How to prove with zero knowledge

Zero-knowledge proof primer part II

Michał Zając
Clearmatics Ltd / University of Tartu

clearmotics $\widehat{\substack{!n}}$ UNIVERSITY of TARTU

Recall

Interactive proof is complete if an honest verifier V accepts a proof from an honest prover P

Interactive proof is sound if no dishonest prover P^{*} can make verifier V accept (with non negl. prob.)

Interactive proof is zero-knowledge if there exists a simulator S that for every $x \in \mathcal{L}$ can produce a transcript of proof between honest prover P and some verifier V^{*}

Non-interactive zero knowledge

$$
\begin{aligned}
& \text { Protocol is zero-knowledge if } \forall V^{*} \exists S^{V} \forall x \text { : } \\
& \qquad S^{V}(x) \approx\left(P, V^{*}\right)(x)
\end{aligned}
$$

Assume we have a NIZK protocol Π, can it be sound?

ACCEPT!

Non-interactive zero knowledge

$$
\begin{aligned}
& \text { Protocol is zero-knowledge if } \forall V^{*} \exists S^{V} \forall x \text { : } \\
& \qquad S^{V}(x)=\left(P, V^{*}\right)(x)
\end{aligned}
$$

Non-interactive negligible-sound ZK proof is impossible in the standard model

Thank you:

Non-interactive zero knowledge

Protocol is zero-knowledge if $\forall V^{*} \exists S^{V} \forall x$:

$$
S^{V}(x)=\left(P, V^{*}\right)(x)
$$

Non-interactive negligible-sound ZK proof is impossible in the standard model

Now: Consider non-standard models and get around the impossibility result

Random Oracle Model

Common Reference String Model

Random Oracle

$$
a \in\{0,1\}^{k}
$$

If a not queried before: $b \in_{r}\{0,1\}^{n}, H(a)=b$ Return b, record (a, b) If for a there is (a, b), Return b

H
H responses are random (impossible to predict) Infeasible to find x and x^{\prime} such that $H(x)=H\left(x^{\prime}\right)$

Random Oracle - instantiation

$$
H_{n, k}:\{0,1\}^{k} \rightarrow\{0,1\}^{n}
$$

From a set $\mathcal{F}_{n, k}$ of all functions from $\{0,1\}^{k}$ to $\{0,1\}^{n}$ pick a random function f

$$
H=f
$$

\mathcal{F} contains $\left(2^{n}\right)^{2^{k}}$ elements

Problems:

- How to pick efficiently from such a vast set?
- With a great probability f is infeasible to describe (we cannot describe it in polynomial time)

Random Oracle - instantiation

$$
H_{k, n}:\{0,1\}^{k} \rightarrow\{0,1\}^{n}
$$

From a set $\mathcal{F}_{k, n}$ of all functions from $\{0,1\}^{k}$ to $\{0,1\}^{n}$ pick a random function f

$$
H=f
$$

No collection of deterministic function can instantiate a random oracle *)

There are protocols secure in ROM, that become insecure if the oracle is instantiated by any function

Random Oracle - instantiation

$$
H_{k, n}:\{0,1\}^{k} \rightarrow\{0,1\}^{n}
$$

From a set $\mathcal{F}_{k, n}$ of all functions from $\{0,1\}^{k}$ to $\{0,1\}^{n}$ pick a random function f

$$
H=f
$$

But security proof with a random oracle is better than no proof at all

In practice random oracle is substituted by a hash function like sha256, sha-3, previously md-5

Fiat-Shamir transformation

$\alpha, \gamma(\alpha, H(\alpha))$
x, H

Instead of waiting for Pierre's input, Andrew computes challenges himself

Requirements: public-coin, constant-round argument

Public-coin vs private-coin

x, w

Public coin - V picks randomly his challenges and sends it

Private coin - V may not reveal his randomness

Public-coin vs private-coin

Public coin:

