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Continued fractions

• Minus continued fractions are of the form

a0 −
1

a1 −
1

a2 −
1

. . .
with

• ai ∈ Z for Real CF.
• ai ∈ Z[i] = Z + Zi for Complex CF.

• There are multiple algorithms to generate a digit
sequence {ai} for a given x ∈ R or z ∈ C.
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Choice functions

A choice function1 is a function b·e : C→ Z[i] such
that z and bze are at most 1 apart.

• Non-example: floor bzc = bRe zc+ bIm zci does not work
since b0.9 + 0.9ic = 0 is distance 1.273 from 0.9 + 0.9i.

1 Dani and Nogueira, 2013.
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Choice functions

A choice function1 is a function b·e : C→ Z[i] such
that z and bze are at most 1 apart.

• Simplest example: choose the closest Gaussian integer to z.
This is called the “nearest integer” or “Hurwitz”2 algorithm.

−1 1

−i

i

1
2 + 1

2 i
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Choice functions

A choice function1 is a function b·e : C→ Z[i] such
that z and bze are at most 1 apart.

• Simplest example: choose the closest Gaussian integer to z.
This is called the “nearest integer” or “Hurwitz”2 algorithm.
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Choice functions

A choice function1 is a function b·e : C→ Z[i] such
that z and bze are at most 1 apart.

• Simplest example: choose the closest Gaussian integer to z.
This is called the “nearest integer” or “Hurwitz”2 algorithm.

−1 1

−i

i

1
2 + 1

2 ibze = 0
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Choice functions

A choice function1 is a function b·e : C→ Z[i] such
that z and bze are at most 1 apart.

• Simplest example: choose the closest Gaussian integer to z.
This is called the “nearest integer” or “Hurwitz”2 algorithm.

−1 1

−i

i

1
2 + 1

2 ibze = 0bze = −1

bze = 1+i
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Shifted Hurwitz1

algorithm

1 Dani and Nogueira, 2013.
2 Adolf Hurwitz, 1887.



Partitions and
C continued

fractions

Adam Abrams

Complex c. f.

Gauss map

Natural
extensions

Philosophy

Finite building
property

Cells

Simple lemma

Visual process

Construction

Verification

Results

Finite product
structure

System

Experimentation

Nearest even

Product gallery

Examples

�3+3

�3+2

�3+

�3�

�3�2

�3�3

�2+3

�2+2

�2+

�2�

�2�2

�2�3

�1+3

�1+2

�1+

�1�

�1�2

�1�3

1+3

1+2

1+

1�

1�2

1�3

2+3

2+2

2+

2�

2�2

2�3

3+3

3+2

3+

3�

3�2

3�3

�3

�3

�2

�2

2

2

3

3

0

�

�1 1

1

Nearest integer or
Hurwitz algorithm2

�3+3

�3+2

�3+

�3�

�3�2

�3�3

�2+3

�2+2

�2+

�2�

�2�2

�2�3

�1+3

�1+2

�1+

�1�

�1�2

�1�3

1+3

1+2

1+

1�

1�2

1�3

2+3

2+2

2+

2�

2�2

2�3

3+3

3+2

3+

3�

3�2

3�3

�3

�3

�2

�2

2

2

3

3

0

�

1�1

1

Shifted Hurwitz1

algorithm

1 Dani and Nogueira, 2013.
2 Adolf Hurwitz, 1887.



Partitions and
C continued

fractions

Adam Abrams

Complex c. f.

Gauss map

Natural
extensions

Philosophy

Finite building
property

Cells

Simple lemma

Visual process

Construction

Verification

Results

Finite product
structure

System

Experimentation

Nearest even

Product gallery

Examples

�3 + 3

�3 +

�3 �

�3 � 3

�1 + 3

�1 +

�1 �

�1 � 3

1 + 3

1 +

1 �

1 � 3

3 + 3

3 +

3 �

3 � 3

�2 + 2

�2 � 2

2 + 2

2 � 2

2

2

�2

�2

0

1

Nearest even
algorithm2

�3 + 3

�3 +

�3 �

�3 � 3

�1 + 3

�1 +

�1 �

�1 � 3

1 + 3

1 +

1 �

1 � 3

3 + 3

3 +

3 �

3 � 3

�2 + 2

�2 � 2

2 + 2

2 � 2

2

2

�2

�2

0

1

Disk algorithm3

• For both, digits are in {x+ yi ∈ Z[i] : x+ y even }.
2 Julius Hurwitz, 1902.
3 Shigeru Tanaka, 1985.
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Gauss maps

The fundamental set for an algorithm is

K = { z − bze : z ∈ C }.

