Dynamics of complex continued fractions via partitions

Adam Abrams

26 August 2020

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery Dynamics of complex continued fractions via partitions

Adam Abrams IMPAN

26 August 2020

On geometric complexity of Julia sets II

Adam Abrams

$\mathsf{Complex}\ \mathsf{c},\mathsf{f}.$

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

• Minus continued fractions are of the form

$$a_0 - \frac{1}{a_1 - \frac{1}{a_2 - \frac{1}{.}}}$$

Continued fractions

with

- a_i ∈ Z for Real CF.
 a_i ∈ Z[i] = Z + Zi for Complex CF.
- There are multiple algorithms to generate a digit sequence {a_i} for a given x ∈ ℝ or z ∈ ℂ.

Adam Abrams

$\mathsf{Complex}\ \mathsf{c},\mathsf{f}.$

Gauss map

- Natural extensions Philosophy
- Finite building property Cells
- Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

References/timeline

- 1887 A. Hurwitz. "Über die entwicklung complexer grössen in kettenbručhe." Acta Mathematica.
- 1902 J. Hurwitz. "Über die reduction der binären quadratischen formen mit complexen coefficienten und variabeln." Acta Mathematica.
- 1985 Tanaka. "A complex continued fraction transformation and its ergodic properties." *Tokyo Journal of Mathematics*.
- 2013 Dani, Nogueira. "Continued fractions for complex numbers and values of binary quadratic forms." *Trans. American Math. Society.*
- 2019 Ei, Ito, Nakada, Natsui. "On the construction of the natural extension of the Hurwitz complex continued fraction map." *Monatshefte für Mathematik*.
- 2020 Abrams. "Finite partitions for several complex continued fraction algorithms." *Experimental Mathematics.*

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Choice functions

A choice function¹ is a function $\lfloor \cdot \rceil : \mathbb{C} \to \mathbb{Z}[\mathbf{i}]$ such that z and $\lfloor z \rceil$ are at most 1 apart.

¹ Dani and Nogueira, 2013.

Adam Abrams

$\mathsf{Complex}\ \mathsf{c},\mathsf{f}.$

Gauss map

- Natural extensions Philosophy
- Finite building property Cells Simple lemma

Visual process

- Construction Verification Results
- Finite product structure
- System Experimentation Nearest even Product gallery

Choice functions

A choice function¹ is a function $\lfloor \cdot \rceil : \mathbb{C} \to \mathbb{Z}[\mathbf{i}]$ such that z and $\lfloor z \rceil$ are at most 1 apart.

• *Non*-example: floor $\lfloor z \rfloor = \lfloor \operatorname{Re} z \rfloor + \lfloor \operatorname{Im} z \rfloor \mathbf{i}$ does not work since $|0.9 + 0.9\mathbf{i}| = 0$ is distance 1.273 from $0.9 + 0.9\mathbf{i}$.

¹ Dani and Nogueira, 2013.

Adam Abrams

Complex c. f.

Gauss map

- Natural extensions Philosophy
- Finite building property Cells Simple lemma

Visual process

- Construction Verification Results
- Finite product structure
- System Experimentation Nearest even Product gallery

Choice functions

A choice function¹ is a function $\lfloor \cdot \rceil : \mathbb{C} \to \mathbb{Z}[\mathbf{i}]$ such that z and $\lfloor z \rceil$ are at most 1 apart.

Adam Abrams

$\mathsf{Complex}\ \mathsf{c},\mathsf{f}.$

Gauss map

- Natural extensions Philosophy
- Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Choice functions

A choice function¹ is a function $\lfloor \cdot \rceil : \mathbb{C} \to \mathbb{Z}[\mathbf{i}]$ such that z and $\lfloor z \rceil$ are at most 1 apart.

Adam Abrams

$\mathsf{Complex}\ \mathsf{c},\mathsf{f}.$

Gauss map

- Natural extensions Philosophy
- Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Choice functions

A choice function¹ is a function $\lfloor \cdot \rceil : \mathbb{C} \to \mathbb{Z}[\mathbf{i}]$ such that z and $\lfloor z \rceil$ are at most 1 apart.

Adam Abrams

$\mathsf{Complex}\ \mathsf{c},\mathsf{f}.$

Gauss map

- Natural extensions Philosophy
- Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Choice functions

A choice function¹ is a function $\lfloor \cdot \rceil : \mathbb{C} \to \mathbb{Z}[\mathbf{i}]$ such that z and $\lfloor z \rceil$ are at most 1 apart.

Adam Abrams

$\mathsf{Complex}\ \mathsf{c},\mathsf{f}.$

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

-3+3 i	-2+3 i	-1+3 i	31		1+3 i	2+3 i	3+3 i
-3+2i	-2+2 i	-1+2 i	2 i		$1\!+\!2\mathbf{i}$	2+2 i	3+2 i
-3+ i	-2+ i	-1+i	i		(1+i	2+ i	3+ i
-3	-2	$-1_t'$		0	1	2	3
					1		
-3- i	-2-i	-1- i	`-i		1- i	2- i	3- i
-3-2 i	-2-2 i	-1-2 i	-2 i		$1-2\mathbf{i}$	2-2 i	3-2 i
-3-3 i	-2-3 i	-1-3 i	-3 i		1 - 3i	2-3 i	3-3 i

Nearest integer or Hurwitz algorithm²

¹ Dani and Nogueira, 2013. ² Adolf Hurwitz, 1887.

Examples

Partitions and \mathbb{C} continued fractions

Adam Abrams

Complex c. f.