- Graph Hamiltonicity
- Graph isomorphism
- Schnorr identification scheme

Private coin:

- Graph Nonisomorphism
- Any proof where V sends a commitment

Constant number of rounds

There exists multi-round protocol that is secure when executed interactively, but not secure with FS applied

Take any constant-sound protocol and execute it sequentially

Fiat-Shamir transformation - soundness x, w

$\alpha, \gamma(\alpha, H(\alpha))$

$$
\beta=H(\alpha),
$$

Soundness (intuition):

1. Only very few $H\left(\alpha_{i}\right)$ suits Andrew
2. It is hard to Andrew to pick α_{i} such that he knows

$$
\begin{gathered}
\alpha_{i+1}\left(\alpha_{1}, H\left(\alpha_{1}\right) \ldots, \alpha_{i}, H\left(\alpha_{i}\right)\right) \\
\text { unless } x \in \mathcal{L}
\end{gathered}
$$

Fiat-Shamir security

Let (P, V) be an interactive, constant-round, public-coin, sound proving system. Then ($P_{F S}, V_{F S}$) is sound as well
(P, V)

$$
\left(P_{F S}, V_{F S}\right)
$$

$$
\alpha_{1}, \beta_{1}, \gamma\left(\alpha_{1}, H\left(\alpha_{1}\right)\right)
$$

Fiat-Shamir security proof

Useful fact:

Suppose X, Y are jointly distributed RVs s.t.

$$
\operatorname{Pr}[A(X, Y)=1] \geq \epsilon
$$

Then, for at least $\frac{\epsilon}{2}$ fraction of x-s it holds that

$$
\left(^{*}\right) \operatorname{Pr}_{Y \mid x}[A(x, Y)=1] \geq \frac{\epsilon}{2} .
$$

Proof

Markov's inequality.
Suppose not. Call x good if (*) holds, then

$$
\begin{aligned}
& \operatorname{Pr}[A(X, Y)]=\operatorname{Pr}[X \text { good }] \operatorname{Pr}[A(X, Y) \mid X \text { good }]+ \\
& +\operatorname{Pr}[X \text { bad }] \operatorname{Pr}[A(X, Y) \mid X \text { bad }]<\frac{\epsilon}{2} \cdot 1+1 \cdot \frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Fiat-Shamir security proof

Suppose $\exists x \notin \mathcal{L}$ and $P_{F S}^{*}$ that runs in time T and makes $V_{F S}$ accept x with probability $\geq \epsilon$

Construct P^{*} such that V accepts x with probability $\operatorname{poly}\left(\epsilon, \frac{1}{T}\right)$ Denote oracle queries by Q_{1}, \ldots, Q_{T}, wlog all Q_{i} distinct and $\alpha \in\left\{Q_{1}, \ldots, Q_{T}\right\}$
CLAIM: $\exists i^{*} \in[T]$ s.t. $P_{F S}^{*}$ wins with prob. $\frac{\epsilon}{T}$ conditioned on $Q_{i^{*}}=\alpha$
PROOF: by contradiction

Fiat-Shamir security proof

Forking lemma

For $\frac{\epsilon}{2 T}$ fraction of $\left(q_{1}, \ldots, q_{i^{*}}\right)$ it holds that $P_{F S}^{*}$ wins w.p. $\frac{\epsilon}{2 T}$ conditioned on $Q_{i^{*}}=\alpha$ and $Q_{i}=q_{i}$ for all $i \leq i^{*}$

PROOF: by the useful fact

Fiat-Shamir security proof

Breaking soundness

- Start running $P_{F S}^{*}$ up to its i^{*} query using random answers
- Let $\alpha=Q_{i^{*}}$ be the i^{*}-th query. Send α and get β
- Continue running $P_{F S}^{*}$ while answering Q_{i}^{*}
 with β and other queries uniformly at random
- Eventually $P_{F S}^{*}$ outputs $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$
- If $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$ send $\gamma=\gamma^{\prime}$

