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Introduction

There exists a renewed interest in the description in terms of observables of gauge theories
and gravity.

Recently, Giddings and Donnelly proposed explicit constructions that extend the
observables of gauge theories in order to include diffeomorphism invariance in

gravitation with weak fields.
They noted that an important feature of the resulting formulation of gravity is that the

algebra of observables becomes non-local.

The most ambitious attempt to describe gravity intrinsically without coordinates
was proposed by Mandelstam in the 1960’s.

In this approach, points in space-time are not specified by coordinates but by
paths stemming from a reference point. The paths are constructed intrinsically,
without setting a coordinate system in the manifold.

All physical variables become path-dependent and are Dirac observables, they
are invariant under space-time diffeomorphismes.



This could be the basis to a new approach to loop based quantizations, leading to
a potentially very different Hilbert space than the ones considered up to now.

Mandelstam’s approach ran into technical difficulties. It was complicated in practice
to determine when two paths end up at the same point in this approach. Teitelboim
made some limited progress in 1993 for infinitesimally nearby paths.

Here we would like to point out that the use of the techniques of the group of loops,
that we originally developed for gauge theories allows to make much more progress
and in particular the formulation of a theory of gravity as the one Mandelstam
envisioned.

Here is how Mandelstam proposes to specify a path intrinsically, starting from a reference
point:

ey e e ey e e o - - we do by giving a prescription
for constrm tmga path from the refemnco pomt to the field point. As we construct
the path, we take the coordinate basis with us by parallel displacement, and
we use this basis to fix the direction of the next path element. To illustrate what
we mean, a specimen prescription may run as follows: Move a distance d, from
the reference point in the z-direction, to the point P, taking the coordinate basis
along by parallel displacement. Now move a further distance d, in the y-direction
(defining the y-direction with respect to the coordinate basis which has been
taken to P;). This takes us to a point P; . Move the coordinate system by parallel
displacement to P; as before. Finally, move a distance d; from P, in the z-direc-
tion—defined with respect to the coordinate basis at P, . Perform the required
measurement at the point just reached.



The path is given by a set of instructions similar to the ones given by the G.P.S. to a
driver: Advance 200 meters then turn right and advance 500 meters, and so on... All the
instructions are given with respect to the car that plays the role of local frame of
reference...but in more dimensions.

To study how a physical quantity would

behave along a path Mandelstam

discusses the example of two paths that
X coincide up to a point y and there

they differ by a small element of area

and continue up to a point x.

A vector a transported along the paths

1, and 11, followed by &y would change by
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But the addition of the area also changes the intrinsically specified path, as the
basis dragged along also gets rotated. Mandelstam computes the total change
in the vector as,
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This formula already exhibits the challenges of the approach. It is only valid for weak fields
and we do not have an analogous expression for arbitrary gravitational fields.

Gauge theories and the group of loops: a brief review

Many years ago we showed that gauge theories arise as representations of the

group of loops in certain Lie groups. The complete geometric

structure of gauge theories can be recovered from identities obeyed by the infinitesimal
generators of the group of loops. The description may be given completely

in terms of observable gauge invariants objects.

The possibility of extending this approach to the gravitational case and its intrinsic
coordinate independent description did not appear possible at that time
due, in particular, to the issue we mentioned with Mandelstam’s approach.



Here, we would like to extend the group of loops techniques valid for gauge theories to

the gravitational case. In the loop representation the objects constructed are gauge invariant
whereas in the present construction the objects will be both gauge invariant and space-time
diffeomorphism invariant. That is, the objects will be Dirac observables.

Brief reminder of the group of loops R.G., Trias PRD (1981, 1983)
R.G, Pullin, CUP book (1996)

J. Lewandowski, Class. Quan. Grav. 10, 879 (1993);

We consider piecewise continuous closed curves /, m with origin o and their holonomies H(l),
and we call loops a, 3, the equivalence classes of curves that yield the same holonomies

for any gauge group.

Loops are equivalence classes of closed curves that differ by retracings of a portion.
We will say that differ by a tree:

0 o o

FIG. 1: Curves p and ¢ differ by & tree. The compaosition of a curve and its inverse is a
Lroe.

They form a group under composition. The productis & © ﬁ and the inverse is the loop
with opposite orientation.