• Example: For the nearest integer algorithm, K is the unit
square centered at the origin.

• Note K ⊆ B(0, 1) by the definition of a choice function.

The Gauss map g : K → K is given by g(0) = 0 and

g(z) =
−1

z
−
⌊−1

z

⌉
.
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Gauss maps

Real-valued Gauss maps:

−1

x
−
⌊−1

x

⌋ −1

x
−
⌊−1

x

⌉
Hurwitz

−1

x
−
⌊−1

x

⌉
Zagier

K = [0, 1] K = [−1
2 ,

1
2 ] K = [−4

5 ,
2
5 ]
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Gauss maps

Theorem (Dani-Nogueira for + c.f.)

Let b·e be such that K ⊂ B(0, 1). For any z ∈ C \Q[i], set

a0 = bze and an =

⌊ −1

gn−1(z−a0)

⌉
∀ n ≥ 1.

Then the value of

a0 −
1

a1 −
1

a2 − 1
. . .− 1

an

approaches z as n→∞.

Sometimes it is easier to use the map w 7→ −1
w−bwe instead of

g : z 7→ −1
z −

⌊−1
z

⌉
.
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Gauss maps

Theorem (Dani-Nogueira for + c.f.)

Let b·e be such that K ⊂ B(0, 1). For any z ∈ C \Q[i], set

w0 = z, an = bwne , wn+1 =
−1

wn − an
.

Then the value of

a0 −
1

a1 −
1

a2 − 1
. . .− 1

an

approaches z as n→∞.

Sometimes it is easier to use the map w 7→ −1
w−bwe instead of

g : z 7→ −1
z −

⌊−1
z

⌉
.
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Gauss maps

The natural extension of the Gauss map

g(z) =
−1

z
−
⌊−1

z

⌉
is the function

F (u, v) =

(−1

u
− a, −1

v
− a
)

where a =

⌊−1

v

⌉
or, after change of variables (z, w) = (v,−1/u),

G(z, w) =

(−1

z
− a, −1

w − a

)
where a =

⌊−1

z

⌉
.

The real-valued version of G has an attracting set with a
“finite rectangular structure.”
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Modular and Fuchsian results4

Real (a, b)-continued fractions:

• Family of algorithms with parameters a, b ∈ R.

• Natural extension is G(x, y) = (−1
x − n, −1

y− n
) where n is

the “(a, b)-generalized integer part” of x.

Co-compact Fuchsian setting:

• Instead of PSL(2,Z) we use Γ = 〈T1, . . . , Tm〉.
• Natural extension is F (x, y) = (T

i
(x), T

i
(y))

where i depends only on x.

4 Katok and Ugarcovici, 2010 and 2017.
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• Instead of PSL(2,Z) we use Γ = 〈T1, . . . , Tm〉.
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Modular and Fuchsian results4

a b 10−1

1

0

−1

Real C.F. Fuchsian
Ωa,b ⊂ R× R ΩA ⊂ S1 × S1

4 Katok and Ugarcovici, 2010 and 2017.
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Philosophy

For classical (X = R) and Fuchsian (with X = S1), we have

1 One-variable f : X → X is not injective.

2 Two-variable F : X ×X → X ×X of the form

F (x, y) =
(
ρx(x), ρx(y)

)
is not injective on X ×X, but

3 restricting F to its global attractor Ω ⊂ X ×X does give
an a. e. bijective function.

4 The set Ω ⊂ X ×X has finite rectangular structure.

5 This is a result of the cycle property of f : X → X.

The goal is to recreate this for complex c. f.
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Finite product structure

What is a good analogue in C× C for the 2-real-dimensional
finite rectangular structure?

Definition

A set Ω ⊂ C× C has finite product structure if there exist
N ∈ N and sets K1, . . . ,KN ⊂ C and L1, . . . , LN ⊂ C each
connected on the Reimann sphere such that

Ω =

N⋃
i=1

Ki × Li.



