
How to prove with
zero knowledge

Zero-knowledge proof primer part II

Michał Zając
Clearmatics Ltd / University of Tartu

Recall

Interactive proof is complete if an honest verifier !
accepts a proof from an honest prover "

Interactive proof is sound if no dishonest prover "∗
can make verifier ! accept (with non negl. prob.)

Interactive proof is zero-knowledge if there exists a
simulator $ that for every % ∈ ℒ can produce a
transcript of proof between honest prover " and

some verifier !∗

Non-interactive zero knowledge

Protocol is zero-knowledge if ∀"∗ ∃%&∀':
%& ' ≈ (+, "∗)(')

Assume we have a NIZK protocol Π, can it be sound?

VP
S

' ∉ ℒ '

'

ACCEPT!

11
1-round protocol ⟹
Nothing to rewind for %

Non-interactive zero knowledge

Protocol is zero-knowledge if ∀"∗ ∃%&∀':
%& ' = (+, "∗)(')

Non-interactive negligible-sound ZK proof is
impossible in the standard model

Thank you!

Non-interactive zero knowledge

Protocol is zero-knowledge if ∀"∗ ∃%&∀':
%& ' = (+, "∗)(')

Non-interactive negligible-sound ZK proof is
impossible in the standard model

Now: Consider non-standard models and get
around the impossibility result

Random Oracle Model Common Reference String
Model

Random
Oracle
Model

Interactive
proofs

Zero-
knowledge

proofs

Interactive
ZKP

Non-
interactive

ZKP

Random
Oracle

Common
Reference

String
SNARKs

(the rest)

Random Oracle

! ∈ 0,1 &

If ! not queried before:
' ∈(0,1),*(!) = '
Return ', record (!, ')
If for ! there is (!, '),

Return '

., /

* responses are random (impossible to predict)
Infeasible to find 0 and 01 such that * 0 = *(0′)

*

Random Oracle - instantiation

!",$: 0,1 $ → 0,1 "
From a set ℱ",$ of all functions from

0,1 $ to 0,1 " pick a random
function *
! = *

Problems:
• How to pick efficiently from such a vast set?
• With a great probability * is infeasible to describe (we cannot

describe it in polynomial time)

ℱ contains 2" -. elements

Random Oracle - instantiation

!",$: 0,1 " → 0,1 $
From a set ℱ",$ of all functions from

0,1 " to 0,1 $ pick a random
function *
! = *

No collection of deterministic function can instantiate a
random oracle L

There are protocols secure in ROM, that become insecure if
the oracle is instantiated by any function

Random Oracle - instantiation

!",$: 0,1 " → 0,1 $
From a set ℱ",$ of all functions from

0,1 " to 0,1 $ pick a random
function *
! = *

But security proof with a random oracle is better than no
proof at all

In practice random oracle is substituted by a hash function
like sha256, sha-3, previously md-5

Fiat-Shamir transformation
!
"

!, $(!, & !)

$

Instead of waiting for Pierre’s input,
Andrew computes challenges himself

(,),& (,&

Requirements: public-coin, constant-round argument

" = &(+) " = &(+)

Public-coin vs private-coin

!
"
#

$,& $

Public coin - ' picks randomly his challenges and
sends it

Private coin - ' may not reveal his randomness

Public-coin vs private-coin

Public coin:
• Graph Hamiltonicity
• Graph isomorphism
• Schnorr identification

scheme
…

Private coin:
• Graph Non-

isomorphism
• Any proof where !

sends a commitment
…

Constant number of rounds

There exists multi-round protocol that is secure
when executed interactively, but not secure with FS

applied

Take any constant-sound protocol and execute it sequentially

!"
#" !", #", %(!", ' !")
%"

!)
#)
%)

!), #), %(!), ' !))

Note: Probability of finding good
is constant… …

(*, +) (*,-, +,-)

Fiat-Shamir transformation - soundness!,# !

