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De�nition 1 ([2]). For 0 ≤ α < mn, the multilinear fractional Hardy-Littlewood maxi-
mal function is de�ned as follows

Mα(f1, . . . , fm)(x) = sup
r>0

m∏
i=1

1

|B(x, r)|1− α
mn

∫
B(x,r)

|fi(y)|dy.

For α = 0, the corresponding operator is the multilinear Hardy-Littlewood maximal
operatorM which was introduced by Lerner et al in [1].
In [3], Miguel de Guzmán introduced discrete methods as an alternate approach to prove
weak-type (1, 1) boundedness of maximal convolution operators. This approach involves
proving weak-type (1, 1) boundedness of the maximal operator by estimating its action
on �nite linear combination of Dirac deltas.
In this talk we discuss this method and extend the technique of Miguel de Guzmán to a
certain kind of multilinear maximal convolution operators. As an application, we obtain
end-point weighted boundedness of the multilinear fractional Hardy-Littlewood maximal
functionMα.
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