Partitions and
C continued

fractions

Adam Abrams

Complex c. f.

Gauss map

Natural
extensions

Philosophy

Finite building
property

Cells

Simple lemma

Visual process

Construction

Verification

Results

Finite product
structure

System

Experimentation

Nearest even

Product gallery

Cycle property

Cycle property: the orbits of −1
a and a+ 1 under f : R→ R

intersect, and the orbits of −1
b and b− 1 also intersect.

R|
a

|
0
|
b

translate invert translate

a =
�4

5
�4

5

4

1

4

1

5
�5

S
T�1

S

T
S

T

b =
2

5
2

�3

5

5

3

2

3

�1

3
3

�5

2

�3

2

�1

2

T�1

S T�1 T�1 S

T�1

S

T T

S

i

S(x) = −1/x
T (x) = x+ 1
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intersect, and the orbits of −1
b and b− 1 also intersect.
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Finite building property

The following replaces the cycle property:

Definitions

• Let C be a collection of sets. A set is called buildable from C
if it is equal to some union of elements of C.

• A continued fraction algorithm with Gauss map g : K → K
satisfies the finite building property if there exists a finite
partition P = {K1, . . . ,KN} with N > 1 such that each
g(Ki) is buildable from P.

“Partition” here means the elements of P have disjoint
interiors.
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Finite building property

We want each g(Ki) to be some
⋃
j
Kj .

Define the maps

S(z) := −1/z

T a(z) := z + a for any a ∈ Z[i]

• For an individual point,

g(z) = T−aSz where a = bSze,
but for X ⊂ C, g(X) might NOT be of the form T−aSX
because b·e will not generally be constant on SX.

• In practice, we need to decompose Ki further into sets for
which g acts the same.
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Cells

Some new notation will be useful.

• For a ∈ Z[i], we have the cell

〈a〉 := { z ∈ K : b−1/ze = a } .

Note that g
∣∣
〈a〉 is exactly T−aS.

〈3 + i〉

〈−1 + 2i〉

〈−2− 4i〉
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Some new notation will be useful.

• For a ∈ Z[i], we have the cell

〈a〉 := { z ∈ K : b−1/ze = a } .

Note that g
∣∣
〈a〉 is exactly T−aS.

• Denote Ki,a := Ki ∩ 〈a〉.

Some Ki,a will be empty.

Then we have
Ki =

⋃
a ∈ Z[i]

Ki,a

and
g(Ki) =

⋃
a ∈ Z[i]

T−aSKi,a .
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Lemma (A.)

If all g(Ki,a) are buildable from {K1, . . . ,KN} , then the

algorithm satisfies the finite building property.

Proof. Let J(i, a) ⊂ {1, . . . , N} be such that g(Ki,a) =
⋃

j∈J(i,a)
Kj .

Then

g( Ki ) = g

 ⋃
a∈Z[i]

Ki,a

 =
⋃

a∈Z[i]
g(Ki,a)

=
⋃

a∈Z[i]

 ⋃
j∈J(i,a)

Kj

 =
⋃

j∈J(i)
Kj

where J(i) =
⋃

a∈Z[i]
J(i, a). Thus all g(Ki) are buildable from P . �
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• We actually have three partitions of K now.

1 {〈a〉} indexed by a ∈ bCe ⊂ Z[i].

2 {Ki} indexed by i ∈ {1, . . . , N}.

3 {Ki,a} indexed by (i, a) for which Ki ∩ 〈a〉 6= ∅.

• The partition into 〈a〉 is based on the algorithm only.

• The partition P = {K1, . . . ,KN} is finite.
How do we construct these sets?
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Progress

The partitions P = {K1, . . . ,KN} just shown for the nearest
even and nearest integer algorithms are constructed to satisfy

g(〈a〉) = T−aS 〈a〉 =
⋃

j∈J(a)

Kj for some J(a).

but the finite building property requires that that all g(Ki) are
buildable from P, not that all g(〈a〉) are buildable.

• Recall the lemma: if all g(Ki,a) are buildable from P, then
the finite building property is satisfied.
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Sufficient conditions

Lemma (A.)

If each 〈a〉 is contained in some Ki and each S
(
〈a〉
)

can be

written as a union of sets of the form a+Kj , then the

algorithm satisfies the finite building property.

