

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Dynamics and Order Theory

Three lecture series

Robert Vandervorst¹ Joint work with W. Kalies, K. Mischaikow

¹Department of Mathematics VU University, Amsterdam The Netherlands

Winter Workshop on Dynamics, Topology and Computations Bedlewo 2017

References

Dynamics and Order Theory

Robert Vandervorst

William Kalies. Dinesh Kasti, and Robert Vandervorst. An algorithmic approach to lattices and order in dynamics. In preparation, 2017.

- William Kalies, Konstantin Mischaikow, and Robert Vandervorst. Lattice structures for attractors I.
 - J. Comput. Dyn., 1(2):307–338, 2014.

- William Kalies, Konstantin Mischaikow, and Robert Vandervorst. Lattice Structures for Attractors II. Found. Comput. Math., 16(5):1151-1191, 2016.
- William Kalies, Konstantin Mischaikow, and Robert Vandervorst. Lattice structures for attractors III.
 - In preparation, 2016.
- I Robbin and D Salamon

Lyapunov maps, simplicial complexes and the Stone functor. Ergod. Th. Dyn. Sys, 1992.

Table of Contents

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

1 Lecture I: Lattice structures and attractors

2 Lecture II: Representations and Morse decompositions

3 Lecture III: Finite combinatorial models

Table of Contents

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

1 Lecture I: Lattice structures and attractors

2 Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Ingredients

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- Space: (X, d) is a compact metric space;
- Time: \mathbb{T} denotes the time domain, which is either \mathbb{Z} or \mathbb{R} , and $\mathbb{T}^+ := \{t \in \mathbb{T} \mid t \ge 0\};$
- Dynamical system $\phi \colon \mathbb{T}^+ \times \mathbf{X} \to \mathbf{X};$

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Definition

A *dynamical system* on a compact metric space (X, d) is a continuous mapping $\phi : \mathbb{T}^+ \times X \to X$ that satisfies the following two properties:

(i)
$$\phi(0, x) = x$$
 for all $x \in X$, and

(ii)
$$\phi(t,\phi(s,x))=\phi(t+s,x)$$
 for all $s,t\in\mathbb{T}^+$ and all $x\in\mathrm{X}.$

The backward extension $\phi \colon \mathbb{T} \times X \to X$ is defined by

$$\phi(-t,x) := \{y \in X \mid \phi(t,y) = x\}, \quad t > 0.$$

Context

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- Since \u03c6 is not surjective necessarily the space X may be a compact forward invariant set for a system defined on a larger locally compact metric space.
- The theory also works if we let X be a compact isolating neighborhood.
- In spirit the theory can be adjusted arbitrary metric spaces. There are compactness issues. These lead to defects that makes the theory more involved.
- We assume compactness to best explain the concepts.

Basic concepts: invariance

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- A set S ⊂ X is *invariant* if φ(t, S) = S for all t ∈ T⁺. The set of invariant sets is denoted by Invset(φ).
- A set S is forward-backward invariant if φ(t, S) = S for all t ∈ T[−]. The set of forward-backward invariant sets is denoted by Invset[±](φ).
- A set S is strongly invariant if φ(t, S) = S for all t ∈ T.
 Set of strongly invariant sets is denoted by SInvset(φ).
- A set S ⊂ X is forward invariant if φ(t, S) ⊂ S for all t ∈ T⁺. The set of forward invariant sets is denoted by Invset⁺(φ). Backward invariant sets Invset⁻(φ) are defined similarly.

Remark

For flows and homeomorphisms the first three notions are equivalent.

Basic concepts: limit sets

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models For a set $U\subset X$ define

$$\alpha(\mathrm{U}) = \bigcap_{t \leq 0} \overline{\phi\bigl((-\infty,t],\mathrm{U}\bigr)} \quad \text{and} \quad \omega(\mathrm{U}) = \bigcap_{t \geq 0} \overline{\phi\bigl([t,\infty),\mathrm{U}\bigr)},$$

which are called the *alpha-limit and omega-limit sets* of U respectively.

For noninvertible dynamical systems there is a lack of symmetry between alpha-limit and omega-limit sets.

Both alpha and omega limit sets are compact and $\alpha(U) \in Invset^+(\phi)$ and $\omega(U) \in Invset(\phi)$. Other properties will be mentioned as we go along.

Basic concept: distributive lattice

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models A lattice is a set L with the binary operations $\lor, \land: L \times L \to L$ satisfying the following axioms:

- (i) (idempotent) $a \wedge a = a \vee a = a$ for all $a \in L$,
- (ii) (commutative) $a \land b = b \land a$ and $a \lor b = b \lor a$ for all $a, b \in L$,
- (iii) (associative) $a \land (b \land c) = (a \land b) \land c$ and $a \lor (b \lor c) = (a \lor b) \lor c$ for all $a, b, c \in L$,
- (iv) (absorption) $a \land (a \lor b) = a \lor (a \land b) = a$ for all $a, b \in L$.

A distributive lattice satisfies the additional axiom

(v) (distributive) $a \land (b \lor c) = (a \land b) \lor (a \land c)$ and $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ for all $a, b, c \in L$.

A lattice is bounded if there exist neutral elements 0 and 1 with property that

(vi)
$$0 \land a = 0$$
, $0 \lor a = a$, $1 \land a = a$, and $1 \lor a = 1$ for all $a \in L$.