Fiat-Shamir security proof

Use Forking lemma

- For $\frac{\epsilon}{2 T}$ fraction of $\left(q_{1}, \ldots, q_{i^{*}}\right)$ it holds that $P_{F S}^{*}$ wins w.p. $\frac{\epsilon}{2 T}$ conditioned on $Q_{i^{*}}=$ α and $Q_{i}=q_{i}$ for $i \leq i^{*}$.
- Wp $\frac{\epsilon}{2 T}$ over choice of $\left(Q_{1}, \ldots, Q_{i^{*}}\right)$ it holds that wp $\frac{\epsilon}{2 T}$ over all remaining coin tosses $P_{F S}^{*}$ wins and $\alpha^{\prime}=\alpha$
- Hence, P^{*} wins with probability $\left(\frac{\epsilon}{2 T}\right)^{2}$, which is non-negligible

Fiat-Shamir transformation - zk

$$
\alpha, H(\alpha), \gamma(\alpha, H(\alpha))
$$

Zero knowledge
 S equipped with a superpower: S can change H

Simulation (intuition)

Pick α,
Compute β such that S knows how to answer $\gamma(\alpha, \beta)$
Set $H(\alpha)=\beta$
Send α, β, γ

$$
\operatorname{Pr}_{R, H}\left[S^{V^{*}}(x)=a\right]=\operatorname{Pr}_{R, H}\left[\left(P, V^{*}\right)(x)=a\right]
$$

(picking random oracle is part of the randomness)

Common Reference String Model

Zero-knowledge
$P(c r s, x, w) \approx S(c r s, t d, x)$

ACCEPT
if $V(c r s, x)=1$

Non-interactive proofs - problems

Till 2006 only theoretical result

Jens Groth, Rafail Ostrovsky, Amit Sahai Perfect Non-interactive Zero Knowledge for NP

Jens Groth, Amit Sahai
Efficient Non-interactive Proof Systems for Bilinear Groups

For long statements proofs are still very long But we want to proof long statements!

Hidden Bits Model

Picks S - a part of the CRS that will be disclosed to V

Feige-Lapidot-Shamir Paradigm

How to get NIZK?

Fiat-Lapidor-Shamir Paradigm

Get a NIZK in a Hidden Bits Model

Compile to the CRS model

Feige-Lapidot-Shamir Paradigm

How to get NIZK?

Fiat-Lapidor-Shamir Paradigm

Get a NIZK in a Hidden Bits Model

Compile to the CRS model

NIZK in Hidden Bits Model

NIZK in HBM for Hamiltonicity

Recall: Hamiltonicity is $\mathbb{N P}$-complete
Common input $G=(V, E)$
Witness: u - Hamiltonian path
CRS: random cycle graph $C=\left(V_{C}, E_{C}\right)$ on $|V|$

Find injective map

$$
f: V \rightarrow V_{C}
$$

that preserves cycle

Reveal $S \subset V_{C} \times V_{c}$ st $S=f\left(V^{2} \backslash E\right)$

Check that f injective $\forall e \notin E, f(e)$ was revealed

$H A M$ in HBM

$$
\begin{aligned}
& f(1)=6 \\
& f(2)=3 \\
& f(3)=4 \\
& f(4)=2 \\
& f(5)=5 \\
& f(6)=1
\end{aligned}
$$

Reveal $S \subset V_{C} \times V_{C}$ st $S=f\left(V^{2} \backslash E\right)$

Perfect soundness

Assume V accepts: f is injective, all non edges E revealed Consider E^{\prime} the inverse of the cycle edges of $C\left(e . g\left(f^{-1}(6), f^{-1}(1)\right)\right)$

1. $E^{\prime} \subset E$ (i.e. contains only actual edges)
2. E^{\prime} forms a Hamiltonian cycle (as an inverse of a Ham. cycle)

Thus G is Hamiltonian

$H A M$ in HBM

Zero knowledge
 Simulator picks random injective f to $[n]$
 Output $\left(f, S, C R S_{S}\right)$, where $S=f\left(V^{2} \backslash E\right)$ and $C R S_{S}=0 . .00$

Claim 1: for every fixed choice of f the simulated view is identical to the real Claim 2: mapping in the real execution is a random injective function

Feige-Lapidot-Shamir Paradigm

How to get NIZK?