Proof. Let J(a) be such that S〈a〉 =
⋃

j∈J(a)(a+Kj). Then

g
(
〈a〉
)

= T−a S〈a〉 = T−a
⋃

j∈J(a)
a+Kj

=
⋃

j∈J(a)
T−a(a+Kj) =

⋃
j∈J(a)

Kj

Each Ki,a = Ki ∩ 〈a〉 is either empty or is exactly some 〈a〉 ,
so every g(Ki,a) is buildable from P . �
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We want each 〈a〉 to
be contained in some
Ki and each S〈a〉 to
be some

⋃
j

a+Kj .
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〈a〉 ⊂ K1 if a = x + yi
with x+ y even, x ≥ 2,
−x+ 1 < y < x− 1
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Each 〈a〉 is contained
in some Ki.
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to be some
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a+Kj .
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S〈−3+i〉

S〈3−3i〉

S〈a〉 =
⋃8

j=1 a+Kj

if |a| ≥ 2



Partitions and
C continued

fractions

Adam Abrams

Complex c. f.

Gauss map

Natural
extensions

Philosophy

Finite building
property

Cells

Simple lemma

Visual process

Construction

Verification

Results

Finite product
structure

System

Experimentation

Nearest even

Product gallery

Nearest even

S〈1+i〉S〈−1+i〉

S〈−1−i〉 S〈1−i〉



Partitions and
C continued

fractions

Adam Abrams

Complex c. f.

Gauss map

Natural
extensions

Philosophy

Finite building
property

Cells

Simple lemma

Visual process

Construction

Verification

Results

Finite product
structure

System

Experimentation

Nearest even

Product gallery

Nearest even

S〈1+i〉

S〈1 + i〉 =
⋃6

j=2(1 + i) +Kj

2 3 4
5

6



Partitions and
C continued

fractions

Adam Abrams

Complex c. f.

Gauss map

Natural
extensions

Philosophy

Finite building
property

Cells

Simple lemma

Visual process

Construction

Verification

Results

Finite product
structure

System

Experimentation

Nearest even

Product gallery

Nearest even

• For the nearest even algorithm we have sets K1, . . . ,K8

such that

• each 〈a〉 is contained in some Ki,

• each S〈a〉 is some
⋃
j

(a+Kj).

• Thus the finite building property is satisfied for the nearest
even algorithm.
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It is not true that each 〈a〉 is containing in some Ki, so the
second lemma cannot be used with this algorithm.

We must use the earlier lemma and show that each Ki,a is
buildable.
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〈1 + 2i〉 〈1 + 2i〉

K1
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K3

It is not true that each 〈a〉 is containing in some Ki, so the
second lemma cannot be used with this algorithm.

We must use the earlier lemma and show that each Ki,a is
buildable.
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It is not true that each 〈a〉 is containing in some Ki, so the
second lemma cannot be used with this algorithm.

We must use the earlier lemma and show that each Ki,a is
buildable.
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〈1 + 2i〉 K3,1+2i K2,1+2i

K1

K2

K3

It is not true that each 〈a〉 is containing in some Ki, so the
second lemma cannot be used with this algorithm.

We must use the earlier lemma and show that each Ki,a is
buildable.
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Each g(Ki,a) is some union
⋃
Kj .

By Lemma 1, the Hurwitz algorithm
satisfies the finite building property.
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Additional properties

• Some algorithms have additional properties that can help
make proofs easier.

Each 〈a〉 is
Z-translates contained
of K tile C in some Ki

Nearest integer Yes, Z = Z[i] No
Nearest even Yes, Z = evens Yes
Diamond algorithm No No
Disk algorithm No Yes
Shifted Hurwitz Yes, Z = Z[i] No
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Examples

Proposition (A.)

