: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\begin{aligned}
\text { Map: } \quad f: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} \\
x & \mapsto f(x):=\varphi(\tau, x) \\
\tau>0 & \text { is a fixed time. }
\end{aligned}
$$

$f: X \times \Lambda \rightarrow X$ differentiable

$$
(x, \lambda) \mapsto f_{\lambda}(x)
$$

The objects of interest:
A set $S \subset X$ is invariant if $f_{\lambda}(S)=S$.
Examples: equilibria, periodic orbits, heteroclinic orbits, strange attractors

The equivalence relation:
Two maps $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are topologically conjugate if there exists a homeomorphism $h: X \rightarrow Y$ such that $h \circ f=g \circ h$.

The places of change:
$\lambda_{0} \in \Lambda$ is a bifurcation point if for any neighborhood U of λ_{0} there exists $\lambda_{1} \in U$ such that $f_{\lambda_{0}}$ is not conjugate to $f_{\lambda_{1}}$

Given a family of dynamical systems (differential equations), what types of dynamical structures does one expect to see typically?

THEDRIE DE CATASTRロPHES

What is the minimal parameter space Λ which allows us to fully explain bifurcations?

Rene Thom
1923-2002

Limits to Theory: 1. Description of Fixed Points
2. Smooth theory with limits to finite classification
3. Local theory (to the best of my knowledge)

Dynamical systems approach to differential equations is incredibly fruitful.

1. Arnold Conjecture

Theorem: (Conley,Zehnder) Consider the $2 n$ dimensional torus with standard symplectic structure J, a 1 periodic exact Hamiltonian $H: S^{1} \times$ $T \rightarrow \mathbb{R}$, and the resulting differential equation

$$
\dot{x}=J \nabla H(t, x) .
$$

Then, there must be at least $2 n+1$ periodic orbits of period 1 .

Remark: A quintessential dynamical systems theorem: existence of solutions with particular geometric properties, but almost no quantitative information.
2. Analysis of nonlinear systems

periodically forced ferroelastic beam
-Magnets

time series data

ODE model:

$$
\ddot{x}+\gamma \dot{x}-\frac{1}{2}\left(1-x^{2}\right) x=f \cos \omega t
$$

"First principles" derivation of model:

1. Magnetic forces
2. Catastrophe theory used to identify nonlinearity
3. Continuum modeling to obtain PDEs
4. Galerkin projection

Verification of model by comparing experimentally observed bifurcations with theoretical and numerical analysis of bifurcations of model.

3. Conceptual generation of models

$$
\frac{d x}{d t}=
$$

A. Hubaud \& O. Pourquié (2014)
"The clock-and-wavefront model first proposed the existence of an oscillator to explain the rhythmic formation of somites in the embryo. This theoretical model, inspired by the mathematical theory of catastrophes that was developed in the 1970s, postulates that somite formation results from a periodic abrupt change (a catastrophe) in cellular properties triggered by a travelling front of maturation (the wavefront)."

What's Left Ta Warry Abaut?

1. Growth of population of Paramecium caudatum (G. Gause 1932) $d N \quad r(K-N) \quad r$ is the birth rate.
$\frac{d N}{d t}=r N\left(\frac{K-}{K}\right) \quad K$ represents carrying capacity of the environment.
Fact: Given an initial condition $N(0)>0$ a solution satisfies

$$
\lim _{t \rightarrow \infty} N(t)=K
$$

Mathematical prediction is not precise
Is it enough to talk about a lattice of attracting blocks?

Network Model

$$
\begin{aligned}
\frac{1}{\tau_{y}} \dot{y} & =\alpha \frac{R_{T}}{R_{T}+R(x)}-y \\
\frac{1}{\tau_{x}} \dot{x} & =\beta y-x \\
R(x) & =\frac{R_{T}}{1+\left(\frac{x}{x_{0}}\right)^{n}}
\end{aligned}
$$

ODE Model

ODES are great modeling tools,

 but should be handled with care.

Data
$\alpha=\frac{84.4}{1+(G / 8.1)^{1.2}}+16.1$
$\beta=\ldots$
parameter values

What does it mean to solve an ODE?