A subset $K \subset L$ is called a *sublattice* of L, if $a, b \in K$ implies that $a \lor b \in K$ and $a \land b \in K$. For sublattices we impose the additional condition that $0, 1 \in K$.

Poset structure: $a \leq b$ if $a = a \land b$, or if $b = a \lor b$.

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Figure: Lattice of subsets.

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Figure: Divisors of 60, partially ordered by divisibility.

Lattices of invariant sets

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models With the binary relations

$$S \wedge S' = S \cap S', \quad S \vee S' = S \cup S',$$

Invset[±](ϕ) and SInvset(ϕ) are distributive lattice (big!).

With the binary relations

$$\mathbf{S}\wedge\mathbf{S}'=\mathsf{Inv}(\mathbf{S}\cap\mathbf{S}')^1=\omega(\mathbf{S}\cap\mathbf{S}'),\quad \mathbf{S}\vee\mathbf{S}'=\mathbf{S}\cup\mathbf{S}',$$

 $Invset(\phi)$ is a distributive lattice.

Remark

The forward invariant and backward invariant sets $Invset^+(\phi)$ and $Invset^-(\phi)$ are bounded distributive lattices with respect to \cap and \cup . The neutral elements are $0 = \emptyset$ and 1 = X.

¹Inv $(U, \phi) = \bigcup \{ S \subset U \mid S \in \mathsf{Invset}(\phi) \}.$

Attractors and repellers

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models A (regular) closed set $\mathrm{U}\subset\mathrm{X}$ is an attracting block if

 $\phi(t, \mathbf{U}) \subset \operatorname{int} \mathbf{U}, \quad \forall t > \mathbf{0}.$

A set $A\subset X$ is called an *attractor* if there exists an attracting block U such that $A=\omega(U).$

A (regular) closed set $U \subset X$ is an *repelling block* if

 $\phi(t, \mathbf{U}) \subset \operatorname{int} \mathbf{U}, \quad \forall t < \mathbf{0}.$

A set $R\subset X$ is called a *repeller* if there exists an repelling block U such that $R=\alpha(U).$

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Robert Vandervorst

Attractors and repellers: duality

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Attractors are compact, invariant and the set of attractors $Att(\phi) \subset Invset(\phi)$ is a sublattice.

Repellers are compact, forward-backward invariant and the set of repellers $\operatorname{Rep}(\phi) \subset \operatorname{Invset}^{\pm}(\phi)$ is a sublattice.

Define $U \vee U' = U \cup U'$, $U \wedge U' = \overline{\operatorname{int} U \cap \operatorname{int} U'}$ and $U^{\#} = \overline{U^{c}}$ in the Boolean algebra of regular closed sets $\mathbf{R}(X)$.

 $A = \omega(U) \mapsto A^* = \alpha(U^{\#})$ the dual repeller (well-defined).

Theorem, KMV I, [2]

$$\begin{array}{c|c} \mathsf{ABlock}(\phi) & \stackrel{\#}{\longleftrightarrow} & \mathsf{RBlock}(\phi) \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ \mathsf{Att}(\phi) & \stackrel{*}{\longleftarrow} & \mathsf{Rep}(\phi) \end{array}$$

Attractors and repellers: reflection

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- The surjective homomorphism ABlock(φ) → Att(φ) is an algebraic description of a dynamical system.
 - The homomorphism $\operatorname{RBlock}(\phi) \longrightarrow \operatorname{Rep}(\phi)$ is the natural (anti-isomorphic) dual.
 - Finite sublattices provide partial information about the system: resolution.
 - The lattices $Att(\phi)$ and $Rep(\phi)$ are at most countably infinite!

Theorem, Robbin-Salamon, [5], KMV I, [2]

For $A, R \subset X$ the following statements are equivalent.

- (i) (A, R) is an attractor-repeller pair.
- (ii) A and R are disjoint, compact sets with A ∈ Invset(φ) and R ∈ Invset⁺(φ) such that for every x ∈ X \ (A ∪ R) and every backward orbit γ_x⁻ through x we have α_o(γ_x⁻) ⊂ R and ω(x) ⊂ A.

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representa tions and Morse decompositions

Lecture III: Finite combinatorial models

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Figure: The lattices $Att(\phi)$ and $Rep(\phi)$.

Basic lattice theory

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Let L be a finite distributive lattice.

An element $a \in L$ is *join-irreducible* if it has a unique predecessor $\overleftarrow{a} \prec a$. The join-irreducible elements are denoted by J(L): poset.

Let P be a finite poset.

A *down-set* in P is a subset I of P characterized by the property: $p \in I$, $q \leq p$ $\implies q \in I$. The set of down-sets is denoted by O(P): distributive lattice.

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Figure: The lattice L [left] and the poset J(L) [right]. The join-irreducible elements are solid dots.

h

а

0 0

а

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

$$\begin{array}{lll} \mathsf{P} & = & \{1,2,3,4\}, \\ \mathsf{O}(\mathsf{P}) & = & \bigg\{ \varnothing,\{1\},\{1,2\},\{1,3\},\{1,2,3\},\{1,2,3,4\} \bigg\}. \end{array}$$

Figure: The poset P = $\{1, 2, 3, 4\}$ and the lattice of down-sets O(P). The join-irreducible elements are solid dots.