- Natural

-3+3 i	-2+3 i	-1+3 i	31		1+3 i	2+3 i	3+3 i
-3+2i	-2+2 i	-1+2 i	2 i		$1\!+\!2\mathbf{i}$	2 + 2i	3+2 i
-3+ i	-2+ i	-1+i	i		, ¹⁺ i	2+ i	3+ i
$^{-3}$	-2	$-1_t'$		0	1	2	3
		N.			- ;		
-3- i	-2- i	-1- i	`-i		1- i	2- i	3- i
-3-2 i	-2-2 i	-1-2 i	-2 i		1 - 2i	2-2 i	3-2 i
-3-3 i	-2-3 i	-1-3 i	-3 i		1 - 3i	2 - 3i	3-3 i

Nearest integer or Hurwitz algorithm²

-2-i - 11-1 -1 - i2-1 3-1 -3 - 2i - 2 - 2i - 1 - 2i-2i 1-2i 2-2i 3-2i -3-3i -2-3i -1-3i -31 1-3i 2-3i 3-3i Shifted Hurwitz¹

3:

21

- 1+i 2+1 3+1

1+31 2+31 3+31

1+2i 2+2i 3+2i

algorithm

¹ Dani and Nogueira, 2013. ² Adolf Hurwitz, 1887.

Examples

-3+3i -2+3i -1+3i

-3+2i -2+2i -1+2i

-2+i -1+i

-2

-3+i

-3-i

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Examples

• For both, digits are in $\{x + y\mathbf{i} \in \mathbb{Z}[\mathbf{i}] : x + y \text{ even }\}.$

² Julius Hurwitz, 1902.
 ³ Shigeru Tanaka, 1985.

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

-2i 1-2i 2-2i 3-2i -3i 1-2i 2-2i 3-2i Diamond algorithm

-1-1 -1

3i 1+3i 2+3i 3+3i

2**i**

1+2i 2+2i 3+2i

1+i

1-i

2+1 3+1

2

2-i

3

3-i

Examples

-3+i/-2+i/-1+i

-3 / -2

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Gauss maps

The fundamental set for an algorithm is

$$K = \overline{\{ z - \lfloor z \rceil : z \in \mathbb{C} \}}.$$

- Example: For the nearest integer algorithm, K is the unit square centered at the origin.
- Note $K \subseteq \overline{B(0,1)}$ by the definition of a choice function.

The Gauss map $g: K \to K$ is given by g(0) = 0 and

$$g(z) = \frac{-1}{z} - \left\lfloor \frac{-1}{z} \right\rfloor.$$

Gauss maps

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Real-valued Gauss maps:

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Gauss maps

Theorem (Dani-Nogueira for + c.f.) Let $\lfloor \cdot \rfloor$ be such that $K \subset B(0, 1)$. For any $z \in \mathbb{C} \setminus \mathbb{Q}[\mathbf{i}]$, set

$$a_0 = \lfloor z \rceil$$
 and $a_n = \left\lfloor \frac{-1}{g^{n-1}(z-a_0)} \right\rceil \quad \forall \ n \ge 1.$

Then the value of

$$a_0 - rac{1}{a_1 - rac{1}{a_2 - rac{1}{\ddots - rac{1}{a_n}}}}$$

approaches z as $n \to \infty$.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Gauss maps

Theorem (Dani-Nogueira for + c.f.) Let $\lfloor \cdot \rceil$ be such that $K \subset B(0, 1)$. For any $z \in \mathbb{C} \setminus \mathbb{Q}[\mathbf{i}]$, set

$$a_0 = \lfloor z \rceil$$
 and $a_n = \left\lfloor \frac{-1}{g^{n-1}(z-a_0)} \right\rceil \quad \forall \ n \ge 1.$

Then the value of

$$a_0 - \frac{1}{a_1 - \frac{1}{a_2 - \frac{1}{\ddots - \frac{1}{a_r}}}}$$

approaches z as $n \to \infty$.

Sometimes it is easier to use the map $w \mapsto \frac{-1}{w - \lfloor w \rceil}$ instead of $g: z \mapsto \frac{-1}{z} - \lfloor \frac{-1}{z} \rceil$.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Gauss maps

Theorem (Dani-Nogueira for + c.f.) Let $\lfloor \cdot \rceil$ be such that $K \subset B(0, 1)$. For any $z \in \mathbb{C} \setminus \mathbb{Q}[\mathbf{i}]$, set

$$w_0 = z,$$
 $a_n = \lfloor w_n \rceil,$ $w_{n+1} = \frac{-1}{w_n - a_n}$

Then the value of

$$a_0 - rac{1}{a_1 - rac{1}{a_2 - rac{1}{\ddots - rac{1}{a_n}}}}$$

approaches z as $n \to \infty$.

Sometimes it is easier to use the map $w \mapsto \frac{-1}{w - \lfloor w \rceil}$ instead of $g: z \mapsto \frac{-1}{z} - \lfloor \frac{-1}{z} \rceil$.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Gauss maps

The natural extension of the Gauss map

$$g(z) = \frac{-1}{z} - \left\lfloor \frac{-1}{z} \right\rceil$$

is the function

$$F(u,v) = \left(\frac{-1}{u} - a, \frac{-1}{v} - a\right)$$
 where $a = \left\lfloor \frac{-1}{v} \right\rfloor$

or, after change of variables $(\boldsymbol{z},\boldsymbol{w})=(\boldsymbol{v},-1/\boldsymbol{u})$,

$$G(z,w) = \left(\frac{-1}{z} - a, \frac{-1}{w-a}\right) \quad \text{where } a = \left\lfloor \frac{-1}{z} \right
ceil$$

The real-valued version of G has an attracting set with a "finite rectangular structure."

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Gauss maps

The natural extension of the Gauss map

$$g(z) = \frac{-1}{z} - \left\lfloor \frac{-1}{z} \right\rfloor$$

is the function

$$F(u,v) = \left(\frac{-1}{u} - a, \frac{-1}{v} - a\right)$$
 where $a = \left\lfloor \frac{-1}{v} \right\rceil$

or, after change of variables $(\boldsymbol{z},\boldsymbol{w})=(\boldsymbol{v},-1/\boldsymbol{u})$,

$$G(z,w) = \left(\frac{-1}{z} - a, \frac{-1}{w-a}\right)$$
 where $a = \left\lfloor \frac{-1}{z} \right\rfloor$.

