In this talk, we discuss how to control a parameter-dependent family of quantum systems. Our technique is based on adiabatic approximation theory and on the presence of curves of conical eigenvalue intersections of the controlled Hamiltonian. As particular cases, we recover chirped pulses for two-level quantum systems and counter-intuitive solutions for three-level stimulated Raman adiabatic passage (STIRAP). The proposed technique works for systems evolving both in finite-dimensional and infinite-dimensional Hilbert spaces. We show that the assumptions guaranteeing ensemble controllability are structurally stable with respect to perturbations of the parametrized family of systems. This is a joint work with Mario Sigalotti.