The Birkhoff representation theorem

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Theorem (Birkhoff)

$$L\cong O(J(L)), \qquad P\cong J(O(P)).$$

The 'recipes' J and O are contravariant functors.

$$\begin{array}{c|c} \mathsf{K} & \mathsf{J}(\mathsf{K}) & \mathsf{P} & \mathsf{O}(\mathsf{P}) \\ \downarrow^{h} & \stackrel{\mathsf{J}}{\Longrightarrow} & \uparrow^{\mathsf{J}(h)} & \phi & \stackrel{\mathsf{O}}{\downarrow} & \stackrel{\mathsf{O}}{\Longrightarrow} & \uparrow^{\mathsf{O}(\phi)} \\ \mathsf{L} & \mathsf{J}(\mathsf{L}) & \mathsf{Q} & \mathsf{O}(\mathsf{Q}) \\ & \mathsf{J}(h)(a) = \min h^{-1}(\uparrow a), \quad a \in \mathsf{J}(\mathsf{L}) \\ & \mathsf{O}(\phi)(\mathsf{I}) = \phi^{-1}(\mathsf{I}), \quad \mathsf{I} \in \mathsf{O}(\mathsf{Q}). \end{array}$$

Table of Contents

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Lecture I: Lattice structures and attractors

2 Lecture II: Representations and Morse decompositions

B Lecture III: Finite combinatorial models

Free distributive lattices on *n* elements.

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

[X]	$ \wp(X) $	$ \mathcal{O}(\mathscr{P}(X)) $
1	2	3
2	4	6
3	8	20
4	16	168
5	32	7581
6	64	7828354
7	128	2414682040998
8	256	56130437228687557907788

℘({1,2,3})

Morse decompositions

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite com binatorial models

A choice of finite sublattices of N \subset ABlock(ϕ) and A \subset Att(ϕ) with $\omega : N \twoheadrightarrow A$ may be regarded as a finite rendering of the global dynamics of a system.

The Birkhoff representation theorem is applicable to the homomorphism

$$\omega \colon \mathbb{N} \twoheadrightarrow \mathbb{A}.$$

Morse decompositions

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models In a more general setting Let O(P) be a finite distributive lattice and consider a mapping

 $\mathsf{O}(\mathsf{P}) \twoheadrightarrow \mathsf{A} \subset \mathsf{Att}(\phi).$

The Birkhoff representation theorem yields:

 $\mathsf{P}\cong\mathsf{J}(\mathsf{O}(\mathsf{P})) \hookleftarrow \mathsf{J}(\mathsf{A}).$

P gives representation of J(O(P)). Find a representation for J(A).

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

2

Figure: The isomorphisms $P \cong J(O(P))$.

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- The join-irreducible elements are of the form $\downarrow p$.
- Duality: $O(P) \ni I \mapsto I^c \in U(P)$ the *up-sets* in P.
- Determine the maximal element in $\downarrow p$ via duality.

Figure:
$$p = I \cap \left(\overleftarrow{I}\right)^c$$
, where $I = \downarrow p$.

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models $O(P) \times O(P) \longrightarrow I(P)$ convex sets in P $(a, b) \mapsto a - b := a \cap b^c$.

p1) (absorption)
$$(a \lor b) - a = b - a$$
 and $a - (a \land b) = a - b$;
p2) (distributivity) $(a \land c) - (b \lor d) = (a - b) \land (c - d)$;
p3) (normalization) $1 - 0 = 1$ and $0 - 1 = 0$;

(p4) (monotonicity)
$$a - b = 0$$
 implies $b \ge a$.

Booleanization

$$\mathsf{B}(\mathsf{L}) = \mathsf{Set}(\mathsf{J}(\mathsf{L})), \ \mathsf{B}^+ = \mathsf{O}(\mathsf{J}(\mathsf{L})) \text{ and } (\alpha, \beta) \mapsto \alpha - \beta$$

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models
$$\begin{split} \mathsf{Att}(\phi) \times \mathsf{Att}(\phi) &\longrightarrow \mathsf{Morse}(\phi) \subset \mathsf{Invset}(\phi), \\ (A, A') &\mapsto A - A' := A \cap A'^*, \end{split}$$

where $Morse(\phi) := \{A \cap R \mid A \in Att(\phi), R \in Rep(\phi)\}$ is a *semi-lattice* with binary operation \land and with zero.

Axioms (p1)-(p4) are satisfied. Unique up to isomorphism. Generalizes set-difference in Boolean algebras. In general:

where j(a - b) := h(a) - h(b).

 $\mathsf{ABlock}(\phi) \times \mathsf{ABlock}(\phi) \longrightarrow \mathsf{MTile}(\phi) \subset \mathsf{INbhd}(\phi),$ $(\mathrm{U},\mathrm{U}') \mapsto \mathrm{U} - \mathrm{U}' := \mathrm{U} \wedge \mathrm{U}'^{\#}.$

where $MTile(\phi) := \{U \land V \mid U \in ABlock(\phi), V \in RBlock(\phi)\}$ is a *semi-lattice* with binary operation \land and with zero.

Robert Vandervorst

Dynamics and Order Theory

Apply to

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

with
$$\mu(a - b) = h(a) - h(b)$$
, $h(a) = \bigvee \{ A \in a \}$ and $\mu(\{A\}) = h(\downarrow A) - h(\downarrow A \setminus \{A\}) = A - \overleftarrow{A}$.

where $M(A) := {\mu({A}) | A \in J(A)}.$ There are no empty sets $\mu({A})!$

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Figure: The poset P [left] and the lattice of convex sets in I(P) [right]. The join-irreducible elements are denoted by solids.