Precise
Not Accurate Not Rigorous

Classical Qualitative
Representation of Dynamics

Conley-Morse Chair. Complex

Not Precise Accurate Rigorous
"truth" model

3. Cancer

$$
\frac{d x}{d t}=? ?
$$

Deregulation of the RB-E2F pathway is implicated in most, if not all, human cancers.

Goal: minimal NETWORK that exhibits resettable bistability

Bistability:

Two equilibria:
(A) Rb ON, E2F OFF = quiescence
(B) Rb OFF, E2F ON = proliferation

Ro-E2F bistable switch

Toggle Switch

P falciparum

48 hour cycle

Once a liver schizont has matured, it ruptures, and the merozoites spill into the bloodstream. Within 1-2 minutes, each merozoite has invaded an erythrocyte. Once in the erythrocyte, the merozoite consumes hemoglobin to use for energy, at which point it becomes known as a trophozoite. It uses this energy to form schizonts and begin another round of asexual amplification, producing up to 36 merozoites per schizont. When this schizont ruptures, the merozoites are released into the bloodstream once again and infect other red blood cells.

This cycle of infection, multiplication, and bursting continues until it is brought under control by the immune system or by antimalarial drugs. These erythrocitic merozoites are responsible for the clinical manifestations of malaria.

Estimated number of malaria cases in 2010: between 219 and 550 million
Estimated number of deaths due to malaria in 2010: 600,000 to 1,240,000
Malaria may have killed half of all the people that ever lived. And more people are now infected than at any point in history. There are up to half a billion cases every year, and about 2 million deaths - half of those are children in sub-Saharan Africa.
J. Whitfield, Nature, 2002

Malaria is of great public health concern, and seems likely to be the vector-borne disease most sensitive to long-term climate change.

World Health Organization
Resistance is now common against all classes of antimalarial drugs apart from artemisinins. ... Malaria strains found on the CambodiaThailand border are resistant to combination therapies that include artemisinins, and may therefore be untreatable.

Hypothesis: desynchronization of erythrocytic cycle will allow for the development of novel effective treatments of malaria.

Goals: 1. Identify the regulatory network in P. falciparum that governs the synchronization.
2. Identify variety of control mechanisms that when applied to the regulatory network will disrupt the synchronous behavior.

Remarks: To efficiently achieve 2 requires that we achieve 1.
Achieving 1, but not being able to attain 2 would be very disappointing.
P. falciparum

All genes (5409)

Putative TF genes (456)

Sequenced, but poorly annotated

Walter Reed Army Institute of Research Duke

Short period genes (43)

time in vitro (hours)
Reguatory Network

Summary of Dynamics:

1. Gene expression is recurrent in nature.
2. Length of cycles appear to be approximately 20 or 40 hours.
3. Can identify a partial order of expression of genes.

Goals: 1 . Generate models that can be quantitatively matched to data.
2. Identify essential parameters.
3. Help optimize future experiments.

CロMBINATロRIAL DYNAMICS

See Rob Vandervorst's talk

State Transition Graph

Don't know exact current state,

Simple decomposition of Dynamics:

Recurrent
Strongly connected path components

Nonrecurrent
(gradient-like)

Morse Graph of state transition graph

What is observable? $\mathcal{A} \subset \mathcal{X}$ is an attractor if $\mathcal{F}(\mathcal{A})=\mathcal{A}$
Birkhoff's Theorem implies that the Morse graph and the lattice of Attractors are equivalent.

DATABAGE ロF NロNLINEAR DYNAMICS

Dynamic Signatures Generated by Regulatory Networks DSGRN

Regulatory networks are biological models.

Remark: For technical reasons we do not allow repressive self loops

Mathematical Definitions:

A regulatory network $R N=(V, E, M)$ consists of vertices $V=\{1, \ldots, N\}$ called network nodes, annotated directed edges $E \subset V \times V \times\{\rightarrow, \dashv\}$ called interactions, and node logics M_{k} for each $k \in V$.
The annotated edge \rightarrow is referred to as an activation and the annotated edge \dashv is called a repression.

The Nodes

To each node $j \in V$ in the regulatory network we assign a nonnegative real valued variable x_{i}, e.g. concentration.

We assume the variable decays with decay rate $\gamma_{i}>0$.