Soundness (intuition):
1. Only very few $ %& suits Andrew
2. It is hard to Andrew to pick %& such

that he knows
%&'((%(, $(%()… , %&, $(%&))

unless ! ∈ ℒ

%, .(%, $ %)

/ = $ % ,

Fiat-Shamir security

Let (", $) be an interactive, constant-round,
public-coin, sound proving system. Then

("&', $&') is sound as well

()
*) (), *), +((), , ())
+)

(", $) ("&', $&')

Fiat-Shamir security proof

Useful fact:
Suppose !, # are jointly distributed RVs s.t.

Pr[' !, # = 1] ≥ ,
Then, for at least -. fraction of /-s it holds that

(*)Pr0|2[' /, # = 1] ≥ -
. .

Proof
Markov’s inequality.
Suppose not. Call / good if (*) holds, then

Pr ' !, # = Pr ! 3445 Pr ' !, # ! 3445] +
+ Pr ! 785 Pr ' !, # ! 785] < ,

2 ⋅ 1 + 1 ⋅
,
2 = ,

Fiat-Shamir security proof

Suppose ∃" ∉ ℒ and %&'∗ that runs in time) and
makes *&' accept " with probability ≥ ,

Construct %∗ such that * accepts " with probability poly(,, 34)
Denote oracle queries by 63,… , 64, wlog all 68 distinct and
9 ∈ {63,… , 64}
CLAIM: ∃=∗ ∈ [)] s.t. %&'∗ wins with prob. @4 conditioned on
68∗ = 9
PROOF: by contradiction

Fiat-Shamir security proof

Forking lemma
For !"# fraction of (%&, … , %)∗) it holds that ,-.∗ wins w.p. !"#
conditioned on /)∗ = 1 and /) = %) for all 2 ≤ 2∗

PROOF: by the useful fact

Fiat-Shamir security proof

Breaking soundness
• Start running !"#∗ up to its %∗ query using

random answers
• Let & = ()∗ be the %∗-th query. Send &

and get *
• Continue running !"#∗ while answering ()∗

with * and other queries uniformly at
random

• Eventually !"#∗ outputs (&,, *,, .,)
• If & = &,, * = *, send . = .,

&
*
.

!∗ 0

Fiat-Shamir security proof

Use Forking lemma
• For !"# fraction of (%&, … , %)∗) it holds that
,-.∗ wins w.p. !"# conditioned on /)∗ =
1 and /) = %) for 2 ≤ 2∗.

• Wp !
"# over choice of (/&,… , /)∗) it holds

that wp !
"# over all remaining coin tosses

,-.∗ wins and 14 = 1
• Hence, ,∗ wins with probability !

"#
"
,

which is non-negligible

1
5
6

,∗ 7

Fiat-Shamir transformation - zk

Zero knowledge
! equipped with a superpower: ! can change "

#," # , %(#, " #)

Simulation (intuition)
Pick α,
Compute) such that ! knows how to answer %(#,))
Set " # =)
Send #,), %

Pr-,. !/∗ 1 = 2 = Pr-,. (3, 4∗) 1 = 2
(picking random oracle is part of the randomness)

Common
Reference
String
Model

Interactive
proofs

Zero-
knowledge

proofs

Interactive
ZKP

Non-
interactive

ZKP

Random
Oracle

Common
Reference

String
SNARKs

(the rest)

Common Reference String Model

VP

S

!,# #

TTP
$%& $%&

'(

) ← + $%&, !, #

ACCEPT
,- . $%&, ! = 1

Zero-knowledge
+ $%&, !, # ≈ 2($%&, '(, !)

Non-interactive proofs – problems

Till 2006 only theoretical result

Jens Groth, Rafail Ostrovsky, Amit Sahai
Perfect Non-interactive Zero Knowledge for NP

Jens Groth, Amit Sahai
Efficient Non-interactive Proof Systems for Bilinear Groups

For long statements proofs are still very long
But we want to proof long statements!

Hidden Bits Model

VP

S

!,# #

TTP
$%&

'(

) ← + $%&, !, # , ,

Picks , – a part of
the CRS that will be
disclosed to -

Feige-Lapidot-Shamir Paradigm

How to get NIZK?