Morse decompositions

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models KMV III, [4]

The injection

 $\pi\colon\mathsf{M}(\mathsf{A})\hookrightarrow\mathsf{P},$

is called a Morse decompositon. The poset M(A) is called a Morse representation. Apply to $\omega\colon N\twoheadrightarrow A$ yields

 $\pi \colon \mathsf{M}(\mathsf{A}) \hookrightarrow \mathsf{T}(\mathsf{N}),$

where T(N) is called Morse tiling and π is a tesselated Morse decomposition.

The mapping π has a left-inverse: Inv $\circ \pi = id$ on M(A).

An example

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite com binatorial models

Figure: The double diamond lattice.

Robert Vandervorst

Morse decompositions

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Since ${\rm X}$ is compact the order-theoretic definition of Morse decomposition is equivalent to the traditional dynamical systems definition of Morse decomposition:

Definition (Conley)

A *Morse decomposition* is an order embedding $\pi \colon M \hookrightarrow P$, where M and P are finite posets and where M consists of nonempty, compact, pairwise disjoint invariant sets $M \subset X$ of ϕ such that for every complete orbit γ_x through a point $x \in X \setminus \bigcup_M M$ there exist $p, p' \in P$ with p < p' such that

 $\omega(x)\subset \pi^{-1}(p) \quad ext{and} \quad lpha_{\mathrm{o}}(\gamma_x^-)\subset \pi^{-1}(p').$

 $\alpha_{o}(\gamma_{x}^{-}) = \bigcap_{t < 0} \overline{\gamma_{x}((-\infty, t])}$ is the orbital alpha-limit set.

Reconstruction

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Given $O(P) \rightarrow A$ and its dual $\pi \colon M(A) \hookrightarrow P$ it holds:

$$\nu = \mathsf{O}(\pi) \colon \mathsf{O}(\mathsf{P}) \twoheadrightarrow \mathsf{O}(\mathsf{M}),$$

and

$$\mathsf{O}(\mathsf{M}) \ni \mathbf{a} \mapsto \nu(\mathbf{a}) = \mathsf{A} = \bigcup_{\mathsf{M} \in \mathsf{a}} W^u(\mathsf{M}),$$

where $W^{u}(M) = \{ x \in X \mid \exists \gamma_{x}^{-} \ni \alpha_{o}(\gamma_{x}^{-}) \subset M \}.$

Proof: Let $M \in a$ be a maximal element, then $a \setminus \{M\} \in O(M)$ and

$$A = \nu(\downarrow M) \cup \bigcup_{M' \in a'} \nu(\downarrow M'), \quad a' = a \setminus \{M\}.$$

Since $a - a' = \{M\}$ the Conley form implies that A - A' = M, where $A' = \bigcup_{M' \in \mathbf{a}'} \nu(\downarrow M')$ and $A = W^u(M) \cup A'$. Repeat the same procedure to obtain the expression $\nu(a) = \bigcup_{M \in \mathbf{a}} W^u(M)$

Reconstruction

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Conversely, given a Morse decomposition $\pi: M \hookrightarrow P$, then $O(P) \twoheadrightarrow O(M) \leftrightarrow A \subset Att(\phi)$,

is a lattice surjection. The latter isomorphism is given by

$$a\mapsto \bigcup_{\mathrm{M}\in\mathrm{a}} W^u(\mathrm{M}).$$

Moreover, M(A) = M.

An example

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representa tions and Morse decompositions

Lecture III: Finite combinatorial models

Figure: Coarsening via sublattices.

Example

Figure: A Morse representation via sublattices.

Coarsening

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Choose a sublattice $O(Q)\rightarrowtail O(P)\twoheadrightarrow A.$ This yields the commutative diagram:

 $\begin{array}{c} O(Q) \longmapsto O(P) \\ \\ \downarrow \\ A_0 \longmapsto A \end{array}$

where A_0 is the range of $\mathsf{O}(\mathsf{Q})\to\mathsf{A}.$ Morse duals:

Morse tilings

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Figure: A tesselated Morse decomposition with isomorphic Morse tiling.

Tesselated Morse decompositions

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- Tesselated Morse decompositions π: M(A)
 → T(N) play a crucial role in the theory of connection matrices.

$$\mathsf{M}(\mathsf{A}) \hookrightarrow \mathsf{T}(\mathsf{N}) \hookrightarrow \mathsf{P}.$$

This question is equivalent to

$$O(P) \twoheadrightarrow N \twoheadrightarrow A \subset Att(\phi).$$

Is there a sublattice $N \subset ABlock(\phi)$ such that $\omega(N) = A$.

Tesselated Morse decompositions: lifting

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models $O(P) \twoheadrightarrow N \longleftrightarrow A \subset Att(\phi).$

Finding an isomorphic N is called a lift of A into $ABlock(\phi)$.

Theorem, Franzosa, KMV I, [2]

Let *i* denote the inclusion map. Then, for every finite sublattice $A \subset Att(\phi)$, there exists a lattice monomorphism *k* such that the following diagram

commutes.

We seek

Table of Contents

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Lecture I: Lattice structures and attractors

2 Lecture II: Representations and Morse decompositions

3 Lecture III: Finite combinatorial models

Combinatorial models

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models In order to have a computational framework we develop a combinatorial model for ω : $ABlock(\phi) \rightarrow Att(\phi)$.