The real-valued version of G has an attracting set with a "finite rectangular structure."

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Modular and Fuchsian results⁴

Real (a, b)-continued fractions:

- Family of algorithms with parameters $a, b \in \mathbb{R}$.
- Natural extension is G(x, y) = (⁻¹/_x n, ⁻¹/_{y-n}) where n is the "(a, b)-generalized integer part" of x.

Co-compact Fuchsian setting:

- Instead of $PSL(2,\mathbb{Z})$ we use $\Gamma = \langle T_1, \ldots, T_m \rangle$.
- Natural extension is $F(\boldsymbol{x},\boldsymbol{y}) = (\boldsymbol{T}_i(\boldsymbol{x}),\boldsymbol{T}_i(\boldsymbol{y}))$

where i depends only on x.

⁴ Katok and Ugarcovici, 2010 and 2017.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Modular and Fuchsian results⁴

Real (a, b)-continued fractions:

- Family of algorithms with parameters $a, b \in \mathbb{R}$.
- Natural extension is $G(x, y) = (\frac{-1}{x} n, \frac{-1}{y-n})$ where *n* is the "(*a*, *b*)-generalized integer part" of *x*.

Co-compact Fuchsian setting:

- Instead of $PSL(2,\mathbb{Z})$ we use $\Gamma = \langle T_1, \ldots, T_m \rangle$.
- Natural extension is $F(x,y) = (T_{\widehat{\mathfrak{g}}}(x),T_{\widehat{\mathfrak{g}}}(y))$

where i depends only on x.

⁴ Katok and Ugarcovici, 2010 and 2017.

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite buildin property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Modular and Fuchsian results⁴

⁴ Katok and Ugarcovici, 2010 and 2017.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Philosophy

For classical $(X = \mathbb{R})$ and Fuchsian (with $X = S^1$), we have 1 One-variable $f : X \to X$ is not injective.

2 Two-variable
$$F: X \times X \to X \times X$$
 of the form
 $F(x, y) = (\rho_x(x), \rho_x(y))$
is not injective on $X \times X$, but

- **3** restricting F to its global attractor $\Omega \subset X \times X$ does give an a.e. bijective function.
- 4 The set $\Omega \subset X \times X$ has finite rectangular structure.
- **5** This is a result of the cycle property of $f: X \to X$.

The goal is to recreate this for complex c. f.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Philosophy

For classical $(X = \mathbb{R})$ and Fuchsian (with $X = S^1$), we have 1 One-variable $f : X \to X$ is not injective.

2 Two-variable
$$F: X \times X \to X \times X$$
 of the form
 $F(x,y) = (\rho_x(x), \rho_x(y))$
is not injective on $X \times X$, but

- **3** restricting F to its global attractor $\Omega \subset X \times X$ does give an a.e. bijective function.
- **4** The set $\Omega \subset X imes X$ has finite rectangular structure.
- **5** This is a result of the cycle property of $f: X \to X$.

The goal is to recreate this for complex c. f.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Philosophy

For classical $(X = \mathbb{R})$ and Fuchsian (with $X = S^1$), we have 1 One-variable $f : X \to X$ is not injective.

2 Two-variable
$$F: X \times X \to X \times X$$
 of the form
 $F(x,y) = (\rho_x(x), \rho_x(y))$
is not injective on $X \times X$, but

- **3** restricting F to its global attractor $\Omega \subset X \times X$ does give an a.e. bijective function.
- 4 The set $\Omega \subset X \times X$ has finite rectangular structure.

5 This is a result of the cycle property of $f: X \to X$.

The goal is to recreate this for complex c.f.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Finite product structure

What is a good analogue in $\overline{\mathbb{C}} \times \overline{\mathbb{C}}$ for the 2-real-dimensional finite rectangular structure?

Definition

A set $\Omega \subset \overline{\mathbb{C}} \times \overline{\mathbb{C}}$ has finite product structure if there exist $N \in \mathbb{N}$ and sets $K_1, \ldots, K_N \subset \overline{\mathbb{C}}$ and $L_1, \ldots, L_N \subset \overline{\mathbb{C}}$ each connected on the Reimann sphere such that

$$\Omega = \bigcup_{i=1}^{N} K_i \times L_i.$$

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cycle property: the orbits of $\frac{-1}{a}$ and a + 1 under $f : \mathbb{R} \to \mathbb{R}$ intersect, and the orbits of $\frac{-1}{b}$ and b - 1 also intersect.

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Cycle property: the orbits of $\frac{-1}{a}$ and a + 1 under $f : \mathbb{R} \to \mathbb{R}$ intersect, and the orbits of $\frac{-1}{b}$ and b - 1 also intersect.

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Cycle property: the orbits of $\frac{-1}{a}$ and a + 1 under $f : \mathbb{R} \to \mathbb{R}$ intersect, and the orbits of $\frac{-1}{b}$ and b - 1 also intersect.

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cycle property: the orbits of $\frac{-1}{a}$ and a + 1 under $f : \mathbb{R} \to \mathbb{R}$ intersect, and the orbits of $\frac{-1}{b}$ and b - 1 also intersect.

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallepy

Cycle property: the orbits of $\frac{-1}{a}$ and a + 1 under $f : \mathbb{R} \to \mathbb{R}$ intersect, and the orbits of $\frac{-1}{b}$ and b - 1 also intersect.

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cycle property

Cycle property: the orbits of $\frac{-1}{a}$ and a + 1 under $f : \mathbb{R} \to \mathbb{R}$ intersect, and the orbits of $\frac{-1}{b}$ and b - 1 also intersect.

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cycle property

Cycle property: the orbits of $\frac{-1}{a}$ and a + 1 under $f : \mathbb{R} \to \mathbb{R}$ intersect, and the orbits of $\frac{-1}{b}$ and b - 1 also intersect.