Fiat-Lapidor-Shamir Paradigm

Get a NIZK in a Hidden Bits Model

Compile to the CRS model

Feige-Lapidot-Shamir Paradigm

How to get NIZK?

Fiat-Lapidor-Shamir Paradigm

Get a NIZK in a Hidden Bits Model

Compile to the CRS model

NIZK in Hidden Bits Model

NIZK in HBM for Hamiltonicity
Recall: Hamiltonicity is ℕℙ-complete

Common input # = (&, ()
Witness: * – Hamiltonian path
CRS: random cycle graph
+ = &,, (, on |&|

VP
Find injective map

.: & → &,
that preserves cycle

Reveal 1 ⊂ &,×&4 st
1 = .(&5 ∖ ()

Check that .
injective
∀8 ∉ (, .(8) was
revealed

., 1

+

!"# in HBM

1 2

3

4

5

6

$ 1 = 6
$ 2 = 3
$ 3 = 4
$ 4 = 2
$ 5 = 5
$ 6 = 1

6 5

4

32

1

Reveal , ⊂ ./×./ st
, = $(.2 ∖ 4)

Perfect soundness
Assume . accepts: $ is injective, all non edges 4 revealed
Consider 4′ the inverse of the cycle edges of 7 (e.g $89 6 , $89 1)
1. 4< ⊂ 4 (i.e. contains only actual edges)
2. 4′ forms a Hamiltonian cycle (as an inverse of a Ham. cycle)
Thus = is Hamiltonian

!"# in HBM

Zero knowledge
Simulator picks random injective $ to [&]
Output ($, *, +,*-), where * = $(01 ∖ 3) and +,*- = 0. . 00

Claim 1: for every fixed choice of $ the simulated view is identical to the real
Claim 2: mapping in the real execution is a random injective function

Feige-Lapidot-Shamir Paradigm

How to get NIZK?

Fiat-Lapidor-Shamir Paradigm

Get a NIZK in a Hidden Bits Model

Compile to the CRS model

From HBM to CRS

Idealised trapdoor permutation
!": 0,1 ' → 0,1 '

• Given !" it is easy to compute !"(*) for every *
• Given , = !"(*) infeasible to compute *

• There exists trapdoor . that given ,, . easy to compute * = !"/0(,)

Hardcore bit
There exists function ℎ: 0,1 ' → {0,1} st

given !"(*) infeasible to compute bit ℎ(*)

Perfect trapdoor permutations do not exist!
But we have public-key encryption schemes (RSA, ElGamal, etc.)

(4 – public key, . – secret key)

From HBM to CRS – bird’s eye
!"# consists of $%, … , $ℓ ∈ 0,1 ,

- chooses ., /
Hidden bits: ℎ(23)

To reveal a bit - sends 23

VP 5, 6, #

$% …$ℓ

2,7
Choose ., /
Define 23 = 9:;%($3)
Let <3 = ℎ(23)
Run HB protocol (2, 7, (<% …<ℓ))
Get proof 6 and set #

2
For = ∈ # check 9> 23 = $3
Define <3 = ℎ(23)
Check that HB verifier
accepts (2, 6, <3 3∈?)

SNARKs

Interactive
proofs

Zero-
knowledge

proofs

Interactive
ZKP

Non-
interactive

ZKP

Random
Oracle

Common
Reference

String
SNARKs

(the rest)

SNARKs

NIZK Π = ($, &, ', ()
• additional element responsible for CRS generation
• (given explicitly– one symulator for all verifiers

Proofs vs Arguments
We call protocol (&, ') proof if it holds for all possible &∗

(no one can cheat ')
We call protocol (&, ') argument if no &&+ &∗ can cheat '

, ← &(./0, 1, 2)
If |,| sublinear compared to 1 and

|2| we call Π succinct

Compare:
∀1 ∀'∗ ∃(
(6∗ 1
= (&, '∗)(1)

SNARK – Succinct Non-interactive ARgument of Knowledge

Verifiable computation

sends a program P along
with its (public) input x

responds with the output
y = P(x, x’) along with a proof
! that the result is correct

- program P that needs a lot of
computational power
- input x

- has required power
- additional input x’

The client may send P once and
evaluate it on many inputs

Program as a circuit

provides
circuit P and
input x

computes
P(x, x’)

input x’
39

!" !# !$!% !& !' !(

×+ + +
× +

+
×

!*
!+

!",

How to prove correctness

Client does not need server

Server could just reveal values on
all wires:

a" , a$, … and let the client compute
P(x, x’) on his own

What if x’ is secret?