The Edges

Assume regulation is observed to have a switch like behavior

The Logic

M_{1} indicates how node 1 processes inputs from nodes 2,3 , and 4 .

$$
\begin{array}{ll}
& \left(\sigma_{1,2}^{+}\left(x_{2}\right)+\sigma_{1,3}^{+}\left(x_{3}\right)\right) \cdot \sigma_{1,4}^{-}\left(x_{4}\right) \\
\Lambda_{i}(x):=M_{i}(\sigma(x)) & \sigma_{1,2}^{+}\left(x_{2}\right)+\sigma_{1,3}^{+}\left(x_{3}\right)+\sigma_{1,4}^{-}\left(x_{4}\right) \\
& \sigma_{1,2}^{+}\left(x_{2}\right) \cdot \sigma_{1,3}^{+}\left(x_{3}\right) \cdot \sigma_{1,4}^{-}\left(x_{4}\right)
\end{array}
$$

The Dynamics (via an example)

The Toggle Switch

Fix $z \in Z$

Phase space: $X=(0, \infty)^{2}$

Parameter space: $Z \subset \bar{Z} \subset(0, \infty)^{8}$

$$
\frac{d x_{1}}{d t}=-\gamma_{1} x_{1}+\sigma_{1,2}^{-}\left(x_{2} ; \theta_{1,2}, \ell_{1,2}, u_{1,2}\right)
$$

decay rate repression relation

$$
\begin{aligned}
& \text { If }-\gamma_{1} \theta_{2,1}+\sigma_{1,2}^{-}\left(x_{2}\right)>0 \\
& \text { If }-\gamma_{1} \theta_{2,1}+\sigma_{1,2}^{-}\left(x_{2}\right)<0
\end{aligned}
$$

z is a regular parameter value if

$$
\begin{aligned}
& 0<\gamma_{i} \\
& 0<\ell_{i, j}<u_{i, j}, \\
& 0<\theta_{i, j} \neq \theta_{i, k}, \quad \text { and } \\
& 0 \neq-\gamma_{i} \theta_{j, i}+\Lambda_{i}(x)
\end{aligned}
$$

Constructing Combinatorial Dynamics $\quad \mathcal{F}_{z}: \mathcal{V} \rightrightarrows \mathcal{V} \quad$ State Transition Graph
Fix $z \in Z$

Vertices

\mathcal{V} corresponds to all rectangular domains and faces defined by thresholds

Edges

Faces pointing in map to their domain.
Domains map to their faces pointing out.

If no outpointing faces domain map to itself.

The Toggle Switch

Fix $z \in Z$
Assume:

$$
\begin{aligned}
l_{1,2}<\gamma_{1} \theta_{2,1} & <u_{1,2} \\
\gamma_{2} \theta_{1,2} & <l_{2,1}
\end{aligned}
$$

Constructing Combinatorial Dynamics
$\mathcal{F}_{z}: \mathcal{V} \rightrightarrows \mathcal{V} \quad$ State Transition Graph
z is a regular parameter value if

$$
\begin{aligned}
& 0<\gamma_{i} \\
& 0<\ell_{i, j}<u_{i, j}, \\
& 0<\theta_{i, j} \neq \theta_{i, k}, \quad \text { and } \\
& 0 \neq-\gamma_{i} \theta_{j, i}+\Lambda_{i}(x)
\end{aligned}
$$

$F P\{0,1\}$

Morse Graph

DSGRN DATABASE FRロM GENETIC TOGGLE SWITCH

```
Input:
Regulatory Network
```


Output:
DSGRN database

Parameter graph provides explicit partition of entire 8-D parameter space.
Observe that we can query this database for local or global dynamics.

Remark: Each node in parameter graph is a non-empty, connected region
Remark: This defines a complex, so in principle we can use this to determine homology of regions of parameter space that express dynamic phenotypes.

Recovering Classical Dynamics

Let $\varphi: \mathbb{R} \times X \rightarrow X$ be a flow with a compact global attractor S. A Morse decomposition of S under φ consists of a finite poset $(\mathrm{P},<)$ that labels a collection of mutually disjoint compact invariant sets $M(p)$ called Morse sets with the property that if $x \in S \backslash \bigcup_{p \in P} M(p)$ then there exists $p, q \in P$ such that

$$
\alpha(x, \varphi) \subset M(p) \quad \text { and } \quad \omega(x, \varphi) \subset M(q)
$$

and $q<p$.