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cycle property

Cycle property: the orbits of $\frac{-1}{a}$ and a + 1 under $f : \mathbb{R} \to \mathbb{R}$ intersect, and the orbits of $\frac{-1}{b}$ and b - 1 also intersect.

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cycle property

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cycle property

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cycle property

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cycle property

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemm

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Finite building property

The following replaces the cycle property:

Definitions

- Let C be a collection of sets. A set is called buildable from C if it is equal to some union of elements of C.
- A continued fraction algorithm with Gauss map g: K → K satisfies the finite building property if there exists a finite partition P = {K₁,...,K_N} with N > 1 such that each g(K_i) is buildable from P.

"Partition" here means the elements of $\ensuremath{\mathcal{P}}$ have disjoint interiors.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Finite building property

We want each $g(K_i)$ to be some $\bigcup_j K_j$.

Define the maps

$$\begin{split} S(z) &:= -1/z \\ T^a(z) &:= z + a \qquad \text{for any } a \in \mathbb{Z}[\mathbf{i}] \end{split}$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Finite building property

We want each $g(K_i)$ to be some $\bigcup_j K_j$.

Define the maps

$$\begin{split} S(z) &:= -1/z \\ T^a(z) &:= z + a \qquad \text{for any } a \in \mathbb{Z}[\mathbf{i}] \end{split}$$

• For an individual point,

$$g(z) = T^{-a}Sz$$
 where $a = \lfloor Sz \rceil$,

but for $X \subset \mathbb{C}$, g(X) might NOT be of the form $T^{-a}SX$ because $\lfloor \cdot \rceil$ will not generally be constant on SX.

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Finite building property

We want each $g(K_i)$ to be some $\bigcup_j K_j$.

Define the maps

$$\begin{split} S(z) &:= -1/z \\ T^a(z) &:= z + a \qquad \text{for any } a \in \mathbb{Z}[\mathbf{i}] \end{split}$$

• For an individual point,

$$g(z) = T^{-a}Sz$$
 where $a = \lfloor Sz \rceil$,

but for $X \subset \mathbb{C}$, g(X) might NOT be of the form $T^{-a}SX$ because $\lfloor \cdot \rceil$ will not generally be constant on SX.

• In practice, we need to decompose K_i further into sets for which g acts the same.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cells

Some new notation will be useful.

• For $a \in \mathbb{Z}[\mathbf{i}]$, we have the cell

$$\langle a \rangle := \left\{ \, z \in K \, : \, \lfloor -1/z \rceil = a \, \right\}.$$

Note that
$$g|_{\langle a \rangle}$$
 is exactly $T^{-a}S$.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cells

Some new notation will be useful.

• For $a \in \mathbb{Z}[\mathbf{i}]$, we have the cell

$$\langle a \rangle := \left\{ z \in K : \lfloor -1/z \rceil = a \right\}.$$

Note that
$$g|_{\langle a \rangle}$$
 is exactly $T^{-a}S$.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cells

Some new notation will be useful.

• For $a \in \mathbb{Z}[\mathbf{i}]$, we have the cell

$$\langle a \rangle := \{ \, z \in K \, : \, \lfloor -1/z \rceil = a \, \}$$

Note that
$$g|_{\langle a \rangle}$$
 is exactly $T^{-a}S$.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cells

Some new notation will be useful.

• For $a \in \mathbb{Z}[\mathbf{i}]$, we have the cell

$$\langle a \rangle := \left\{ \, z \in K \, : \, \lfloor -1/z \rceil = a \, \right\}.$$

Note that $g|_{\langle a \rangle}$ is exactly $T^{-a}S$.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cells

Some new notation will be useful.

• For $a \in \mathbb{Z}[\mathbf{i}]$, we have the cell

$$\langle a \rangle := \left\{ \, z \in K \, : \, \lfloor -1/z \rceil = a \, \right\}.$$

Note that $g|_{\langle a \rangle}$ is exactly $T^{-a}S$.

• Denote $K_{i,a} := K_i \cap \langle a \rangle$. Then we have

$$K_i = \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} K_{i,a}$$

and

$$g(K_i) = \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} T^{-a} S K_{i,a}.$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cells

Some new notation will be useful.

• For $a \in \mathbb{Z}[\mathbf{i}]$, we have the cell

$$\langle a\rangle:=\left\{\,z\in K\,:\,\lfloor -1/z\rceil=a\,\right\}.$$

Note that $g|_{\langle a \rangle}$ is exactly $T^{-a}S$.

ŀ

Denote K_{i,a} := K_i ∩ ⟨a⟩.
Then we have

Some $K_{i,a}$ will be empty.

$$K_i = \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} K_{i,a}$$

and

$$g(K_i) = \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} T^{-a} S K_{i,a}.$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Lemma (A.)

If all $g(K_{i,a})$ are buildable from $\{K_1, \ldots, K_N\}$, then the algorithm satisfies the finite building property.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Cells

Lemma (A.)

If all $g(K_{i,a})$ are buildable from $\{K_1, \ldots, K_N\}$, then the algorithm satisfies the finite building property.

Proof. Let $J(i, a) \subset \{1, \dots, N\}$ be such that $g(K_{i,a}) = \bigcup_{j \in J(i,a)} K_j$.

1

`

Then

$$g(K_i) = g\left(\bigcup_{a \in \mathbb{Z}[\mathbf{i}]} K_{i,a}\right) = \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} g(K_{i,a})$$
$$= \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} \left(\bigcup_{j \in J(i,a)} K_j\right) = \bigcup_{j \in J(i)} K_j$$

where $J(i) = \bigcup_{a \in \mathbb{Z}[i]} J(i, a)$. Thus all $g(K_i)$ are buildable from \mathcal{P} . \Box

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Lemma (A.)

If all $g(K_{i,a})$ are buildable from $\{K_1, \ldots, K_N\}$, then the algorithm satisfies the finite building property.