Infinitesimal generators:

The loop derivative

Given W(y) a continuous, complex-valued function of loop, we want to consider its variation
when the loop vy is changed by the addition of an infinitesimal loop &y base-pointed at a
point x connected by a path it to the base-point of y, 0 as shown in the figure.
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Notice that no matter what path m one chooses, the added path is infinitesimal
due to the invariance of loops under re-tracings —additions of trees— and therefore induces
an infinitesimal deformation of y.

Thus, the generators of loop deformations A _, (7)) are path dependent.
Mathematically this derivatives are part of a differentiable calculus on the so called path
bundle: an equivalence class of open paths with common origin o under re-tracings, on a
manifold M. M. Reiris et al. (1998) J.N. Tavares (1994)



The Mandelstam covariant derivative acts on path dependent objects like the loop
derivative. It introduces an extension at the end point of an open path

5 u U(nr odu) = (1 + euD,)¥(rl).

o

o

Together with the loop derivative they satisfy the Bianchi and Ricci identities

The Bianchi identities may be obtained by considering T
the following tree that covers the faces of a parallelepiped _é__/]f
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The connection derivative

One can introduce a differential operator with properties similar to those of the connection
or vector potential of a gauge theory, this allows for a better contact with the usual
formulation of gauge theories. We start by considering a continuous assignment or paths
to each point of a given region

ou

U(mZoduomd, o) =(1+eud,(z))¥(y),

X+Eu
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One can generate a finite loop operator from the connection
derivative.

U(y) = Pexp ( / dyué"(y))




The connection derivative may be computed by integration of the loop derivative as follows.

Oou
X

Consider a deformation of a path mt to i’ with displacement field
z'*(A) = z2(A) + fwg(N)

b,(n%) = / ' Bas(m(N)E (N (A dA.

The kinematics of Yang-Mills theories can be understood as representations
of the group of loops onto a Lie group G.

y = H(y) such that H(y, oy, =H(y))H(y,)

X
For each assignement of paths JU correspond a gauge fixing, and the connection and
loop derivatives determine the gauge connections and fields of the Yang Mills theory.

0,(X)H(y) =iA,(x)H(y) A, (x)H(y) =iF, (x)H(y)



THE GRAVITATONAL CASE: The intrinsic description
Let us recall the definition of intrinsic paths on a manifold with a given geometry.

We assume that all the paths start at some point o of M. If the manifold is asymptotically
flat we choose o at infinity. We will describe paths intrinsically in terms of a Lorentz reference

frame F in o. Paths are described as follows: starting from o we parallel transport an invariant
distance ds the reference frame F with “velocity” v*(0) to a new point d;x* =v“(0)ds.

Starting at this point we proceed to a new point moving further the reference frame with
intrinsic velocity v*(ds) and displacement d,x” =v“(ds)ds .

The intrinsic description of a path may be therefore described by

dx”(s)

x“(s) such that vi(s) =
ds

and x* =x"(s;) is the end point

The construction is such that retraced portions of the path are excluded of the final
description of the path mt given in the frame Fby x“(s)



The group of loops with intrinsic paths

We have already noticed that in the Mandelstam construction paths ending at the same
physical point cannot be easily recognized. They may be identified only indirectly by noticing
that all the physical fields defined at the end of two paths rt; and m, are related by Lorentz
and internal transformations. Furthermore this difficulty implies that closed loops in physical
space will appear as open in intrinsic notation. In order to go back to the origin we need to
keep track of the transformation suffered by the Lorentz frame

dw J
ou , A .
o H(my odyo Z\(éqw)wf,)"‘g = 0%g + du’dw’ R, 5(my),

g Keeping track of the transformations of the frame, the product of
Infinitesimal generators is well defined:

My 069 0 A (671) 71 0 A (1) T2 0 A (671) 692 © A (692) A (011) ™2

We can now apply the composition rule to construct the loop generating the
connection derivative on a manifold with a given geometry:



The parallel connection derivative
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The general connection.