- (i) a lattice epimorphism $h: K \twoheadrightarrow L$ of finite distributive lattices, called the *interior homomorphism* and
- (ii) a lattice monomorphism e: K → ABlock(φ), called the evaluation homomorphism, which links the combinatorial model to the dynamical system through the commutative diagram

where N = e(K) and $A = \omega(N)$.

Combinatorial models

- Dynamics and Order Theory
- Robert Vandervorst
- Lecture I: Lattice structures and attractors
- Lecture II: Representations and Morse decompositions
- Lecture III: Finite combinatorial models

- The *dashed* arrow *c* : L → A, which may or may not exist if we just choose K → L, is called the *connecting homomorphism*.
- The latter is essential for the epimorphism *h* to reflect the dynamics of ω. Combinatorial models for which a dashed arrow exists are called *commutative* combinatorial models.
- The objective is to perform computations on combinatorial models for which K and L are given and translate the result to the underlying system through the evaluation homomorphism.
- To clearly illustrate the concept of a combinatorial model, we describe the well-studied approach of *outer approximations*.

Outer approximations

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models For sake of simplicity consider discrete time time dynamical systems $f \colon \mathbf{X} \to \mathbf{X}$.

- Build a finite discretization of the phase space X by a grid, which is defined as a finite subalgebra of R(X), the regular closed subsets of X, such as a triangulation or a cubical grid when X is a region in Rⁿ.
- By \mathcal{X} denote an indexing set for the grid. In particular, given $\xi \in \mathcal{X}$ the corresponding grid element is denoted by $|\xi| \in \mathbf{R}(X)$. The *evaluation mapping* $|\cdot| : \operatorname{Set}(\mathcal{X}) \to \mathbf{R}(X)$ is defined by

$$\mathcal{U}|:=\bigcup_{\xi\in\mathcal{U}}|\xi|\,.$$

The mapping $f: X \to X$ is approximated by a relation \mathcal{F} on the set of grid elements \mathcal{X} : notation $(\mathcal{X}, \mathcal{F})$. Define $\mathcal{F}(\xi) := \{\eta \in \mathcal{X} \mid (\xi, \eta) \in \mathcal{F}\}.$

Outer approximations

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Definition (cf. Mrozek, Mischaikow, Szymczak)

Let $f: X \to X$ be a continuous mapping and let \mathcal{X} be the indexing set for a grid on X. A relation $(\mathcal{X}, \mathcal{F})$ is an *outer approximation* of a dynamical system (X, f) if

 $f(|\xi|) \subset \operatorname{int} |\mathcal{F}(\xi)|$ for all $\xi \in \mathcal{X}$.

In order to understand outer approximations we regard relations $(\mathcal{X}, \mathcal{F})$ as dynamical systems on the finite point set \mathcal{X} .

Outer approximations

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite com binatorial models

We start with a primer on combinatorial dynamics.

Dynamics of binary relations

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Let $\mathcal{F}\subset\mathcal{X}\times\mathcal{X}$ be a binary relation on $\mathcal{X}.$ Then for every $\mathcal{U}\subset\mathcal{X}$ the relation acts on \mathcal{U} as follows:

$$\mathcal{F}(\mathcal{U}) := \{ \eta \in \mathcal{X} \mid \exists \xi \in \mathcal{U} \text{ s.t. } (\xi, \eta) \in \mathcal{F} \}.$$

This defines a mapping on $Set(\mathcal{X})$ whose element wise representation is a multivalued mapping on \mathcal{X} .

As multivalued mapping, \mathcal{F}^{-1} denotes the inverse image.

The concept of binary relation can be equivalently described by the notion of *directed graph* as follows: the set \mathcal{X} represent the vertices and the edges are given by the pairs $(\xi, \eta) \in \mathcal{F}$, where ξ is the source and η the target. We abuse notation and use the symbol \mathcal{F} to represent a binary relation on \mathcal{X} and its equivalent digraph.

Attractors

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- A set $\mathcal{U} \subset \mathcal{X}$ is forward invariant if $\mathcal{F}(\mathcal{U}) \subset \mathcal{U}$.
- A set $\mathcal{A} \subset \mathcal{X}$ is an *attractor* for \mathcal{F} if $\mathcal{F}(\mathcal{A}) = \mathcal{A}$.
- Forward invariant sets and attractors are denoted by $\mathsf{Invset}^+(\mathcal{F})$ and $\mathsf{Att}(\mathcal{F})$ respectively.
- Define ω -limit set of a set $\mathcal{U} \subset \mathcal{X}$ as

$$\boldsymbol{\omega}(\mathcal{U},\mathcal{F}) = igcap_{k\geq 0} \mathsf{\Gamma}^+_k(\mathcal{U}),$$

where $\Gamma_k^+(\mathcal{U}) = \bigcup_{n>k} \mathcal{F}^n(\mathcal{U})$ for k > 0 is *k*-forward image of \mathcal{U} .

 \blacksquare For attractors $\mathcal{A}, \mathcal{A}' \in \mathsf{Att}(\mathcal{F})$ define

$$\mathcal{A} \lor \mathcal{A}' = \mathcal{A} \cup \mathcal{A}', \quad \mathcal{A} \land \mathcal{A}' = \boldsymbol{\omega}(\mathcal{A} \cap \mathcal{A}').$$

• With \wedge and \vee as defined above Att (\mathcal{F}) is a finite distributive lattice and

$$\omega \colon \mathsf{Invset}^+(\mathcal{F}) \twoheadrightarrow \mathsf{Att}(\mathcal{F})$$

is a lattice epimorphism.