Recovering Classical Dynamics

We have a formal ODE model for DSGRN

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=-\gamma_{1} x_{1}+ \begin{cases}u_{1,2} & \text { if } x_{2}<\theta_{1,2} \\
l_{1,2} & \text { if } x_{2}>\theta_{1,2}\end{cases} \\
& \frac{d x_{2}}{d t}=-\gamma_{2} x_{2}+ \begin{cases}u_{2,1} & \text { if } x_{1}<\theta_{2,1} \\
l_{2,1} & \text { if } x_{1}>\theta_{2,1}\end{cases}
\end{aligned}
$$

Remark: To move from this formal system to an appropriate set of ordinary differential equations is problem/context specific.

Open problem: Develop a natural methodology for doing this.
Special Case: Hill functions.

$$
f^{+}(x)=\frac{x^{n}}{\theta^{n}+x^{n}}
$$

$$
f^{-}(x)=\frac{\theta^{n}}{\theta^{n}+x^{n}}
$$

Recovering Classical Dynamics

$$
\begin{aligned}
\frac{d u}{d t} & =-u+\frac{\alpha_{1}}{1+v^{\beta}} \\
\frac{d v}{d t} & =-v+\frac{\alpha_{2}}{1+u^{\gamma}}
\end{aligned}
$$

Gardner, et. al., Construction of a genetic toggle switch in E. coli, Nature, 2000

General Hill Functions

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =-\gamma_{1} x_{1}+l_{1,2}+\frac{\left(u_{1,2}-l_{1,2}\right) \theta_{1,2}^{n}}{\theta_{1,2}^{n}+x_{2}^{n}} \\
\frac{d x_{2}}{d t} & =-\gamma_{2} x_{2}+l_{2,1}+\frac{\left(u_{2,1}-l_{2,1}\right) \theta_{2,1}^{n}}{\theta_{2,1}^{n}+x_{2}^{n}} \\
\frac{d x_{1}}{d t} & =-\gamma_{1} x_{1}+ \begin{cases}u_{1,2} & \text { if } x_{2}<\theta_{1,2} \\
l_{1,2} & \text { if } x_{2}>\theta_{1,2}\end{cases} \\
\frac{d x_{2}}{d t} & =-\gamma_{2} x_{2}+ \begin{cases}u_{2,1} & \text { if } x_{1}<\theta_{2,1} \\
l_{2,1} & \text { if } x_{1}>\theta_{2,1}\end{cases}
\end{aligned}
$$

Figure 2 Geometric structure of the toggle equations. a, A bistable toggle network with balanced promoter strengths. b, A monostable toggle network with imbalanced promoter strengths. c, The bistable region. The lines mark the transition (bifurcation) between bistability and monostability. The slopes of the bifurcation lines are determined by the exponents β and γ for large α_{1} and α_{2}. d, Reducing the cooperativity of repression (β and γ) reduces the size of the bistable region. Bifurcation lines are illustrated for three different values of β and γ. The bistable region lies inside of each pair of curves.

$$
\begin{aligned}
\frac{d u}{d t} & =-u+\frac{\alpha_{1}}{1+v^{\beta}} \\
\frac{d v}{d t} & =-v+\frac{\alpha_{2}}{1+u^{\gamma}}
\end{aligned}
$$

$$
\text { (5) } \frac{\mathrm{FP}(0,1) \mathrm{FP}(1,0)}{\begin{array}{l}
l_{1,2}<\gamma_{1} \theta_{2,1}<u_{1,2} \\
l_{2,1}<\gamma_{2} \theta_{1,2}<u_{2,1}
\end{array}}
$$

$$
\begin{gathered}
\gamma_{1}=\gamma_{2}=1 \\
\ell_{1,2}=\ell_{2,1}=0
\end{gathered}
$$

$$
\frac{d x_{1}}{d t}=-\gamma_{1} x_{1}+l_{1,2}+\frac{\left(u_{1,2}-l_{1,2}\right) \theta_{1,2}^{n}}{\theta_{1,2}^{n}+x_{2}^{n}}
$$

$$
\frac{d x_{2}}{d t}=-\gamma_{2} x_{2}+l_{2,1}+\frac{\left(u_{2,1}-l_{2,1}\right) \theta_{2,1}^{n}}{\theta_{2,1}^{n}+x_{2}^{n}}
$$

Consider what happens if we choose $u_{1,2}=u_{2,1}=2$.