The following algorithms satisfy the finite building property:

• Nearest even

• Nearest integer

• Diamond

• Shifted Hurwitz

• Disk algorithm
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Finite product structure

Define G : C× C→ C× C by

G(z, w) =

(
−1

z
−
⌊−1

z

⌉
,
−1

w −
⌊−1

z

⌉)

= ( T−aS z, ST−aw), a = bSze

• One motivation for partitioning K by

P = {K1,K2, . . . ,KN}
is that we want to find a set

N⋃
i=1

Ki × Li

that is a bijectivity domain for G.
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Finite product structure

Define G : C× C→ C× C by

G(z, w) =

(
−1

z
−
⌊−1

z

⌉
,
−1

w −
⌊−1

z

⌉)

= ( T−aS z, ST−aw), a = bSze

• One motivation for partitioning K by

P = {K1,K2, . . . ,KN}
is that we want to find a set

N⋃
i=1

Ki × Li

that is a bijectivity domain for G.
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System of equations

• For each 1 ≤ i ≤ N , define Ai ⊂ {1, . . . , N} × Z[i] as

Ai =
{

(j, a) : Ki ⊂ g
(
Kj,a

) }
=
{

(j, a) : Ki ⊂ T−aS
(
Kj,a

) }
= { (j, a) : ST a(Ki) ⊂ Kj,a }.

Theorem (A.)

Suppose an algorithm satisfies the finite building property with
partition {K1, . . . ,KN}, and let L1, . . . , LN be arbitrary

complex sets. The map G is bijective a.e. on
⋃N

i=1Ki × Li if

and only if the following system of equalities holds:

S(Li) =
⋃

(j,a)∈Ai

T−aLj , 1 ≤ i ≤ N .
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• For each 1 ≤ i ≤ N , define Ai ⊂ {1, . . . , N} × Z[i] as

Ai =
{

(j, a) : Ki ⊂ g
(
Kj,a

) }
=
{

(j, a) : Ki ⊂ T−aS
(
Kj,a

) }
= { (j, a) : ST a(Ki) ⊂ Kj,a }.

Theorem (A.)

Suppose an algorithm satisfies the finite building property with
partition {K1, . . . ,KN}, and let L1, . . . , LN be arbitrary

complex sets. The map G is bijective a.e. on
⋃N

i=1Ki × Li if

and only if the following system of equalities holds:

S(Li) =
⋃

(j,a)∈Ai

T−aLj , 1 ≤ i ≤ N .
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System of equations

• For each 1 ≤ i ≤ N , define Ai ⊂ {1, . . . , N} × Z[i] as

Ai =
{

(j, a) : Ki ⊂ g
(
Kj,a

) }
=
{

(j, a) : Ki ⊂ T−aS
(
Kj,a

) }
= { (j, a) : ST a(Ki) ⊂ Kj,a }.

Theorem (A.)

Suppose an algorithm satisfies the finite building property with
partition {K1, . . . ,KN}, and let L1, . . . , LN be arbitrary

complex sets. The map G is bijective a.e. on
⋃N

i=1Ki × Li if

and only if the following system of equalities holds:

S(Li) =
⋃

(j,a)∈Ai

T−aLj , 1 ≤ i ≤ N .
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System of equations

Proof that G bijective on
⋃
Ki×Li implies S(Li) =

⋃
(j,a)∈Ai

T−aLj .

G

(
N⋃
i=1

Ki × Li

)
= G

 ⋃
1≤j≤N
a∈Z[i]

Kj,a × Lj


=

⋃
1≤j≤N
a∈Z[i]

(
T−aSKj,a × ST−aLj

)

=
⋃

1≤j≤N
a∈Z[i]


 ⋃

i s. t.
(j,a)∈Ai

Ki

× ST−aLj


=

⋃
1≤j≤N
a∈Z[i]

⋃
i s. t.

(j,a)∈Ai

(
Ki × ST−aLj

)
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System of equations

Proof that G bijective on
⋃
Ki×Li implies S(Li) =

⋃
(j,a)∈Ai

T−aLj .

G

(
N⋃
i=1

Ki × Li

)
= · · ·

=
⋃

1≤j≤N
a∈Z[i]

⋃
i s. t.

(j,a)∈Ai

(
Ki × ST−aLj

)

=

N⋃
i=1

⋃
(j,a)∈Ai

(
Ki × ST−aLj

)

=

N⋃
i=1

Ki ×

 ⋃
(j,a)∈Ai

ST−aLj


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System of equations

Proof that G bijective on
⋃
Ki×Li implies S(Li) =

⋃
(j,a)∈Ai

T−aLj .