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- If there exists a sequence $\{\xi_0, \dots, \xi_k\}$, with $\xi_0 = \xi$ and $\xi_k = \xi'$, such that $\xi_{i+1} \in \mathcal{F}(\xi_i)$, then ξ' is *reachable* from ξ , denoted by $\xi' \leftarrow \xi$.
- The reachability relation is the transitive closure \mathcal{F}^+ of the relation \mathcal{F} .
- If $\xi \leftarrow \xi'$ and $\xi' \leftarrow \xi$, then ξ is *connected* to ξ' , denoted by $\xi \Leftrightarrow \xi'$. If $\xi \not\leftarrow \xi'$ and $\xi' \not\leftarrow \xi$, then ξ, ξ' are *parallel* elements, denoted by $\xi \parallel \xi'$.
- The relation ↔ is symmetric and transitive and hence defines the *partial* equivalence relation of *connectivity* on X. It is an equivalence relation on the set of cyclic vertices, and the partial equivalence classes of ↔ are called the *cyclic strongly connected components* [ξ]_{**} of F.
- We denote the set of recurrent components by $RC(\mathcal{F})$ *Morse graph*.

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- For $S, S' \in \mathsf{RC}(\mathcal{F})$, we say $S' \leq S$ if and only if there exist $\xi \in S$ and $\xi' \in S'$, such that $\xi' \leftarrow \xi$.
- We refer to the poset $(\mathsf{RC}(\mathcal{F}), \leq)$ as the poset of *recurrent components* of \mathcal{F} , or Morse graph.
- Consider the reflexive closure $\circlearrowleft = (\clubsuit)^=$, i.e. given $\xi, \xi' \in \mathcal{X}$ define $\xi \circlearrowright \xi'$ if $\xi \nleftrightarrow \xi'$ or $\xi' = \xi$.
- The equivalence relation \bigcirc on \mathcal{X} is called *strong connectivity*. In graph theory the equivalence classes $[\xi]_{\bigcirc}$ are called the *strongly connected components* which we denote by SC(\mathcal{F}).
- The partial order on $\mathsf{RC}(\mathcal{F})$ can be extended to a partial order on $\mathsf{SC}(\mathcal{F})$ as follows. Given $\mathcal{S}, \mathcal{S}' \in \mathsf{SC}(\mathcal{F})$ define $\mathcal{S}' \leq \mathcal{S}$ if there exist $\xi \in \mathcal{S}$ and $\xi' \in \mathcal{S}'$ such that $\xi' \leftarrow \xi$ or $\mathcal{S} = \mathcal{S}'$. We refer to the poset $(\mathsf{SC}(\mathcal{F}), \leq)$ as the poset of *strongly connected components* of \mathcal{F} . Set inclusion defines the order embedding

$$i \colon \mathsf{RC}(\mathcal{F}) \hookrightarrow \mathsf{SC}(\mathcal{F}).$$

An example

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representa tions and Morse decompositions

Lecture III: Finite combinatorial models

Figure: The recurrent and strongly connected components of \mathcal{F} .

Conley form

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- J(Att(𝒫)) is isomorphic to RC(𝒫) via the Conley form; elements are of the form 𝔅 ∩ 𝔅 (𝒫⁻¹(𝔅) = 𝔅).
- J(Invset⁺(\mathcal{F})) is isomorphic to SC(\mathcal{F}) via the Conley form; elements are
 - of the form $\mathcal{U} \cap \mathcal{V}$ $(\mathcal{F}^{-1}(\mathcal{R}) \subset \mathcal{V})$.

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models For every finite distributive lattice L may be represented as the lattice of down-sets of a finite poset (P, \leq), i.e. L \cong O(P).

Theorem (1st Generalized Birkhoff theorem)

Let $h: K \rightarrow L$ be a lattice epimorphism between finite distributive lattices. Then, there exists, up to transitivity, condensation, and isomorphisms, a unique binary relation \mathcal{F} on a finite point set \mathcal{X} , such that the following diagram commutes:

Generalizations of Birkhoff's theorem, II

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models For every finite poset P is isomorphic to the set of join-irreducible elements of a finite distributive lattice L, ordered with respect to set inclusion, i.e. $P\cong J(L).$

Theorem (2nd Generalized Birkhoff theorem)

Let \mathcal{F} be a finite binary relation on a finite point set \mathcal{X} . Then, there exists, up to isomorphisms, a unique lattice epimorphism $h: \mathsf{K} \twoheadrightarrow \mathsf{L}$ between finite distributive lattices such that the following diagram commutes:

$$\begin{array}{c} \mathsf{SC}(\mathcal{F}) \longleftrightarrow \mathsf{J}(\mathsf{K}) \\ \begin{tabular}{c} & & & \\ \end{tabular} \\ \end{tabular} \\ \mathsf{RC}(\mathcal{F}) \longleftrightarrow \mathsf{J}(\mathsf{L}) \end{array}$$

Generalizations of Birkhoff's theorem

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models The uniqueness part in the above theorems can be made more precise as follows: Two binary relations (X, F) and (X', F') are equivalent if and only if the following diagram commutes

■ In particular, Invset⁺(\mathcal{F}) \cong O(SC(\mathcal{F})) and Att(\mathcal{F}) \cong O(RC(\mathcal{F})); ■ SC(\mathcal{F}) \cong J(Invset⁺(\mathcal{F})) and RC(\mathcal{F}) \cong J(Att(\mathcal{F})).