Fiat-Lapidor-Shamir Paradigm

Get a NIZK in a Hidden Bits Model

Compile to the CRS model

From HBM to CRS

Idealised trapdoor permutation

$$
p_{k}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

- Given p_{k} it is easy to compute $p_{k}(x)$ for every x
- Given $y=p_{k}(x)$ infeasible to compute x
- There exists trapdoor τ that given y, τ easy to compute $x=p_{k}^{-1}(y)$

Hardcore bit

There exists function $h:\{0,1\}^{n} \rightarrow\{0,1\}$ st given $p_{k}(x)$ infeasible to compute bit $h(x)$

Perfect trapdoor permutations do not exist!
But we have public-key encryption schemes (RSA, ElGamal, etc.)
(k - public key, τ - secret key)

From HBM to CRS - bird's eye

CRS consists of $y_{1}, \ldots, y_{\ell} \in\{0,1\}^{n}$

P chooses k, τ
Hidden bits: $h\left(x_{i}\right)$
To reveal a bit P sends x_{i}

$$
y_{1} \ldots y_{\ell}
$$

$$
\alpha, \pi, S
$$

x, w
Choose k, τ
Define $x_{i}=p_{k}^{-1}\left(y_{i}\right)$
Let $b_{i}=h\left(x_{i}\right)$
Run HB protocol ($x, w,\left(b_{1} \ldots b_{\ell}\right)$)
Get proof π and set S

x
For $i \in S$ check $p_{\alpha}\left(x_{i}\right)=y_{i}$ Define $b_{i}=h\left(x_{i}\right)$ Check that HB verifier accepts ($x, \pi,\left\{b_{i}\right\}_{i \in S}$)

SNARKs

Proofs vs Arguments

We call protocol (P, V) proof if it holds for all possible P^{*}
(no one can cheat V)
We call protocol (P, V) argument if no $P P T P^{*}$ can cheat V
Compare:
NIZK $\Pi=(K, P, V, S)$
$\forall x \forall V^{*} \exists S$
$S^{V^{*}}(x)$

- additional element responsible for CRS generation
- S given explicitly- one symulator for all verifiers

$$
\pi \leftarrow P(c r s, x, w)
$$

If $|\pi|$ sublinear compared to $|x|$ and $|w|$ we call Π succinct

SNARK - Succinct Non-interactive ARgument of Knowledge

Verifiable computation

The client may send P once and evaluate it on many inputs

sends a program P along with its (public) input x
responds with the output $y=P\left(x, x^{\prime}\right)$ along with a proof π that the result is correct

- program P that needs a lot of computational power
- input x

- has required power
- additional input x^{\prime}

Program as a circuit

How to prove correctness

Server could just reveal values on all wires:
a_{1}, a_{2}, \ldots and let the client compute $P\left(x, x^{\prime}\right)$ on his own

Client does not need server

What if x^{\prime} is secret?

Prove the correctness without revealing intermediate values

How to prove correctness

Verifiable computation

Circuit representation

Statement

for given circuit C and public $a_{1}, a_{2} \ldots a_{5}$, I know $a_{6}, \ldots a_{10}$ such that C is computed correctly

Matrix dimension

$$
\begin{gathered}
n=\mid \text { rows }|=| M U L \text { gates } \mid \\
m=\mid \text { columns }|=| \text { inputs }|+| M U L \text { gates } \mid
\end{gathered}
$$

Circuit representation

Statement

for given circuit C and public $a_{1}, a_{2} \ldots a_{5}$, I know $a_{6}, \ldots a_{10}$ such that C is computed correctly

