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Recall

Interactive proof is complete if an honest verifier !
accepts a proof from an honest prover "

Interactive proof is sound if no dishonest prover "∗
can make verifier ! accept (with non negl. prob.)

Interactive proof is zero-knowledge if there exists a 
simulator $ that for every % ∈ ℒ can produce a 
transcript of proof between honest prover " and 

some verifier !∗



Non-interactive zero knowledge

Protocol is zero-knowledge if ∀"∗ ∃%&∀':
%& ' ≈ (+, "∗)(')

Assume we have a NIZK protocol Π, can it be sound?

VP
S

' ∉ ℒ '

'

ACCEPT!

11
1-round protocol ⟹
Nothing to rewind for %



Non-interactive zero knowledge

Protocol is zero-knowledge if ∀"∗ ∃%&∀':
%& ' = (+, "∗)(')

Non-interactive negligible-sound ZK proof is
impossible in the standard model



Thank you!



Non-interactive zero knowledge

Protocol is zero-knowledge if ∀"∗ ∃%&∀':
%& ' = (+, "∗)(')

Non-interactive negligible-sound ZK proof is
impossible in the standard model

Now: Consider non-standard models and get
around the impossibility result

Random Oracle Model Common Reference String 
Model
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Random Oracle

! ∈ 0,1 &

If ! not queried before: 
' ∈( 0,1 ),*(!) = '
Return ', record (!, ')
If for ! there is (!, '), 

Return '

., /

* responses are random (impossible to predict)
Infeasible to find 0 and 01 such that * 0 = *(0′)

*



Random Oracle - instantiation

!",$: 0,1 $ → 0,1 "
From a set ℱ",$ of all functions from 

0,1 $ to 0,1 " pick a random 
function *
! = *

Problems: 
• How to pick efficiently from such a vast set?
• With a great probability * is infeasible to describe (we cannot 

describe it in polynomial time)

ℱ contains 2" -. elements



Random Oracle - instantiation

!",$: 0,1 " → 0,1 $
From a set ℱ",$ of all functions from 

0,1 " to 0,1 $ pick a random 
function *
! = *

No collection of deterministic function can instantiate a 
random oracle L

There are protocols secure in ROM, that become insecure if 
the oracle is instantiated by any function



Random Oracle - instantiation

!",$: 0,1 " → 0,1 $
From a set ℱ",$ of all functions from 

0,1 " to 0,1 $ pick a random 
function *
! = *

But security proof with a random oracle is better than no 
proof at all

In practice random oracle is substituted by a hash function 
like sha256, sha-3, previously md-5



Fiat-Shamir transformation
!
"

!, $(!, & ! )

$

Instead of waiting for Pierre’s input, 
Andrew computes challenges himself

(,),& (,&

Requirements: public-coin, constant-round argument

" = &(+) " = &(+)



Public-coin vs private-coin

!
"
#

$,& $

Public coin - ' picks randomly his challenges and 
sends it

Private coin - ' may not reveal his randomness



Public-coin vs private-coin

Public coin:
• Graph Hamiltonicity
• Graph isomorphism
• Schnorr identification 

scheme
…

Private coin:
• Graph Non-

isomorphism
• Any proof where !

sends a commitment
…



Constant number of rounds

There exists multi-round protocol that is secure 
when executed interactively, but not secure with FS 

applied

Take any constant-sound protocol and execute it sequentially

!"
#" !", #", %(!", ' !" )
%"

!)
#)
%)

!), #), %(!), ' !) )

Note: Probability of finding good 
# is constant… …

(*, +) (*,-, +,-)



Fiat-Shamir transformation - soundness!,# !