Prove the correctness
without revealing intermediate

values

&" &$ &' &(&) &* &+

×+ + +
× +

+
×

&-
&.

&"/

How to prove correctness

Client does not need server

Server could just reveal values on
all wires:

a" , a$, … and let the client compute
P(x, x’) on his own

What if x’ is secret?

Prove the correctness
without revealing intermediate

values

&" &$ &' &(&) &* &+

×+ + +
× +

+
×

&-
&.

&"/

correctness = some relation
on wires values hold

natural reduction from circuits
to Quadratic Arithmetic

Programs

keeping internals secret - use
zero knowledge proof

Verifiable computation

!" !# !$!% !& !' !(

×+ + +
× +

+
×

!*

!+

!",

Statement
for given circuit - and public
!", !# …!&, I know !',…!", such
that - is computed correctly

How to represent circuit - to
• show validity of computation

• verify the computation

Circuit representation

!" !# !$!% !& !' !(

×+ + +
× +

+
×

!*
!+

!",

Statement
for given circuit - and public !", !# …!&, I know
!',…!", such that - is computed correctly

1 2 3 4 5 6 7 8 9 10
1

1 1
1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
1

1
1

1 2 3 4 5 6 7 8 9 10
1

2
5

0

1

2
Matrix dimension

3 = 5678 = 9:; <!=>8
? = @6AB?38 = C3DB=8 + |9:; <!=>8|

Circuit representation

!" !# !$!% !& !' !(

×+ + +
× +

+
×

!*
!+

!",

Statement
for given circuit - and public !", !# …!&, I know
!',…!", such that - is computed correctly

1 2 3 4 5 6 7 8 9 10
1

1 1
1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
1

1
1

1 2 3 4 5 6 7 8 9 10
1

2
5

0

1

2
Matrix dimension

3 = 5678 = 9:; <!=>8
? = @6AB?38 = C3DB=8 + |9:; <!=>8|

Circuit representation

!" !# !$!% !& !' !(

×+ + +
× +

+
×

!*
!+

!",

Statement
for given circuit - and public !", !# …!&, I know
!',…!", such that - is computed correctly

1 2 3 4 5 6 7 8 9 10
1

1 1
1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
1

1
1

1 2 3 4 5 6 7 8 9 10
1

2
5

0

1

2
Matrix dimension

3 = 5678 = 9:; <!=>8
? = @6AB?38 = C3DB=8 + |9:; <!=>8|

Matrix circuit representation

1 2 3 4 5 6 7 8 9 10

1

1 1

1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

1

1

1

1 2 3 4 5 6 7 8 9 10

1

2

5

!

"

#

Let $% be a circuit input or multiplication
gate output, &%,(,)%,(, *%,(be +-th element
of ,-th equation, then

-
%./…1

$%&%,(⋅ -
%./..1

$%)%,(= -
%./..1

$%*%,(

Problem:
Operations on matrices are usually very
inefficient L

Idea:
We know how to make polynomial
operations efficiently!
If we only could represent the matrices
as polynomials…

Polynomial representation
Let !" be a circuit input or multiplication gate output, #",%, &",%, '",% be (-th
element of)-th equation, then

*
"+,….

!"#",% ⋅ *
"+,...

!"&",% = *
"+,...

!"'",%

Define polynomials #", &", '" such that
• #" 2% = #",%,
• &" 2% = &",%,
• '" 2% = '",%,

Then the constraint above can be expressed as

*
"+,….

!"#"(2%) ⋅ *
"+,...

!"&"(2%) = *
"+,...