Matrix dimension

$$
\begin{gathered}
n=\mid \text { rows }|=| M U L \text { gates } \mid \\
m=\mid \text { columns }|=| \text { inputs }|+| M U L \text { gates } \mid
\end{gathered}
$$

Circuit representation

Statement

for given circuit C and public $a_{1}, a_{2} \ldots a_{5}$, I know $a_{6}, \ldots a_{10}$ such that C is computed correctly

Matrix dimension

$$
\begin{gathered}
n=\mid \text { rows }|=| M U L \text { gates } \mid \\
m=\mid \text { columns }|=| \text { inputs }|+| M U L \text { gates } \mid
\end{gathered}
$$

Matrix circuit representation

Let a_{i} be a circuit input or multiplication gate output, $u_{i, q}, v_{i, q}, w_{i, q}$ be i-th element of q-th equation, then

$$
\sum_{i=0 \ldots m} a_{i} u_{i, q} \cdot \sum_{i=0 . . m} a_{i} v_{i, q}=\sum_{i=0 . . m} a_{i} w_{i, q}
$$

Problem:

Operations on matrices are usually very inefficient $*$

Idea:

We know how to make polynomial operations efficiently!
If we only could represent the matrices as polynomials...

Polynomial representation

Let a_{i} be a circuit input or multiplication gate output, $u_{i, q}, v_{i, q}, w_{i, q}$ be i-th element of q-th equation, then

$$
\sum_{i=0 \ldots m} a_{i} u_{i, q} \cdot \sum_{i=0 . . m} a_{i} v_{i, q}=\sum_{i=0 . . m} a_{i} w_{i, q}
$$

Define polynomials u_{i}, v_{i}, w_{i} such that

- $u_{i}\left(r_{q}\right)=u_{i, q}$,
- $v_{i}\left(r_{q}\right)=v_{i, q}$,
- $w_{i}\left(r_{q}\right)=w_{i, q}$,

Then the constraint above can be expressed as

$$
\sum_{i=0 \ldots m} a_{i} u_{i}\left(r_{q}\right) \cdot \sum_{i=0 . . m} a_{i} v_{i}\left(r_{q}\right)=\sum_{i=0 . . m} a_{i} w_{i}\left(r_{q}\right)
$$

Polynomial representation

$$
\sum_{i=0 \ldots m} a_{i} u_{i}\left(r_{q}\right) \cdot \sum_{i=0 . . m} a_{i} v_{i}\left(r_{q}\right)=\sum_{i=0 . . m} a_{i} w_{i}\left(r_{q}\right)
$$

Define $t(X)=\prod_{i=1 . . n}\left(X-r_{q}\right)$

$$
\sum_{i=0 \ldots m} a_{i} u_{i}(X) \cdot \sum_{i=0 . . m} a_{i} v_{i}(X)=\sum_{i=0 . . m} a_{i} w_{i}(X) \bmod t(X)
$$

$$
R=\left\{(\phi, w) \left\lvert\, \begin{array}{l|l}
\phi=\left(a_{1}, \ldots, a_{\ell}\right) \in \mathbb{F}^{\ell} \\
w=\left(a_{\ell+1}, \ldots, a_{m}\right) \in \mathbb{F}^{m-\ell} \\
\sum_{i=0}^{m} a_{i} u_{i}(X) \cdot \sum_{i=0}^{m} a_{i} v_{i}(X) \equiv \sum_{i=0}^{m} a_{i} w_{i}(X) \bmod t(X)
\end{array}\right.\right\}
$$