Proof. Let $J(i, a) \subset \{1, ..., N\}$ be such that $g(K_{i,a}) = \bigcup_{j \in J(i,a)} K_j$. Then

$$g(\mathbf{K}_{i}) = g\left(\left(\bigcup_{a \in \mathbb{Z}[\mathbf{i}]} K_{i,a}\right)\right) = \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} g(K_{i,a})$$
$$= \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} \left(\bigcup_{j \in J(i,a)} K_{j}\right) = \bigcup_{j \in J(i)} K_{j}$$

where $J(i) = \bigcup_{a \in \mathbb{Z}[i]} J(i, a)$. Thus all $g(K_i)$ are buildable from \mathcal{P} . \Box

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Lemma (A.)

If all $g(K_{i,a})$ are buildable from $\{K_1, \ldots, K_N\}$, then the algorithm satisfies the finite building property.

Proof. Let $J(i, a) \subset \{1, \dots, N\}$ be such that $g(K_{i,a}) = \bigcup_{j \in J(i,a)} K_j$.

,

Then

$$g(K_i) = g\left(\bigcup_{a \in \mathbb{Z}[\mathbf{i}]} K_{i,a}\right) = \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} g(K_{i,a})$$
$$= \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} \left(\bigcup_{j \in J(i,a)} K_j\right) = \bigcup_{j \in J(i)} K_j$$

where $J(i) = \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} J(i, a)$. Thus all $g(K_i)$ are buildable from \mathcal{P} . \Box

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Lemma (A.)

If all $g(K_{i,a})$ are buildable from $\{K_1, \ldots, K_N\}$, then the algorithm satisfies the finite building property.

Proof. Let $J(i, a) \subset \{1, \dots, N\}$ be such that $g(K_{i,a}) = \bigcup_{j \in J(i,a)} K_j$.

Then

$$g(K_i) = g\left(\bigcup_{a \in \mathbb{Z}[\mathbf{i}]} K_{i,a}\right) = \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} g(K_{i,a})$$
$$= \bigcup_{a \in \mathbb{Z}[\mathbf{i}]} \left(\bigcup_{j \in J(i,a)} K_j\right) = \bigcup_{j \in J(i)} K_j$$

where $J(i) = \bigcup_{a \in \mathbb{Z}[i]} J(i, a)$. Thus all $g(K_i)$ are buildable from \mathcal{P}

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Partitions

- We actually have three partitions of ${\boldsymbol{K}}$ now.
 - 1 $\{\langle a \rangle\}$ indexed by $a \in \lfloor \mathbb{C} \rceil \subset \mathbb{Z}[\mathbf{i}]$.
 - **2** $\{K_i\}$ indexed by $i \in \{1, ..., N\}$.
 - **3** { $K_{i,a}$ } indexed by (i, a) for which $K_i \cap \langle a \rangle \neq \emptyset$.
- The partition into $\langle a \rangle$ is based on the algorithm only.
- The partition $\mathcal{P} = \{K_1, \dots, K_N\}$ is finite. How do we construct these sets?

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Hurwitz

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Hurwitz

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Progress

The partitions $\mathcal{P} = \{K_1, \ldots, K_N\}$ just shown for the nearest even and nearest integer algorithms are constructed to satisfy

$$g(\langle a \rangle) = T^{-a} S \langle a \rangle = \bigcup_{j \in J(a)} K_j$$
 for some $J(a)$

but the finite building property requires that that all $g(K_i)$ are buildable from \mathcal{P} , not that all $g(\langle a \rangle)$ are buildable.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Progress

The partitions $\mathcal{P} = \{K_1, \ldots, K_N\}$ just shown for the nearest even and nearest integer algorithms are constructed to satisfy

$$g(\langle a \rangle) = T^{-a} S \langle a \rangle = \bigcup_{j \in J(a)} K_j$$
 for some $J(a)$.

but the finite building property requires that that all $g(K_i)$ are buildable from \mathcal{P} , not that all $g(\langle a \rangle)$ are buildable.

• Recall the lemma: if all $g(K_{i,a})$ are buildable from \mathcal{P} , then the finite building property is satisfied.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Sufficient conditions

Lemma (A.)

If each $\langle a \rangle$ is contained in some K_i and each $S(\langle a \rangle)$ can be written as a union of sets of the form $a + K_j$, then the algorithm satisfies the finite building property.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Sufficient conditions

Lemma (A.)

If each $\langle a \rangle$ is contained in some K_i and each $S(\langle a \rangle)$ can be written as a union of sets of the form $a + K_j$, then the algorithm satisfies the finite building property.

Proof. Let J(a) be such that $S\langle a \rangle = \bigcup_{j \in J(a)} (a + K_j)$. Then

$$g(\langle a \rangle) = T^{-a} S\langle a \rangle = T^{-a} \bigcup_{j \in J(a)} a + K_j$$

$$= \bigcup_{j \in J(a)} T^{-a}(a+K_j) = \bigcup_{j \in J(a)} K_j$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Sufficient conditions

Lemma (A.)

If each $\langle a \rangle$ is contained in some K_i and each $S(\langle a \rangle)$ can be written as a union of sets of the form $a + K_j$, then the algorithm satisfies the finite building property.

Proof. Let J(a) be such that $S\langle a \rangle = \bigcup_{j \in J(a)} (a + K_j)$. Then

$$g(\langle a \rangle) = T^{-a} \underbrace{S\langle a \rangle}_{j \in J(a)} = T^{-a} \underbrace{\bigcup_{j \in J(a)} a + K_j}_{j \in J(a)}$$
$$= \underbrace{\bigcup_{j \in J(a)} T^{-a}(a + K_j)}_{j \in J(a)} = \underbrace{\bigcup_{j \in J(a)} K_j}_{j \in J(a)}$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Sufficient conditions

Lemma (A.)