!"'"(2%)

Polynomial representation

!
"#$…&

'"("(*+) ⋅ !
"#$..&

'"/"(*+) = !
"#$..&

'"1"(*+)

Define 2 3 = ∏"#5..6(3 − *+)

!
"#$…&

'"(" 3 ⋅ !
"#$..&

'"/" 3 = !
"#$..&

'"1" 3 89: 2(3)

Getting things together
1 2 3 4 5 6 7 8 9 10

1

1 1

1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

1

1

1

1 2 3 4 5 6 7 8 9 10

1

2

5

!" !# !$!% !& !' !(

×+ + +
× +

+
×

!*
!+

!",

One more step

1 2 3 4 5 6 7 8 9 10

1

1 1

1 1 1 1 1

Lagrange interpolation
• ! points defines ! − 1 -degree

polynomial $(&)
• (), +) … ((-, +-)
• Lagrange basis:

ℓ/ & = 1
2343-,45/

& − (4
(/ − (4

• $ & = ∑+/ ℓ/(&)

7) & = 1 ⋅ ℓ) & + 1 ⋅ ℓ: & + 0 ⋅ ℓ<(&)

One more trick:
Instead of using polynomials, evaluate them at random point and use Schwartz-Zippel

SNARK for QAP

Common Reference String – important
questions

How to instantiate the CRS generator?
What if the generator colludes with the prover?
What if the generator colludes with the verifier?
What security guarantees can we get then?
Is it better to use Random Oracle?

Philosophical question

Is non-interactive
zero-knowledge
zero-knowledge?

When ! gives proof " to #, # learns not only
that $ ∈ ℒ, but also a convincing proof for that

Key idea: Proof " holds in respect to
• Particular CRS

• Particular Random Oracle

Thank you!

Zero-knowledge in
modern life

Part III

Blockchain

• Alice pays Bob
2€

• Charlie pays
Alice 3€

• Alice pays
Debbie 1€

• Debbie pays
Bob 3€

• Frank pays Bob
2€

• Debbie pays
Alice 3€

• Robert pays
Alice 4€

• Charlie pays
Debbie 1,5€

• Alice pays Bob
3€

• Bob pays
Charlie 3€

• Alice pays Bob
2€

time

Blockchain

Alice pays Bob 2€ Only Alice can post such transaction

Charlie pays Alice 4€ Everybody checks that Alice has sufficient
funds to perform the transaction

time !" < !

time !

Everybody knows that Charlie paid Alice, and
Alice paid Bob

Everybody knows the value of transactions

Privacy preserving blockchains

Idea: Show in ZK that the transaction is correct
• Alice has sufficient funds
• Bob can spend the funds transferred by Alice

Problem: There is billions transactions on
blockchain. How to show possession of funds
efficiently?

Solution: Use SNARKs!

Subversive CRS
generation

VP

S

!,# #

TTP
$%& $%&

'(

VP

S

!,# #

Z
$%& $%&

'(

VP

S

!,# #

Z
$%& $%&

'(

Soundness is impossible
) colludes with * and generate the CRS

) knows trapdoor '(
Thus) can simulate proof for a fake

statement

VP

S

!,# #

Z
$%& $%&

'(

Zero-knowledge is possible
) colludes with * and generate the CRS

but + can check the CRS!
How to assure , gets the trapdoor?

How to provide ! with trapdoor?

Diffie-Hellman knowledge assumption
ℎ, $%, ℎ% ← '($; *) then there exists extractor , for

' that ,($; *) outputs -

Idea: Use knowledge assumption on subverter ..
Intuitively: /*0 = 2(34) and since . produce /*0 it

knows 34

Provide ! with the extracted 34
Since now ! can simulate ⟹ zero-knowledge holds

Falsifiability in cryptography

Knowledge assumptions are not falsifiable L

CA
Assumption !, # is falsifiable if for all PPT $

Pr $, ! = 1 ≤ # + +,-.

Falsifiability defined as a GAME between adversary $ and challenger !
! setups the game and answers on $’s queries
In the end ! returns 0 ($ loses) or 1 ($ wins)

Fun fact: SNARKs cannot be sound without non-falsifiable
assumptions