The previously defined connection is a particular example of connections relating
two “parallel” neighboring paths. But more generally, one can define a connection
derivative for each tangent vector in the path manifold. If a path j‘[x is defined by

“() dx“(A) intheintrinsic frame parallel transported to the point x“(A),

u'(A) = 7y

the tangent at the element JT°  of the manifold of intrinsic paths may be described by
the vector field  ,,*(A) asshownin the figure. One can determine from
this information the intrinsic description of a path n’ infinitesimally closed to T

o _ dx"(4)
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where the tangent vector to the path JU is given by

w(A) =wP (A,)E5 (M) with E;(A,) =0,

Recalling how finite loops are generated by the connection derivative we get the
Holonomy of a closed finite intrinsic paths.

LW w,  Ey Wy H(f}r) = Pexp (z/zdy“/la (Fya Eoo!,wgy))
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J This is the intrinsic version of the non-Abelian
° o, Stokes’ theorem for parallel connection derivatives
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A finite loop based on general connections

w
! We consider a closed path that connects
N _
JT, 0 20Ty
Wy
v = (mew, ) (71 ewsTs ) . .. (ﬂrg"ewprpﬂ
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The path 7 = 7 o Z o 7" used in the construction of the holonomy associated to
closed finite path.
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The key point is that we now have a well defined relation among path-dependent fields at
a given point.
A field evaluated at two different path ending at the same point satisfy

A% (n") = H(y)*sH (7), TAP 4 (m), ' =y o Aly)w

Physical points are defined as equivalence classes of paths. The main difference
with the standard formulation fot gauge fields is that intrinsic paths arriving
to the same point depend on the geometry.

We can now introduce the Mandelstam covariant derivative, S u
(1 + EuﬂDIB)Aal(ﬂ.z) — AQI(WZHM)

It compares the field parallel transported from x+cu to x with the field at x and therefore
gives us the component of the space time covariant derivative with respect to the intrinsic
basis parallel transported along .



From this definition it is easy to prove identities for the intrinsic Riemann tensor

[Ds[D., Ds]]Aa(m) = DigRyg)" () Ac (m) =0

(Do, Dg|Dy)é(m) = R[037]6D5¢(77) = 0.
And write the intrinsic Einstein equations, say, coupled to a scalar field,

(naﬁDaDg —m?) ¢(m) = 0
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Recovering the usual formulation:

The intrinsic construction that we have presented up to now assigns a frame and tetrad

vectors to each point along the path. Let us introduce a normal system of coordinates at
a region U around a point P to which we have arrived following a geodesic

starting at the origin o. Then P is intrinsically defined by the geodesic x“(s) = su”, and

the point P corresponds to s=s,, . 0

A point Q is given by an intrinsic path JT, given by

Q

Py x%(s) = spu” + sv® and x“(Q) = spu” +syv"

The quantities 2 (Q) = SQVadeﬁne Riemann normal coordinates
around P. The intrinsic construction allows to assign to each Q the
coordinates of the local frame parallely transported from o

e (n,%)



Recovering the usual formulation:

Under changes of the path arriving to Q, the frames transform as,

g (') = Hy* () et () = Hs" (v) e (=(Q))

One can use them to construct the metric components in the normal system:

QUb (-L') = 7103 o (771{) e':., ('TH)

And by construction the Mandelstam covariant derivative annihilates them
b
D, =0
In terms of the Mandelstam derivative one can construct the usual covariant derivative

that also annihilates the tetrad and metric components, making the connection
metric compatible

V,e;(2) =€eiD,e,(m7) =0

and one can show it is also torsion free:

1
DDy @) = 5 Ay (1)p() =0



The Riemann tensor in normal coordinates is simply given by:
R4 (z) = RO (%) €8 (%) e (n%) €, (%) e (%)

Classically, the intrinsic and coordinate descriptions are equivalent, quantum
mechanically they will be inequivalent. The notion of point as an equivalence class
of intrinsic path only makes sence classically.

We would like to relate the paths described in coordinate systems with intrinsic paths
and identify the local frames at an arbitrary point of the path, in terms of coordinate
or intrinsic descriptions of the paths. Let y,(A) be a curve in an arbitrary coordinate
system, then the local frame parallel transported along y is

i
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The action for path dependent fields

Teitelboim proposed in 1993 C. Teitelboim, Nucl. Phys. B 396, 303 (1993)
that the action for usual fields could be written in terms of fields that depend
on intrinsic paths by gauge fixing them and using the Fadeev-Popov technique.