Getting things together

1	2	3	4	5	6	7	8	9	10
		1							
							1		
						1			

$$
R=\left\{(\phi, w) \left\lvert\, \begin{array}{l|l}
\phi=\left(a_{1}, \ldots, a_{\ell}\right) \in \mathbb{F}^{\ell} \\
w=\left(a_{\ell+1}, \ldots, a_{m}\right) \in \mathbb{F}^{m-\ell} \\
\left.\sum_{i=0}^{m} d u_{i} X\right) \cdot \sum_{i=0}^{m} a_{i} v_{i}(X) \equiv \sum_{i=0}^{m} a_{i} w_{i}(X) \bmod t(X)
\end{array}\right.\right\}
$$

One more step

Lagrange interpolation

- n points defines $(n-1)$-degree polynomial $p(X)$
- $\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right)$
- Lagrange basis:

$$
\begin{gathered}
\ell_{i}(X)=\prod_{\substack{0 \leq k \leq n, k \neq i}} \frac{X-x_{k}}{x_{i}-x_{k}} \\
\text { - } p(X)=\sum y_{i} \ell_{i}(X)
\end{gathered}
$$

$$
u_{1}(X)=1 \cdot \ell_{1}(X)+1 \cdot \ell_{2}(X)+0 \cdot \ell_{3}(X)
$$

One more trick:
Instead of using polynomials, evaluate them at random point and use Schwartz-Zippel

SNARK for QAP

$$
\operatorname{crsp}^{\leftarrow} \leftarrow\binom{\left[\alpha, \beta, \delta,\left(\frac{u_{j}(\chi) \beta+v_{j}(\chi) \alpha+w_{j}(\chi)}{\delta}\right)_{j=\ell+1}^{m}\right]_{1}}{\left[\left(\chi^{i} \ell(\chi) / \delta\right)_{i=0}^{n-2},\left(u_{j}(\chi), v_{j}(\chi)\right)_{j=0}^{m}\right]_{1},\left[\beta, \delta,\left(v_{j}(\chi)\right)_{j=0}^{m}\right]_{2}}
$$

$\mathrm{P}\left(\mathbf{R}, \mathrm{z}_{\mathrm{R}}, \operatorname{crsp}_{\mathrm{p}}, \mathrm{x}=\left(A_{1}, \ldots, A_{\ell}\right), \mathrm{w}=\left(A_{\ell+1}, \ldots, A_{m}\right)\right):$

1. Let $a^{\dagger}\left(X_{\chi}\right) \leftarrow \sum_{j=0}^{m} A_{j} u_{j}\left(X_{\chi}\right), b^{\dagger}\left(X_{\chi}\right) \leftarrow \sum_{j=0}^{m} A_{j} v_{j}\left(X_{\chi}\right), c^{\dagger}\left(X_{\chi}\right) \leftarrow \sum_{j=0}^{m} A_{j} w_{j}\left(X_{\chi}\right)$,
2. Set $h\left(X_{\chi}\right)=\sum_{i=0}^{n-2} h_{i} X_{\chi}^{i} \leftarrow\left(a^{\dagger}\left(X_{\chi}\right) b^{\dagger}\left(X_{\chi}\right)-c^{\dagger}\left(X_{\chi}\right)\right) / \ell\left(X_{\chi}\right)$,
3. Set $[h(\chi) \ell(\chi) / \delta]_{1} \leftarrow \sum_{i=0}^{n-2} h_{i}\left[\chi^{i} \ell(\chi) / \delta\right]_{1}$,
4. Set $r_{a} \leftarrow r \mathbb{Z}_{p}$; Set $\mathfrak{a} \leftarrow \sum_{j=0}^{m} A_{j}\left[u_{j}(\chi)\right]_{1}+[\alpha]_{1}+r_{a}[\delta]_{1}$,
5. Set $r_{b} \leftarrow r \mathbb{Z}_{p}$; Set $\mathfrak{b} \leftarrow \sum_{j=0}^{m} A_{j}\left[v_{j}(\chi)\right]_{2}+[\beta]_{2}+r_{b}[\delta]_{2}$,
6. Set $\mathfrak{c} \leftarrow r_{b} \mathfrak{a}+r_{a}\left(\sum_{j=0}^{m} A_{j}\left[v_{j}(\chi)\right]_{1}+[\beta]_{1}\right)+\sum_{j=\ell+1}^{m} A_{j}\left[\left(u_{j}(\chi) \beta+v_{j}(\chi) \alpha+w_{j}(\chi)\right) / \delta\right]_{1}+$ $[h(\chi) \ell(\chi) / \delta]_{1}$,
7. Return $\pi \leftarrow(\mathfrak{a}, \mathfrak{b}, \mathfrak{c})$.
$\mathrm{V}\left(\mathbf{R}, \mathrm{z}_{\mathbf{R}}, \mathrm{crs}_{\mathrm{V}}, \mathrm{x}=\left(A_{1}, \ldots, A_{\ell}\right), \pi=(\mathfrak{a}, \mathfrak{b}, \mathfrak{c})\right)$: assuming $A_{0}=1$, check that