Soundness (intuition): 
1. Only very few $ %& suits Andrew
2. It is hard to Andrew to pick %& such 

that he knows 
%&'((%(, $(%()… , %&, $(%&))

unless ! ∈ ℒ

%, .(%, $ % )

/ = $ % ,



Fiat-Shamir security

Let (", $) be an interactive, constant-round, 
public-coin, sound proving system. Then 

("&', $&') is sound as well

()
*) (), *), +((), , () )
+)

(", $) ("&', $&')



Fiat-Shamir security proof

Useful fact:
Suppose !, # are jointly distributed RVs s.t.

Pr[ ' !, # = 1] ≥ ,
Then, for at least -. fraction of /-s it holds that

(*)Pr0|2[' /, # = 1] ≥ -
. .

Proof
Markov’s inequality. 
Suppose not. Call / good if (*) holds, then

Pr ' !, # = Pr ! 3445 Pr ' !, # ! 3445] +
+ Pr ! 785 Pr ' !, # ! 785] < ,

2 ⋅ 1 + 1 ⋅
,
2 = ,



Fiat-Shamir security proof

Suppose ∃" ∉ ℒ and %&'∗ that runs in time ) and 
makes *&' accept " with probability ≥ ,

Construct %∗ such that * accepts " with probability poly(,, 34)
Denote oracle queries by 63,… , 64, wlog all 68 distinct and 
9 ∈ {63,… , 64}
CLAIM: ∃=∗ ∈ [)] s.t. %&'∗ wins with prob. @4 conditioned on 
68∗ = 9
PROOF: by contradiction



Fiat-Shamir security proof

Forking lemma
For !"# fraction of (%&, … , %)∗) it holds that ,-.∗ wins w.p. !"#
conditioned on /)∗ = 1 and /) = %) for all 2 ≤ 2∗

PROOF: by the useful fact



Fiat-Shamir security proof

Breaking soundness
• Start running !"#∗ up to its %∗ query using 

random answers
• Let & = ()∗ be the %∗-th query. Send &

and get *
• Continue running !"#∗ while answering ()∗

with * and other queries uniformly at 
random

• Eventually !"#∗ outputs (&,, *,, .,)
• If & = &,, * = *, send . = .,

&
*
.

!∗ 0



Fiat-Shamir security proof

Use Forking lemma
• For !"# fraction of (%&, … , %)∗) it holds that 
,-.∗ wins w.p. !"# conditioned on /)∗ =
1 and /) = %) for 2 ≤ 2∗.

• Wp !
"# over choice of (/&,… , /)∗) it holds 

that wp !
"# over all remaining coin tosses 

,-.∗ wins and 14 = 1
• Hence, ,∗ wins with probability !

"#
"
, 

which is non-negligible 

1
5
6

,∗ 7



Fiat-Shamir transformation - zk

Zero knowledge
! equipped with a superpower: ! can change "

#," # , %(#, " # )

Simulation (intuition)
Pick α, 
Compute ) such that ! knows how to answer %(#, ))
Set " # = )
Send #, ), %

Pr-,. !/∗ 1 = 2 = Pr-,. (3, 4∗) 1 = 2
(picking random oracle is part of the randomness)
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Common Reference String Model

VP

S

!,# #

TTP
$%& $%&

'(

) ← + $%&, !, #

ACCEPT
,- . $%&, ! = 1

Zero-knowledge
+ $%&, !, # ≈ 2($%&, '(, !)



Non-interactive proofs – problems 

Till 2006 only theoretical result

Jens Groth, Rafail Ostrovsky, Amit Sahai
Perfect Non-interactive Zero Knowledge for NP

Jens Groth, Amit Sahai
Efficient Non-interactive Proof Systems for Bilinear Groups

For long statements proofs are still very long
But we want to proof long statements!



Hidden Bits Model

VP

S

!,# #

TTP
$%&

'(

) ← + $%&, !, # , ,

Picks , – a part of 
the CRS that will be 
disclosed to -



Feige-Lapidot-Shamir Paradigm

How to get NIZK?

Fiat-Lapidor-Shamir Paradigm

Get a NIZK in a Hidden Bits Model

Compile to the CRS model



Feige-Lapidot-Shamir Paradigm

How to get NIZK?