Back to outer approximations, KMV II, [3]

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite com binatorial models For outer approximations we have the following combinatorial model

(1)

Dualize

Dynamics

- Dynamics and Order Theory
- Robert Vandervorst
- Lecture I: Lattice structures and attractors
- Lecture II: Representations and Morse decompositions
- Lecture III: Finite combinatorial models

 Combinatorial models as described above contain computable information about the underlying system. The latter diagram gives a tesselated Morse decomposition

 $\pi\colon\mathsf{M}(\mathsf{A})\hookrightarrow\mathsf{RC}(\mathcal{F})\hookrightarrow\mathsf{SC}(\mathcal{F})\longleftrightarrow\mathsf{T}(\mathsf{N}),$

- In general the tesselation $T(N) \cong SC(\mathcal{F})$ is a very large set, while $RC(\mathcal{F})$ is relatively small in size. Two central questions are:
 - (i) Can every sublattice $A \subset Att(f)$ in Diagram (1) be realized via an outer approximation?
 - (ii) Do coarser tesselations exist, for example tesselated Morse decompositions of the form $M(A) \hookrightarrow RC(\mathcal{F}) \longleftrightarrow T(N)$?

Consequences

Consequences

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models To answer these questions we consider the following commutative diagram

- Every U for which $\omega(|L|) = A$ yields a tesselated Morse decomposition $M(A) \hookrightarrow T(|U|)$, which is coarser than T(N).
- Without knowing A this may not be computable and therefore does not answer the second question. The first question may be answered as a variation on the lifting theorem.

Consequences

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Convergence of a 'sequence' \mathcal{F}_n of outer approximations on grids \mathcal{X}_n corresponds to both the diameters of the grid elements and the errors in images of grid elements under \mathcal{F}_n to tend to zero as $n \to \infty$.

Theorem (Theorems 1.2 and 4.20 in [3])

Let $(\mathcal{X}_n, \mathcal{F}_n)$ be a convergent cofiltration of outer approximations. Then for every finite sublattice $A \subset \operatorname{Att}(f)$ there exists $n_A \in \mathbb{N}$ such that for all $n \ge n_A$ there exists a lift $\ell_n : A \rightarrow \operatorname{Invset}^+(\mathcal{F}_n)$ of the inclusion map $i : A \rightarrow \operatorname{Att}(f)$ through $\omega(|\cdot|) : \operatorname{Invset}^+(\mathcal{F}_n) \rightarrow \operatorname{Att}(f)$, i.e. the following diagram commutes

Consequences

Dynamics and Order Theory

Robert Vandervorst

- Lecture I: Lattice structures and attractors
- Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- Using the above theorem we set $U_n = \ell_n(A)$ and $N_n := |\ell_n(A)| \cong A$, which induces an isomorphic tesselated Morse decomposition $\pi_n : M(A) \leftrightarrow T(N_n)$ for all $n \ge n_A$. This also provides an alternative proof for the existence of index lattices for Morse decompositions as given before.
- The asymptotic lifting theorem answers both questions in (i) and (ii) with respect to existence.
- However, a fundamental issue still remains unanswered by this asymptotic result. If a computation is performed at a certain fixed resolution, how can we algorithmically determine whether a lift exists, and if so construct a lift and a 'coarse' tesselated Morse decomposition.
- To develop such an algorithm, we make use of a generalization Birkhoff's representation theorem. We characterize the existence of a lift in terms of the existence of a certain mapping between the strongly connected components and the recurrent components of the directed graph defined from \mathcal{F} .

Order retractions

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models An order-preserving surjection $SC(\mathcal{F}) \twoheadrightarrow RC(\mathcal{F})$ is called an *order retraction*.

The existence of such a mapping implies the existence of a lift $Att(\mathcal{F}) \rightarrow Invset^+(\mathcal{F})$, which yields the diagram:

The sublattice U yields a tesselated Morse decomposition

 $\mathsf{M}(\mathsf{A}) \hookrightarrow \mathsf{T}(|\mathsf{U}|) \cong \mathsf{RC}(\mathcal{F}).$

Order retractions

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- We are developing an algorithm to decide whether order retractions exist and construct them.
- If an order retraction does not exist the algorithm provides the inclusions

$$\mathsf{RC}(\mathcal{F}) \hookrightarrow \mathsf{RC}(\mathcal{F})^{\dagger} \hookrightarrow \mathsf{SC}(\mathcal{F}),$$

and an order retraction $SC(\mathcal{F}) \twoheadrightarrow RC^{\dagger}(\mathcal{F})$.

This yields the diagram

As before the sublattice U yields a tesselated Morse decomposition

$$\mathsf{M}(\mathsf{A}) \hookrightarrow \mathsf{T}(|\mathsf{U}|) \cong \mathsf{RC}^{\dagger}(\mathcal{F}).$$

An example: the Leslie model (Arai, Kalies, Kokubu, Mischaikow, Oka, Pilarczyk)

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models • Consider the mapping $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} (\theta_1 x_1 + \theta_2 x_2) e^{-\phi(x_1 + x_2)} \\ p x_1 \end{bmatrix},$$
(2)

where we choose parameters $\theta_1 = 20.0$, $\theta_2 = 20.0$, $\phi = 0.1$, and p = 0.7. The phase space region is taken to be $X = [0, 74] \times [0, 52]$, which is a forward invariant region.