G

(
N⋃
i=1

Ki × Li

)
=

N⋃
i=1

Ki ×

 ⋃
(j,a)∈Ai

ST−aLj



In order for G(Ω) to equal Ω, it must be that

S(

Li

)

=
⋃

(j,a)∈Ai

S

T−aLj

for i = 1, . . . , N . �
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System of equations

Proof that G bijective on
⋃
Ki×Li implies S(Li) =

⋃
(j,a)∈Ai

T−aLj .

G

(
N⋃
i=1

Ki × Li

)
=

N⋃
i=1

Ki ×

 ⋃
(j,a)∈Ai

ST−aLj


In order for G(Ω) to equal Ω, it must be that

S(

Li

)

=
⋃

(j,a)∈Ai

ST−aLj

for i = 1, . . . , N . �



Partitions and
C continued

fractions

Adam Abrams

Complex c. f.

Gauss map

Natural
extensions

Philosophy

Finite building
property

Cells

Simple lemma

Visual process

Construction

Verification

Results

Finite product
structure

System

Experimentation

Nearest even

Product gallery

System of equations

Proof that G bijective on
⋃
Ki×Li implies S(Li) =

⋃
(j,a)∈Ai

T−aLj .

G

(
N⋃
i=1

Ki × Li

)
=

N⋃
i=1

Ki ×

 ⋃
(j,a)∈Ai

ST−aLj


In order for G(Ω) to equal Ω, it must be that

S(Li) =
⋃

(j,a)∈Ai

S

T−aLj

for i = 1, . . . , N . �
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Computer simulation

In practice, the system of union equations is not useful for
constructing Li.

• Instead, we can generate a scatter plot of points in Li using
a computer, then verify that a potential collection
L1, . . . , LN satisfies the system.
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L4 appears to
be [−1

3 ,
2
3 ].
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Computer simulation

Exact descriptions of Li are known for

• Nearest even algorithm

K1

×

L1

• Disk algorithm

• Diamond algorithm
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Nearest even algorithm (N = 8)

K1

×

L1 K2

×

L2

K3

×

L3 K4

×

L4

etc. etc.
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Nearest even algorithm (N = 8)

K1

×

L1 K2
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L2

K3
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etc. etc.
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System of equations

Recall the theorem that G is bijective a.e. on
⋃N

i=1Ki × Li if
and only if

S(Li) =
⋃

(j,a)∈Ai

T−aLj , 1 ≤ i ≤ N,

where

Ai =
{

(j, a) : Ki ⊂ g
(
Kj,a

) }
=
{

(j, a) : Ki ⊂ T−aS
(
Kj,a

) }
= { (j, a) : ST a(Ki) ⊂ Kj,a }.

• What does this look like visually?
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Nearest even algorithm (N = 8)

L1

L2

L3

Goal: S(L1) =
⋃

(j,a)∈A1
T−aLj

T2L5

T3+iL5

T3−iL5

T3+3iL6

T2+2iL6

T1+iL6

T2iL7

T−1+3iL7 T1+3iL7T−3+3iL8

T−2+2iL8

T−1+iL8

T−2L1

T−3+iL1

T−3−iL1

T−3−3iL2

T−2−2iL2

T−1−iL2

T−2iL3

T−1−3iL3 T1−3iL3
T3−3iL4

T2−2iL4

T1−iL4
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Nearest even algorithm (N = 8)

L1

L2

L3

Goal: S(L1) =
⋃

(j,a)∈A1
T−aLj

S(L1)

T2L5

T3+iL5

T3−iL5

T3+3iL6

T2+2iL6

T1+iL6

T2iL7

T−1+3iL7 T1+3iL7T−3+3iL8

T−2+2iL8
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T2−2iL4

T1−iL4

0
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Finite product structures

For each algorithm, the set

Ω =

N⋃
i=1

Ki × Li

is a bijectivity domain for G : C× C→ C× C, and G
∣∣
Ω

is the
natural extension of the Gauss map g : K → K.

As a conclusion, here are images of Ki and Li for various
algorithms.

• In many cases only a few sets are shown (not all N) because
the rest are rotations or reflections.
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Diamond algorithm (N = 12)
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etc. etc.
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Disk algorithm (N = 5)
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Hurwitz algorithm (N = 12)
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One last choice function
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(N = 9)

5 Hiromi Ei, Shunji Ito, Hitoshi Nakada, Rie Natsui, 2019.
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