Fiat-Lapidor-Shamir Paradigm

Get a NIZK in a Hidden Bits Model

Compile to the CRS model



NIZK in Hidden Bits Model

NIZK in HBM for Hamiltonicity
Recall: Hamiltonicity is ℕℙ-complete

Common input # = (&, ()
Witness: * – Hamiltonian path
CRS: random cycle graph
+ = &,, (, on |&|

VP
Find injective map 

.: & → &,
that preserves cycle

Reveal 1 ⊂ &,×&4 st
1 = .(&5 ∖ ()

Check that .
injective
∀8 ∉ (, .(8) was 
revealed

., 1

+



!"# in HBM

1 2

3

4

5

6

$ 1 = 6
$ 2 = 3
$ 3 = 4
$ 4 = 2
$ 5 = 5
$ 6 = 1

6 5

4

32

1

Reveal , ⊂ ./×./ st
, = $(.2 ∖ 4)

Perfect soundness
Assume . accepts: $ is injective, all non edges 4 revealed
Consider 4′ the inverse of the cycle edges of 7 (e.g $89 6 , $89 1 )
1. 4< ⊂ 4 (i.e. contains only actual edges)
2. 4′ forms a Hamiltonian cycle (as an inverse of a Ham. cycle)
Thus = is Hamiltonian



!"# in HBM

Zero knowledge
Simulator picks random injective $ to [&]
Output ($, *, +,*-), where * = $(01 ∖ 3) and +,*- = 0. . 00

Claim 1: for every fixed choice of $ the simulated view is identical to the real
Claim 2: mapping in the real execution is a random injective function



Feige-Lapidot-Shamir Paradigm

How to get NIZK?

Fiat-Lapidor-Shamir Paradigm

Get a NIZK in a Hidden Bits Model

Compile to the CRS model



From HBM to CRS

Idealised trapdoor permutation
!": 0,1 ' → 0,1 '

• Given !" it is easy to compute !"(*) for every *
• Given , = !"(*) infeasible to compute *

• There exists trapdoor . that given ,, . easy to compute * = !"/0(,)

Hardcore bit
There exists function ℎ: 0,1 ' → {0,1} st

given !"(*) infeasible to compute bit ℎ(*)

Perfect trapdoor permutations do not exist!
But we have public-key encryption schemes (RSA, ElGamal, etc.)

(4 – public key, . – secret key)



From HBM to CRS – bird’s eye
!"# consists of $%, … , $ℓ ∈ 0,1 ,

- chooses ., /
Hidden bits: ℎ(23)

To reveal a bit - sends 23

VP 5, 6, #

$% …$ℓ

2,7
Choose ., /
Define 23 = 9:;%($3)
Let <3 = ℎ(23)
Run HB protocol (2, 7, (<% …<ℓ))
Get proof 6 and set #

2
For = ∈ # check 9> 23 = $3
Define <3 = ℎ(23)
Check that HB verifier 
accepts (2, 6, <3 3∈? )
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SNARKs

NIZK Π = ($, &, ', ()
• additional element responsible for CRS generation
• ( given explicitly– one symulator for all verifiers

Proofs vs Arguments
We call protocol (&, ') proof if it holds for all possible &∗

(no one can cheat ')
We call protocol (&, ') argument if no &&+ &∗ can cheat '

, ← &(./0, 1, 2)
If |,| sublinear compared to 1 and 

|2| we call Π succinct

Compare:
∀1 ∀'∗ ∃(
(6∗ 1
= (&, '∗)(1)

SNARK – Succinct Non-interactive ARgument of Knowledge



Verifiable computation

sends a program P along 
with its (public) input x

responds with the output 
y = P(x, x’) along with a proof 
! that the result is correct

- program P that needs a lot of 
computational power
- input x

- has required power
- additional input x’

The client may send P once and 
evaluate it on many inputs



Program as a circuit

provides 
circuit P and 
input x

computes 
P(x, x’)

input x’
39

!" !# !$ !% !& !' !(

×+ + +
× +

+
×

!*
!+

!",



How to prove correctness

Client does not need server

Server could just reveal values on 
all wires:

a" , a$, … and let the client compute 
P(x, x’) on his own

What if x’ is secret?