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =-x_{1}+\frac{2}{1+x_{2}^{n}} \\
\frac{d x_{2}}{d t} & =-x_{1}+\frac{2}{1+x_{1}^{n}}
\end{aligned}
$$

Poset for a Morse decomposition for the flow

For $n \geq 4.5$ vector field is transverse to blue regions.

Mhataria

Putative TF genes (456)

Can any of the following networks support the time series data?

Cyclic feedback system well understood using classical dynamical systems.

Results(I)

Under the assumption of monotone switches if parameter values are chosen such that there exists a stable periodic orbit, then the maxima in the network must occur in the order: $\quad(188,93,184,395) \quad$ (green, blue, cyan, red)

Conclusion: This network does not generate observed dynamics

DGGRN ANALYSIS（I）：EXISTENCE ロF ロscILLATIロNS

No mathematical theory

DSGRN computation produces a parameter graph with approximately 45，000 nodes．

Computation time on laptop approximately 1 second．

Time series for associated genes

SQL Query：A stable cycle involving oscillations in all genes

96 parameter graph nodes with Morse graph that has a minimal node consisting of a Full Cycle（FC）．

96 parameter graph nodes with Morse graph that has a minimal node consisting of a Full Cycle (FC).

Morse Graph 47 Parameters: 8

XC $\{0,1,3,5\}$

phase space dynamics (domain graph)

DGGRN ANALYSIS (II): MAX-MIN MATCHING

M m
m
$\mathrm{Mm} \longrightarrow \mathrm{M} \longrightarrow \mathrm{M} \longrightarrow \mathrm{Mm}$
M m
Have developed polynomial time algorithm that take paths in state transition graph and identifies sequences of possible maxima and minima.

Tested all max-min sequences from state transition graphs from all 96 parameter graph nodes against 17,280 experimental patterns. No Match

Conclusion: This network does not generate observed dynamics

Number of regions in parameter space: 17,280,000 (20 min)
Number of regions for which Morse graph exhibits stable FC (cycle all elements oscillate): 342,800

Experimentally possible Max-Min ordering (2880)

Number of regions where state transition graph produces experimentally possible Max-Min ordering: 100,346 (1 min)

Choose a parameter point from one of these regions. Numerically simulate an ODE with Hill function nonlinearities at the parameter value with Hill exponent $\mathrm{n}=10$.

Current Favorite Model

Network dynamics matches experimental data for 49.7% of 9,069,926,400* parameter regions.

Parameter space is a subset of $(0, \infty)^{59}$.

*Essential Network:

Only consider parameter values such that each node talks to and is talked to by another node.

Summary

Lecture 1: Why we need a new paradigm for dynamics.

Lecture 2: DSGRN, an instantiation of a new approach to dynamics.

Used the toggle switch as an example.
Dynamics were formulated in language of posets (Morse graphs).

Did not need to use concepts of flows, invariant sets, etc.

Used Malaria data to show that DSGRN can perform nontrivial computations efficiently.

Lecture 3: Mathematical challenges.

4 FUNDAMENTAL CHALLENGEG

I．RELATIIN Tロ CLASSICAL DYNAMICS：Haw Da we translate DSGRN results inta the language af DYNAMICAL SYSTEMS
li．Parameter Space：Haw da we understand GEGMETRY ASSロCIATED WITH PARAMETER GRAPH？
lll．Refinements：Haw da we da finer APPROXIMATIUNS？

IV．SIze af PARAMETER GRAPH：HロW Tロ REDUCE STGRED DATA？

For each parameter value $z \in Z$ we produce a state transition graph $\mathcal{F}: \mathcal{V} \rightrightarrows \mathcal{V}$.

The associated Morse graph is the Hasse diagram for the poset P of recurrent components of $\mathcal{F}: \mathcal{V} \rightrightarrows \mathcal{V}$.

The lattice of downsets $O(P)$ is isomorphic to the lattice of attractors of $\mathcal{F}: \mathcal{V} \rightrightarrows \mathcal{V}$.