If each $\langle a \rangle$ is contained in some K_i and each $S(\langle a \rangle)$ can be written as a union of sets of the form $a + K_j$, then the algorithm satisfies the finite building property.

Proof. Let J(a) be such that $S\langle a \rangle = \bigcup_{j \in J(a)} (a + K_j)$. Then

$$g(\langle a \rangle) = T^{-a} S\langle a \rangle = T^{-a} \bigcup_{j \in J(a)} a + K_j$$
$$= \bigcup_{j \in J(a)} T^{-a}(a + K_j) = \bigcup_{j \in J(a)} K_j$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Sufficient conditions

Lemma (A.)

If each $\langle a \rangle$ is contained in some K_i and each $S(\langle a \rangle)$ can be written as a union of sets of the form $a + K_j$, then the algorithm satisfies the finite building property.

Proof. Let J(a) be such that $S\langle a \rangle = \bigcup_{j \in J(a)} (a + K_j)$. Then

$$g(\langle a \rangle) = T^{-a} S\langle a \rangle = T^{-a} \bigcup_{j \in J(a)} a + K_j$$

$$= \bigcup_{j \in J(a)} T^{-a}(a+K_j) = \bigcup_{j \in J(a)} K_j$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Sufficient conditions

Lemma (A.)

If each $\langle a \rangle$ is contained in some K_i and each $S(\langle a \rangle)$ can be written as a union of sets of the form $a + K_j$, then the algorithm satisfies the finite building property.

Proof. Let J(a) be such that $S\langle a \rangle = \bigcup_{j \in J(a)} (a + K_j)$. Then

$$g(\langle a \rangle) = T^{-a} S \langle a \rangle = T^{-a} \bigcup_{j \in J(a)} a + K_j$$

$$= \bigcup_{j \in J(a)} T^{-a}(a + K_j) = \bigcup_{j \in J(a)} K_j$$

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite produc

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c.

Gauss map

- Natural extensions Philosophy
- Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

• For the nearest even algorithm we have sets K_1, \ldots, K_8 such that

- each $\langle a \rangle$ is contained in some K_i ,
- each $S\langle a \rangle$ is some $\bigcup_j (a + K_j)$.
- Thus the finite building property is satisfied for the nearest even algorithm.
Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Hurwitz

 $\langle 1+2\mathbf{i}\rangle$

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Hurwitz

It is not true that each $\langle a \rangle$ is containing in some K_i , so the second lemma cannot be used with this algorithm.

We must use the earlier lemma and show that each $K_{i,a}$ is buildable.

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Hurwitz

It is not true that each $\langle a \rangle$ is containing in some K_i , so the second lemma cannot be used with this algorithm.

We must use the earlier lemma and show that each $K_{i,a}$ is buildable.

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification

Results

Finite product structure

System Experimentation Nearest even

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemm

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Additional properties

• Some algorithms have additional properties that can help make proofs easier.

		Each $\langle a \rangle$ is
	Z-translates	contained
	of K tile $\mathbb C$	in some K_i
Nearest integer	Yes, $Z = \mathbb{Z}[\mathbf{i}]$	No
Nearest even	Yes, $Z = evens$	Yes
Diamond algorithm	No	No
Disk algorithm	No	Yes
Shifted Hurwitz	Yes, $Z=\mathbb{Z}[\mathbf{i}]$	No

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification **Results**

Finite product structure

System Experimentation Nearest even Product gallery

Proposition (A.) The following algorithms satisfy the finite building property:

Nearest even

Diamond

Examples

Disk algorithm

- Nearest integer
- Shifted Hurwitz

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Finite product structure

Define $G: \mathbb{C} \times \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ by

$$G(z,w) = \left(\frac{-1}{z} - \left\lfloor \frac{-1}{z} \right\rceil, \frac{-1}{w - \left\lfloor \frac{-1}{z} \right\rceil}\right)$$

i=1

$$= (T^{-a}Sz, ST^{-a}w), \quad a = \lfloor Sz \rceil$$

• One motivation for partitioning
$$K$$
 by
 $\mathcal{P} = \{K_1, K_2, \dots, K_N\}$
is that we want to find a set
 $\bigcup_{i=1}^{N} K_i \times L_i$

that is a bijectivity domain for G.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Finite product structure

Define $G: \mathbb{C} \times \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ by

$$G(z,w) = \left(\frac{-1}{z} - \left\lfloor \frac{-1}{z} \right\rceil, \frac{-1}{w - \left\lfloor \frac{-1}{z} \right\rceil}\right)$$
$$= \left(\left[T^{-a}S\right]z, \left[ST^{-a}w\right], \quad \left[a = \lfloor Sz \rfloor\right]\right)$$

i=1

• One motivation for partitioning K by $\mathcal{P} = \{K_1, K_2, \dots, K_N\}$ is that we want to find a set $\bigcup_{i=1}^{N} K_i \times L_i$

that is a bijectivity domain for G.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System

Experimentation Nearest even Product gallery

System of equations

• For each $1 \le i \le N$, define $\mathcal{A}_i \subset \{1, \dots, N\} \times \mathbb{Z}[\mathbf{i}]$ as

$$\begin{aligned} A_i &= \{ (j,a) : K_i \subset g(K_{j,a}) \} \\ &= \{ (j,a) : K_i \subset T^{-a}S(K_{j,a}) \} \\ &= \{ (j,a) : ST^a(K_i) \subset K_{j,a} \}. \end{aligned}$$

Theorem (A.)