Prove the correctness
without revealing intermediate

values

&" &$ &' &( &) &* &+

×+ + +
× +

+
×

&-
&.

&"/



How to prove correctness

Client does not need server

Server could just reveal values on 
all wires:

a" , a$, … and let the client compute 
P(x, x’) on his own

What if x’ is secret?

Prove the correctness
without revealing intermediate

values

&" &$ &' &( &) &* &+

×+ + +
× +

+
×

&-
&.

&"/

correctness = some relation 
on wires values hold 

natural reduction from circuits
to Quadratic Arithmetic 

Programs

keeping internals secret - use  
zero knowledge proof



Verifiable computation

!" !# !$ !% !& !' !(

×+ + +
× +

+
×

!*

!+

!",

Statement
for given circuit - and public 
!", !# …!&, I know !',…!", such 
that - is computed correctly

How to represent circuit - to 
• show validity of computation

• verify the computation 



Circuit representation

!" !# !$ !% !& !' !(

×+ + +
× +

+
×

!*
!+

!",

Statement
for given circuit - and public !", !# …!&, I know 
!',…!", such that - is computed correctly

1 2 3 4 5 6 7 8 9 10
1

1 1
1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
1

1
1

1 2 3 4 5 6 7 8 9 10
1

2
5

0

1

2
Matrix dimension

3 = 5678 = 9:; <!=>8
? = @6AB?38 = C3DB=8 + |9:; <!=>8|



Circuit representation

!" !# !$ !% !& !' !(

×+ + +
× +

+
×

!*
!+

!",

Statement
for given circuit - and public !", !# …!&, I know 
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1 1
1 1 1 1 1
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Circuit representation

!" !# !$ !% !& !' !(

×+ + +
× +

+
×

!*
!+

!",

Statement
for given circuit - and public !", !# …!&, I know 
!',…!", such that - is computed correctly

1 2 3 4 5 6 7 8 9 10
1

1 1
1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
1

1
1

1 2 3 4 5 6 7 8 9 10
1

2
5

0

1

2
Matrix dimension

3 = 5678 = 9:; <!=>8
? = @6AB?38 = C3DB=8 + |9:; <!=>8|



Matrix circuit representation

1 2 3 4 5 6 7 8 9 10

1

1 1

1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

1

1

1

1 2 3 4 5 6 7 8 9 10

1

2

5

!

"

#

Let $% be a circuit input or multiplication 
gate output, &%,(, )%,(, *%,( be +-th element 
of ,-th equation, then

-
%./…1

$%&%,( ⋅ -
%./..1

$%)%,( = -
%./..1

$%*%,(

Problem: 
Operations on matrices are usually very
inefficient L

Idea: 
We know how to make polynomial
operations efficiently!
If we only could represent the matrices
as polynomials…



Polynomial representation
Let !" be a circuit input or multiplication gate output, #",%, &",%, '",% be (-th
element of )-th equation, then

*
"+,….

!"#",% ⋅ *
"+,...

!"&",% = *
"+,...

!"'",%

Define polynomials #", &", '" such that
• #" 2% = #",%,
• &" 2% = &",%,
• '" 2% = '",%,

Then the constraint above can be expressed as 

*
"+,….

!"#"(2%) ⋅ *
"+,...

!"&"(2%) = *
"+,...