Let A be a finite lattice of attracting blocks for a dynamical system $\varphi: \mathbb{R}^{+} \times X \rightarrow X$.

Then $\mathrm{P}:=\mathrm{J}(\mathrm{A})$ is a poset order for a Morse decomposition of X under φ.

Multigraph

For fixed $z \in Z$ we have a rectangular decomposition of phase space.
Define state transition graph $\mathcal{F}: \mathcal{V} \rightrightarrows \mathcal{V}$

Morse Graph
Question: For what differential equations $\dot{x}=f(x), x \in$ $(0, \infty)^{2}$, is this Morse graph information relevant?

Set

$$
\Phi(\kappa):=\binom{\gamma_{1}^{-1} \Lambda_{1}(\kappa)}{\gamma_{2}^{-1} \Lambda_{2}(\kappa)}
$$

Define:

$$
\begin{aligned}
\mu & =\min _{\kappa} \mu(\kappa) \\
\rho & =\max _{\kappa} \rho(\kappa) \\
\bar{\gamma} & =\min \left\{\frac{\gamma_{1}}{\gamma_{2}}, \frac{\gamma_{2}}{\gamma_{1}}\right\}
\end{aligned}
$$

$$
\delta_{*}:=\min \left\{\frac{\lambda \mu \bar{\gamma}}{\sqrt{2}(2 \lambda+3 \rho)}, \sqrt{\frac{\lambda \mu \bar{\gamma}}{32}}\right\}
$$

threshold

Theorem: (T. Gedeon, S. Harker, H. Kokubu, K.M., H. Oka) There exists a Morse decomposition (invariant sets associated with a filtration of phase space indexed by a poset P) for

$$
\dot{x}_{j}=-\gamma_{j} x_{j}+f_{j}(x), \quad j=1,2,
$$

such that there is an order preserving injection $M G \rightarrow P$.

Idea of proof: Consider four regions.

Define five types of tiles.

Given an attractor \mathcal{A} of $\mathcal{F}: \mathcal{V} \rightrightarrows \mathcal{V}$, for each set of four regions, one applied 6 rules that indicate which tiles should be used.

This defines a map $N: \operatorname{Att}(\mathcal{F}) \rightarrow \mathcal{P}(X)$
Prop: $N: \operatorname{Att}(\mathcal{F}) \rightarrow$ ANbhd is a join semi-lattice morphism.

$$
N\left(A_{0} \wedge A_{1}\right)=N\left(A_{0}\right) \cap N\left(A_{1}\right) \in \text { ANbhd }
$$

Given a regulatory network $R N=(V, E)$ the associated parameter space is $\bar{Z} \subset[0, \infty)^{D}$ where $D=\#(V)+3 \cdot \#(E)$ and a parameter $z=(\ell, u, \theta, \gamma) \in \bar{Z}$ satisfies the following constraints:

$$
0 \leq \theta_{i, j}, \quad 0 \leq \ell_{i, j} \leq u_{i, j}, \quad 0 \leq \gamma_{i} .
$$

The set of regular parameter values $Z \subset \bar{Z}$ is defined to be the complement of the set of parameter values that satisfy the following equalities:

1. $0=\theta_{i, j}, 0=\ell_{i, j}, 0=u_{i, j}, 0=\gamma_{i}$,
2. $0=u_{i, j}-\ell_{i, j}$,
3. $0=\theta_{i, j}-\theta_{k, i}$,
4. $0=\gamma_{j} \theta_{i, j}-\Lambda_{j}(\kappa)$,

A parameter value $z \in \bar{Z}$ is k-deficient if exactly k of the equalities are satisfied.
where $\kappa \subset(0, \infty)^{\#(V)}$ is a $\#(V)$-dimensional rectangular domain defined by the thresholds θ and $\theta_{i, j}$ defines a face of κ.

Mathematically we view the DSGRN database as a map.

The nodes of the parameter graph, denoted by \mathcal{Z}, are regions of parameter space and the edges indicate geometric relations between the regions.

The map is

$$
D B: \mathcal{Z} \rightarrow A M G
$$

where $A M G$ denotes the collection of annotated Morse graphs.

There are (at least) two reasonable ways to define \mathcal{Z}.