$$
\mathfrak{a} \bullet \mathfrak{b}=\mathfrak{c} \bullet[\delta]_{2}+\left(\sum_{j=0}^{\ell} A_{j}\left[\frac{u_{j}(\chi) \beta+v_{j}(\chi) \alpha+w_{j}(\chi)}{\gamma}\right]_{1}\right) \bullet[\gamma]_{2}+[\alpha \beta]_{T} .
$$

Common Reference String - important questions

How to instantiate the CRS generator?
What if the generator colludes with the prover?
What if the generator colludes with the verifier?
What security guarantees can we get then?
Is it better to use Random Oracle?

Philosophical question

Is non-interactive zero-knowledge zero-knowledge?

When P gives proof π to V, V learns not only that $x \in \mathcal{L}$, but also a convincing proof for that

Key idea: Proof π holds in respect to

- Particular CRS
- Particular Random Oracle

Thank you:

Zero-knowledge in modern life

Part III

Blockchain

- Alice pays Bob 2€
- Charlie pays

Alice 3€

- Alice pays Debbie 1€
- Debbie pays Bob 3€
- Frank pays Bob 2€
- Debbie pays Alice 3€
- Robert pays Alice 4€
- Charlie pays Debbie 1,5€
- Alice pays Bob 3€
- Bob pays Charlie 3€
- Alice pays Bob 2€

Blockchain

Alice pays Bob 2€
time t

Charlie pays Alice $4 €$

Only Alice can post such transaction

Everybody checks that Alice has sufficient funds to perform the transaction

$$
\text { time } t^{\prime}<t
$$

Everybody knows that Charlie paid Alice, and
Alice paid Bob
Everybody knows the value of transactions

Privacy preserving blockchains

Idea: Show in ZK that the transaction is correct

- Alice has sufficient funds
- Bob can spend the funds transferred by Alice

Problem: There is billions transactions on blockchain. How to show possession of funds efficiently?

Solution: Use SNARKs!

Subversive CRS generation

$x, w \quad V$ colludes with Z and generate the CRS but P can check the CRS! How to assure S gets the trapdoor?

How to provide S with trapdoor?

Diffie-Hellman knowledge assumption
$h, g^{a}, h^{a} \leftarrow \mathcal{A}(g ; r)$ then there exists extractor E for \mathcal{A} that $E(g ; r)$ outputs a

Idea: Use knowledge assumption on subverter Z. Intuitively: $c r s=f(t d)$ and since Z produce $c r s$ it knows $t d$

Provide S with the extracted $t d$
Since now S can simulate \Rightarrow zero-knowledge holds

Falsifiability in cryptography

Knowledge assumptions are not falsifiable \otimes°

Falsifiability defined as a GAME between adversary A and challenger C C setups the game and answers on A 's queries In the end C returns 0 (A loses) or 1 (A wins)

Assumption (C, c) is falsifiable if for all PPT A

$$
\operatorname{Pr}[(A, C)=1] \leq c+n e g l
$$

A

Fun fact: SNARKs cannot be sound without non-falsifiable assumptions