!"'"(2%)



Polynomial representation

!
"#$…&

'"("(*+) ⋅ !
"#$..&

'"/"(*+) = !
"#$..&

'"1"(*+)

Define 2 3 = ∏"#5..6(3 − *+)

!
"#$…&

'"(" 3 ⋅ !
"#$..&

'"/" 3 = !
"#$..&

'"1" 3 89: 2(3)



Getting things together
1 2 3 4 5 6 7 8 9 10

1

1 1

1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

1

1

1

1 2 3 4 5 6 7 8 9 10

1

2

5

!" !# !$ !% !& !' !(

×+ + +
× +

+
×

!*
!+

!",



One more step

1 2 3 4 5 6 7 8 9 10

1

1 1

1 1 1 1 1

Lagrange interpolation
• ! points defines ! − 1 -degree 

polynomial $(&)
• (), +) … ((-, +-)
• Lagrange basis:

ℓ/ & = 1
2343-,45/

& − (4
(/ − (4

• $ & = ∑+/ ℓ/(&)

7) & = 1 ⋅ ℓ) & + 1 ⋅ ℓ: & + 0 ⋅ ℓ<(&)

One more trick:
Instead of using polynomials, evaluate them at random point and use Schwartz-Zippel



SNARK for QAP



Common Reference String – important 
questions

How to instantiate the CRS generator?
What if the generator colludes with the prover?
What if the generator colludes with the verifier?
What security guarantees can we get then?
Is it better to use Random Oracle?



Philosophical question

Is non-interactive 
zero-knowledge 
zero-knowledge?

When ! gives proof " to #, # learns not only
that $ ∈ ℒ, but also a convincing proof for that

Key idea: Proof " holds in respect to 
• Particular CRS

• Particular Random Oracle 



Thank you!



Zero-knowledge in 
modern life

Part III



Blockchain

• Alice pays Bob 
2€

• Charlie pays 
Alice 3€

• Alice pays 
Debbie 1€

• Debbie pays
Bob 3€

• Frank pays Bob 
2€

• Debbie pays
Alice 3€

• Robert pays
Alice 4€

• Charlie pays 
Debbie 1,5€

• Alice pays Bob 
3€

• Bob pays
Charlie 3€

• Alice pays Bob 
2€

time



Blockchain

Alice pays Bob 2€ Only Alice can post such transaction

Charlie pays Alice 4€ Everybody checks that Alice has sufficient 
funds to perform the transaction

time !" < !

time !

Everybody knows that Charlie paid Alice, and 
Alice paid Bob

Everybody knows the value of transactions



Privacy preserving blockchains

Idea: Show in ZK that the transaction is correct
• Alice has sufficient funds
• Bob can spend the funds transferred by Alice

Problem: There is billions transactions on 
blockchain. How to show possession of funds 
efficiently?

Solution: Use SNARKs!



Subversive CRS 
generation
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VP

S

!,# #

Z
$%& $%&

'(

Soundness is impossible
) colludes with * and generate the CRS

) knows trapdoor '(
Thus ) can simulate proof for a fake 

statement



VP

S

!,# #

Z
$%& $%&

'(

Zero-knowledge is possible
) colludes with * and generate the CRS

but + can check the CRS! 
How to assure , gets the trapdoor?



How to provide ! with trapdoor?

Diffie-Hellman knowledge assumption
ℎ, $%, ℎ% ← '($; *) then there exists extractor , for 

' that ,($; *) outputs -

Idea: Use knowledge assumption on subverter .. 
Intuitively: /*0 = 2(34) and since . produce /*0 it 

knows 34

Provide ! with the extracted 34
Since now ! can simulate ⟹ zero-knowledge holds



Falsifiability in cryptography

Knowledge assumptions are not falsifiable L

CA
Assumption !, # is falsifiable if for all PPT $

Pr $, ! = 1 ≤ # + +,-.

Falsifiability defined as a GAME between adversary $ and challenger !
! setups the game and answers on $’s queries
In the end ! returns 0 ($ loses) or 1 ($ wins)

Fun fact: SNARKs cannot be sound without non-falsifiable 
assumptions