Suppose an algorithm satisfies the finite building property with partition $\{K_1, \ldots, K_N\}$, and let L_1, \ldots, L_N be arbitrary complex sets. The map G is bijective a.e. on $\bigcup_{i=1}^N K_i \times L_i$ if and only if the following system of equalities holds:

$$S(L_i) = \bigcup_{(j,a)\in\mathcal{A}_i} T^{-a} L_j, \qquad 1 \le i \le N.$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System

Experimentation Nearest even Product gallery

System of equations

• For each $1 \le i \le N$, define $\mathcal{A}_i \subset \{1, \dots, N\} \times \mathbb{Z}[\mathbf{i}]$ as $\mathcal{A}_i = \left\{ (i, q) : K \in \mathcal{A}(K_i) \right\}$

$$A_{i} = \{ (j, a) : K_{i} \subset g(K_{j,a}) \} \\ = \{ (j, a) : K_{i} \subset T^{-a}S(K_{j,a}) \} \\ = \{ (j, a) : ST^{a}(K_{i}) \subset K_{j,a} \}.$$

Theorem (A.)

Suppose an algorithm satisfies the finite building property with partition $\{K_1, \ldots, K_N\}$, and let L_1, \ldots, L_N be arbitrary complex sets. The map G is bijective a.e. on $\bigcup_{i=1}^N K_i \times L_i$ if and only if the following system of equalities holds:

$$S(L_i) = \bigcup_{(j,a)\in\mathcal{A}_i} T^{-a}L_j, \qquad \boxed{1 \le i \le N},$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System

Experimentation Nearest even Product gallery

System of equations

• For each $1 \leq i \leq N$, define $\mathcal{A}_i \subset \{1, \dots, N\} \times \mathbb{Z}[\mathbf{i}]$ as

$$\begin{aligned} \mathcal{A}_{i} &= \left\{ (j,a) \, : \, K_{i} \subset g(K_{j,a}) \right\} \\ &= \left\{ (j,a) \, : \, K_{i} \subset T^{-a}S(K_{j,a}) \right\} \\ &= \left\{ (j,a) \, : \, ST^{a}(K_{i}) \subset K_{j,a} \right\}. \end{aligned}$$

Theorem (A.)

Suppose an algorithm satisfies the finite building property with partition $\{K_1, \ldots, K_N\}$, and let L_1, \ldots, L_N be arbitrary complex sets. The map G is bijective a.e. on $\bigcup_{i=1}^N K_i \times L_i$ if and only if the following system of equalities holds:

$$S(L_i) = \bigcup_{(j,a)\in\mathcal{A}_i} T^{-a}L_j, \qquad 1 \le i \le N.$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System

Experimentation Nearest even Product gallery

System of equations

Proof that G bijective on $\bigcup K_i \times L_i$ implies $S(L_i) = \bigcup_{(j,a) \in \mathcal{A}_i} T^{-a} L_j$.

 $G\left(\bigcup_{i=1}^{N} K_{i} \times L_{i}\right) = G\left(\bigcup_{\substack{1 \le j \le N \\ c = (i)}} K_{j,a} \times L_{j}\right)$ $(T^{-a}SK_{i,a} \times ST^{-a}L_i)$ $1 \le j \le N$ $a \in \mathbb{Z}[\mathbf{i}]$ $= \bigcup_{\substack{1 \le j \le N \\ a \in \mathbb{Z}[\mathbf{i}]}} \left(\left(\bigcup_{\substack{i \text{ s.t.} \\ (j,a) \in A}} K_i \right) \times ST^{-a} L_j \right)$ $(K_i \times ST^{-a}L_i)$ $\substack{1 \le j \le N \\ a \in \mathbb{Z}[\mathbf{i}]}$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System

Experimentation Nearest even Product gallery

System of equations

Proof that G bijective on $\bigcup K_i \times L_i$ implies $S(L_i) = \bigcup_{(j,a) \in \mathcal{A}_i} T^{-a}L_j$.

$$\begin{pmatrix} \bigvee_{i=1}^{N} K_{i} \times L_{i} \end{pmatrix} = \cdots$$
$$= \bigcup_{\substack{1 \le j \le N \\ a \in \mathbb{Z}[\mathbf{i}]}} \bigcup_{\substack{i \text{ s.t.} \\ (j,a) \in \mathcal{A}_{i}}} \left(K_{i} \times ST^{-a}L_{j} \right)$$
$$= \bigcup_{i=1}^{N} \bigcup_{(j,a) \in \mathcal{A}_{i}} \left(K_{i} \times ST^{-a}L_{j} \right)$$
$$= \bigcup_{i=1}^{N} \left(K_{i} \times \left(\bigcup_{(j,a) \in \mathcal{A}_{i}} ST^{-a}L_{j} \right) \right)$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System

Experimentation Nearest even Product gallery

System of equations

Proof that G bijective on $\bigcup K_i \times L_i$ implies $S(L_i) = \bigcup_{(j,a) \in \mathcal{A}_i} T^{-a}L_j$.

$$G\left(\bigcup_{i=1}^{N} K_i \times L_i\right) = \bigcup_{i=1}^{N} \left(K_i \times \left(\bigcup_{(j,a) \in \mathcal{A}_i} ST^{-a}L_j\right)\right)$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System

Experimentation Nearest even Product gallery

System of equations

Proof that G bijective on $\bigcup K_i \times L_i$ implies $S(L_i) = \bigcup_{(j,a) \in \mathcal{A}_i} T^{-a} L_j$.

$$G\left(\bigcup_{i=1}^{N} K_i \times L_i\right) = \bigcup_{i=1}^{N} \left(K_i \times \left(\bigcup_{(j,a) \in \mathcal{A}_i} ST^{-a}L_j\right)\right)$$

In order for $G(\Omega)$ to equal Ω , it must be that

$$L_i = \bigcup_{(j,a)\in\mathcal{A}_i} ST^{-a}L_j$$

for i = 1, ..., N.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System

Experimentation Nearest even Product gallery

System of equations

Proof that G bijective on $\bigcup K_i \times L_i$ implies $S(L_i) = \bigcup_{(j,a) \in \mathcal{A}_i} T^{-a} L_j$.

$$G\left(\bigcup_{i=1}^{N} K_i \times L_i\right) = \bigcup_{i=1}^{N} \left(K_i \times \left(\bigcup_{(j,a) \in \mathcal{A}_i} ST^{-a}L_j\right)\right)$$

In order for $G(\Omega)$ to equal Ω , it must be that

$$S(L_i) = \bigcup_{(j,a)\in\mathcal{A}_i} T^{-a} L_j$$

for i = 1, ..., N.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation

Nearest even Product gallery

Computer simulation

In practice, the system of union equations is not useful for constructing L_i .