- A (rigorous) outer approximation \mathcal{F} is computed for f on X, and the poset structure of the recurrent components $\mathsf{RC}(\mathcal{F})$ is shown on the next slide. The results of [2, 4] imply that there is a Morse decomposition $\pi \colon \mathsf{M} \hookrightarrow \mathsf{RC}(\mathcal{F})$ where each of the invariant sets in M lies in exactly one of the recurrent components.
- In this example, SC(\mathcal{F}) has 16,343,562 elements; the 6 recurrent components contain 433,654 boxes. We run the algorithm the order retraction, cf. [1], and verify that an order retraction SC(\mathcal{F}) \rightarrow RC(\mathcal{F}) exists so that M(A) \hookrightarrow RC(\mathcal{F}) \leftrightarrow T(|U|) is a tesselated Morse decomposition, whose Morse tiles are shown on the next slides (left). However, we do not know whether this is an isomorphic decomposition where M(A) \leftrightarrow RC(\mathcal{F}).

An example: the Leslie model

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Figure: Poset structure of the recurrent components of an outer approximation of the Leslie map Each labeled region is a recurrent component.

An example: the Leslie model

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

Figure: Morse tiles of tesselated Morse decompositions $M(A) \hookrightarrow RC(\mathcal{F}) \leftrightarrow T(|U|)$ (left), and $M(A_{II}) \leftrightarrow RC_{II}(\mathcal{F}) \leftrightarrow T(|U_{II}|)$ where $RC(\mathcal{F})$ is coarsened to $RC_{II}(\mathcal{F})$ by the retraction of R_3 onto R_2 (right).

The right picture is associated with an inclusion

$$\mathsf{RC}_{\mathrm{II}}(\mathcal{F}) \hookrightarrow \mathsf{RC}(\mathcal{F}) \hookrightarrow \mathsf{SC}(\mathcal{F}),$$

and the existence of an order retraction $SC(\mathcal{F}) \twoheadrightarrow RC_{II}(\mathcal{F})$.

Robert Vandervorst

In general

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Recall a combinatorial model:

By the generalized Birkhoff theorems we can rephrase:

for some binary relation $(\mathcal{X}, \mathcal{F})$.

In general

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models Example of combinatorial models (not commutative)

- polygonal models by Boczko, Kalies, Mischaikow;
- braid dynamics (Spendlove);
- lectures Konstantin, regulatory networks.
- In the construction of *F* recurrence is built-in based on the dynamical information of the system self-connections, etc.
- The example of outer approximations is special since a yield commutative combinatorial models. This is not the case in general.
- Binary relations yield weak outer approximations

 $\phi(\tau, |\xi|) \subset \operatorname{int} |\Gamma^+(\xi)|, \quad \tau > 0.$

How to proceed with a given combinatorial model?

Analysis

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

(i): Existence of an order retraction $\sigma: SC(\mathcal{F}) \twoheadrightarrow RC(\mathcal{F})$.

Equivalent to $O(\sigma): O(RC(\mathcal{F})) \rightarrow O(SC(\mathcal{F}))$, i.e. a lift $Att(\mathcal{F}) \rightarrow Invset^+(\mathcal{F})$. Denote the image of the latter by U. Then,

where $c = \omega \circ e \circ \ell$. Dual

Analysis

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III Finite com binatorial models (ii): Existence of an order retraction $\sigma \colon \mathsf{SC}(\mathcal{F}) \twoheadrightarrow \mathsf{RC}^{\dagger}(\mathcal{F})$, with $\mathsf{RC}(\mathcal{F}) \hookrightarrow \mathsf{RC}^{\dagger}(\mathcal{F}) \hookrightarrow \mathsf{SC}(\mathcal{F})$, or $\mathsf{RC}^{\dagger}(\mathcal{F}) \hookrightarrow \mathsf{RC}(\mathcal{F}) \hookrightarrow \mathsf{SC}(\mathcal{F})$.

 $O(\mathsf{RC}^{\dagger}(\mathcal{F})) = \mathsf{L} \rightarrowtail \mathsf{Invset}^{+}(\mathcal{F}).$ Denote the image of the latter by U. Then,

 $\widehat{\mathsf{SC}(\mathcal{F})} \stackrel{\delta}{\longleftrightarrow} \mathsf{T}(|\mathsf{U}|) \overset{\delta}{\longleftarrow} \mathsf{T}(\mathsf{N})$

Dual

Concluding remarks

Dynamics and Order Theory

Robert Vandervorst

Lecture I: Lattice structures and attractors

Lecture II: Representations and Morse decompositions

Lecture III: Finite combinatorial models

- Finite sublattices play an important role. The set of (finite) sublattices of a bounded distributive lattice forms a complete lattice. Meet and join are defined on sublattices.
 - The binary operations on sublattices can be dualized to binary operations on Morse decompositions and Morse representations: coarsening an refining.
 - The above lattice structures allow limits: chain-recurrence.
 - The above algebraic structures also play a role in the treatment of parameter dependence of systems.
 - Role of Stone and Priestley spaces for infinite lattices.

Thanks for your attention!