L (Ra.‘?‘:'p (77') ) @ (W) ) 'L") (ﬂ-)) S = ,] LDz
Dz = I'I/\.ad:c“(/\)(S(?r - "T;{)A}"}’(ﬂ-lf)

He did not offer proof. However, using the developed framework we were
able to show that one indeed recovers the usual action.



Sketch of the proof:

o (8
Pick a geodesic reference path for simplicity: % = u®A.
This choice allows to compare the intrinsic formularion with a Lagrangian formulation in
Riemann normal coordinates

We have that: , g s+ dw™
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By studying how it behaves under changes of reference reference paths, one can
show that the action is diffeomorphism invariant.

This opens the possibility of studying canonical formulations.

The Poisson bracket of path dependent Riemann tensor components takes the form

{ROabc(nl)’lekl ('77:2)} = ED[1b|D[3k|D2l| (5a|]]2 lc]1l]5 + 5Ic]1|j]25a|l]3 - 5a|c]15|j]2|l]3 )6('7.[1"77;2))

ymalll,

K
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The square brackets with a subindex allow to identify couple of indices which are
antisymetrized.

The quantization is still under construction, but some partial insights about the
guantum structure of space time can be derived.



Fuzzy points

In intrinsic gravity points are equivalence classes of paths that describe the same
classical fields in all possible Lorentz frames. In a quantum geometry the notion of

point becomes fuzzy.

Even though the quantization has not been completely accomplished we are going to
introduce an heuristic procedure for the study of the fuzziness of the quantum
space-time points.

We start by introducing geodesic Riemann normal coordinates in an open set
containing the point Q:

a ~a ; ~anb
Xy =Syl with n,u'u =1

The geodesic path i going from o to Q is
Intrinsically described by

(s) = su’ or  y'(A)=Au" with  A€[0,1]




Let us now consider that our quantum space time is given by a atate centered
arround flat space |{,> such that

<y IR o (1) Iy >=0

We are interested in the fluctuations of the coordinates assigned by different
Intrinsic paths. To do that we consider the operator

A

X4 =X(m)-X"(m,) = X (moZ) - X (7ty)

Let us chose mt and 2 such that for flat space
ne2 and m arrive to te same point

<Y, l)A(laz 1y, >=0

"¥NQ By using the non Abelian Stokes theorem one

can compute the standard deviations in terms
of expectation values of Riemann tensor operators

a Aaz <ra 2
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And using the commutation relations of the Riemann components and
assuming that the guantum theory admits a positive definite inner product one

gets: AXLAXS 2 Ly n| AT 02,7,
AX112AX122 =0

Summarizing, points or the causal structure of space time could become fuzzy,
however the second inquality suggests that microcausality would be preserved..



This uncertainty in the position of the end points for different intrinsic paths induces
a non-locality in the algebra of path dependent fields. For instance if ¢d(m) is a massless
scalar field the non-locality induced by quantum gravity leads to commutation relations

[p(7r 0 2),p(7y )] = A(x* (T 0 Z),x% (71,,))

where A is an extension of the odd propagator for the scalar field that vanish outside
the light cone and is nonvanishing inside. This commutation relations are the

manifestation of the size of the field excitations in the quantum background. They behave
as if they have acquired mass.

This kind of non-locality is also predicted by causal sets

L. Bombelli, J. Lee, D. Meyer, and R. D. Sorkin, Physical Review Letters 59, 521 (1987).
[2] R. D. Sorkin, ArXiv General Relativity and Quantum Cosmology e-prints (2007), gr-qc/0703099

and has been recently taken as an explanation of the origin of dark matter that is not
based on another new particle in nature, but that it is a remnant of quantum
gravitational effects on known fields.

Mehdi Saravani, Siavash Aslanbeigi Phys Rev D 92. 103504 (2015)



Summary

By using the group of loops techniques, the idea of
Mandelstam of formulating field theories and gravity in terms
of path dependent variables becomes possible.

The formulation is entirely in terms of Dirac observables.

Diffeomorphisms can be recovered, but they are not a
fundamental symmetry of the formulation.

We have an action suitable for canonical formulation in terms
of the path dependent variables.

The resulting quantum theory will be loop-based but will
likely have a very different kinematics and dynamics than
ordinary loop quantum gravity.

More details arXiv:1802.02661.