• Instead, we can generate a scatter plot of points in L_i using a computer, then verify that a potential collection L_1, \ldots, L_N satisfies the system.

Adam Abrams

1.00.8Natural 0.60.40.20 Results -0.2-0.4Experimentation -0.6-0.8-1.0 $^{-1}$

Computer simulation

0

1

Adam Abrams

Natural Results Experimentation

Computer simulation

Adam Abrams

Computer simulation

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System

Experimentation

Nearest even Product galler

Computer simulation

Adam Abrams

Complex c. f.

Gauss map

Natural	
extensions	
Philosophy	

Finite building

property	
Cells	
Simple lemma	

Visual process

Construction
Verification
Results

Finite product structure

System

Experimentation

Nearest even Product gallery

Computer simulation

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System

Experimentation

Nearest even Product gallery

Computer simulation

Adam Abrams

Computer simulation

1

Adam Abrams

-1

Computer simulation

 L_4 appears to be $\left[\frac{-1}{3}, \frac{2}{3}\right]$.

0

1

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite produc structure

System Experimentation Nearest even

Computer simulation

Exact descriptions of L_i are known for

- Disk algorithm
- Diamond algorithm

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Computer simulation

Exact descriptions of L_i are known for

- Disk algorithm
- Diamond algorithm

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Computer simulation

Exact descriptions of L_i are known for

- Disk algorithm
- Diamond algorithm

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Computer simulation

Exact descriptions of L_i are known for

- Disk algorithm
- Diamond algorithm

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite produc structure

System Experimentation Nearest even

Computer simulation

Exact descriptions of L_i are known for

- Disk algorithm
- Diamond algorithm

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Computer simulation

Exact descriptions of L_i are known for

- Disk algorithm
- Diamond algorithm

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentati

Nearest even Product galler

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

- System Experimentation
- Nearest even Product galler

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

- System Experimentation
- Nearest even Product galler

 L_4

Adam Abrams

Complex c.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemm

Visual process

Construction Verification Results

Finite product structure

System Experimentati

Nearest even Product galler

System of equations

Recall the theorem that G is bijective a.e. on $\bigcup_{i=1}^{N} K_i \times L_i$ if and only if

$$S(L_i) = \bigcup_{(j,a)\in\mathcal{A}_i} T^{-a}L_j, \qquad 1 \le i \le N,$$

where

$$\mathcal{A}_{i} = \left\{ (j, a) : K_{i} \subset g(K_{j,a}) \right\}$$
$$= \left\{ (j, a) : K_{i} \subset T^{-a}S(K_{j,a}) \right\}$$
$$= \left\{ (j, a) : ST^{a}(K_{i}) \subset K_{j,a} \right\}.$$

• What does this look like visually?

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Product galler

Goal:
$$S(L_1) = \bigcup_{(j,a) \in \mathcal{A}_1} T^{-a} L_j$$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Product galler

Nearest even algorithm (N = 8) Goal: $S(L_1) = \bigcup_{(j,a) \in A_1} T^{-a} L_j$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Nearest even Product galler

Nearest even algorithm (N = 8) Goal: $S(L_1) = \bigcup_{(j,a) \in A_1} T^{-a}L_j$

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Product galler

Nearest even algorithm (N = 8)

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Nearest even Product gallery

Nearest even algorithm (N = 8)

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Vicual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even

Product galler

Nearest even algorithm (N = 8)

Adam Abrams

Complex c. f

Gauss map

- Natural extensions Philosophy
- Finite building property Cells
- Simple lemma

Visual process

Construction Verification Results

Finite product structure

- System Experimentation
- Nearest even Product galler

Nearest even algorithm (N = 8)

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property

Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Finite product structures

For each algorithm, the set

$$\Omega = \bigcup_{i=1}^{N} K_i \times L_i$$

is a bijectivity domain for $G : \mathbb{C} \times \mathbb{C} \to \mathbb{C} \times \mathbb{C}$, and $G|_{\Omega}$ is the natural extension of the Gauss map $g : K \to K$.

As a conclusion, here are images of K_i and L_i for various algorithms.

• In many cases only a few sets are shown (not all N) because the rest are rotations or reflections.

Partitions and ${\mathbb C}$ continued fractions

Adam Abrams

Natural

Cells

Results

Nearest even Product gallery

etc.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Diamond algorithm (N = 12)

 L_2

etc.

etc.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple Jemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

etc.

Disk algorithm (N = 5)

Partitions and $\mathbb C$ continued fractions

Adam Abrams

Natural

Results

Nearest even Product gallery

etc.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Hurwitz algorithm (N = 12)

etc.

Adam Abrams

Complex c. f

Gauss map

Natural extensions Philosophy

Finite building property Cells Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

Hurwitz algorithm (N = 12)

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

One last choice function

Dual-Hurwitz algorithm⁵

⁵ Hiromi Ei, Shunji Ito, Hitoshi Nakada, Rie Natsui, 2019.

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

One last choice function

Dual-Hurwitz algorithm⁵

⁵ Hiromi Ei, Shunji Ito, Hitoshi Nakada, Rie Natsui, 2019.

Adam Abrams

Complex c. f.

Gauss map

Natural extensions Philosophy

Finite building property Cells

Simple lemma

Visual process

Construction Verification Results

Finite product structure

System Experimentation Nearest even Product gallery

One last choice function

Dual-Hurwitz algorithm⁵

⁵ Hiromi Ei, Shunji Ito, Hitoshi Nakada, Rie Natsui, 2019.

Thank you!