The Geometric Parameter Graph GPG is defined as follows. Let \mathcal{Z} denote the set of connected components of Z. Given $\zeta_{0}, \zeta_{1} \in \mathcal{Z}$, the parameter graph has an edge $\left(\zeta_{0}, \zeta_{1}\right)$ if there exists $z \in \operatorname{cl}\left(\zeta_{0}\right) \cap \operatorname{cl}\left(\zeta_{1}\right)$ such that k is 1 -deficient.

Prop: The GPG is connected.

The definition of the Combinatorial Parameter Graph CPG is technical. Heuristically, \mathcal{Z} denotes the set of algebraic relations defined by the complement that lead to non-empty sets of parameters. Given $\zeta_{0}, \zeta_{1} \in \mathcal{Z}$, the parameter graph has an edge $\left(\zeta_{0}, \zeta_{1}\right)$ if exactly one of the algebraic constraints differ.

For each $i \in V$ the nodes of the geometric factor graph $G P G_{i}$ is defined to be the connected components of the complement of the set of parameter values that satisfy the following equalities:

1. $0=\theta_{j, i}, 0=\ell_{j, i}, 0=u_{j, i}, 0=\gamma_{i}$,
2. $0=u_{j, i}-\ell_{j, i}$,
3. $0=\theta_{j, i}-\theta_{k, i}$,
4. $0=\gamma_{i} \theta_{j, i}-\Lambda_{i}(\kappa)$,
where $\theta_{j, i}$ defines a face of κ. Two nodes share an edge if they admit a 1 -deficient point in their common boundary.

Prop: $G P G=\prod_{i \in V} G P G_{i}$

Same result for CPG.

Thm: GPG and CPG are isomorphic in the following cases.

\#Sources (i)	\#Targets (i)	M_{i}	$\# P G_{i} / \#$ Targets $(i)!$
1	1	x	3
1	2	x	6
1	3	x	10
2	1	$x+y$	6
2	1	$x y$	6
2	2	$x+y$	20
2	2	$x y$	20
2	3	$x+y$	50
2	3	$x y$	50
3	1	$x+y+z$	20
3	1	$x y z$	20
3	1	$x y+z)$	20
3	2	$x+y+z$	150
3	2	$x y z$	150
3	2	$x(y+z)$	155
3	3	$x+y+z$	707
3	3	$x y z$	707
3	3	$x(y+z)$	756

Open Question: How can one can one compute the homology of regions of parameter space defined by unions of nodes of parameter graph?

Conjecture: It has a CW type structure that leads to a computable cell complex.

Ill. Refinements: Haw da we da finer

 APPROXIMATIGNS?
IIII. REFINEMENTS: BISECTIロN

The Toggle Switch

Parameter space: $Z \subset \bar{Z} \subset(0, \infty)^{8}$

Fix $z \in Z$

$$
\begin{aligned}
& \text { If }-\gamma_{1} \theta_{2,1}+\sigma_{1,2}^{-}\left(x_{2}\right)<0 \\
& \text { If }-\gamma_{1} \frac{\theta_{2,1}}{2}+\sigma_{1,2}^{-}\left(x_{2}\right)<0 \\
& \text { If }-\gamma_{1} \frac{\theta_{2,1}}{2}+\sigma_{1,2}^{-}\left(x_{2}\right)>0
\end{aligned}
$$

1. Number of parameter nodes increases rapidly
2. I don't think we get rapid convergence of approximation of dynamics

Ill．REFINEMENTS：DIAGロNALIZATIロN
A finer resolution of $\mathcal{F}: \mathcal{V} \rightrightarrows \mathcal{V}$

$$
\Phi(\kappa):=\Gamma^{-1} \Lambda(\kappa)
$$

Parameter graph is no longer a product graph．

PロSSIBLE LロCAL GRAPHS

Ill. REFINEMENTS: NUMERICAL METHロD

$$
\frac{d x}{d t}=f(x, \lambda)
$$

IV．SIZE ロF PARAMETER GRAPH：HロW Tロ REDபCE STロRED DATA？

DGGRN DATABASE FRロM GENETIC TロGGLE SWITCH

Observe: We can capture the structure in parameter space by giving two codimension 2 points and four codimension 1 edges.

