On the dimension of points which escape to infinity at given rate under exponential iteration

Krzysztof Barański
University of Warsaw

On geometric complexity of Julia sets II, 25 August 2020

This is a joint work with
Bogusława Karpińska (Warsaw University of Technology)

Escaping set and Julia set

Let

$$
f: \mathbb{C} \rightarrow \mathbb{C}
$$

be a transcendental entire map.
The escaping set is defined as

$$
I(f)=\left\{z \in \mathbb{C}:\left|f^{n}(z)\right| \rightarrow \infty \text { as } n \rightarrow \infty\right\}
$$

while the Julia set $J(f)$ is
$J(f)=\left\{z \in \mathbb{C}:\left\{f^{n}\right\}_{n=1}^{\infty}\right.$ is not a normal family in any nbhd of $\left.z\right\}$.

- $J(f)=\partial I(f) \quad$ (Eremenko 1989)
- $J(f)=\overline{I(f)}$ for $f \in \mathcal{B} \quad$ (Eremenko and Lyubich 1992)
$\mathcal{B}=\{$ maps with bounded set of critical and asymptotic values $\}$

Dimension of escaping set and Julia set

The exponential map is defined as

$$
E_{\lambda}(z)=\lambda e^{z}, \quad z \in \mathbb{C}, \quad \lambda \in \mathbb{C} \backslash\{0\} .
$$

- The Julia sets of exponential maps have Hausdorff dimension 2 (Mcmullen 1987)
- Since then, many results on the dimension of $J(f), I(f)$ and their dynamically defined subsets (Bergweiler, Bishop, Karpińska, Kotus, Mayer, Osborne, Pawelec, Peter, Rempe-Gillen, Rippon, Rottenfußer, Rückert, Schleicher, Schubert, Sixsmith, Stallard, Urbański, Waterman, Zdunik, Zheng, Zimmer,...)

Various kinds of escaping

- Fast escaping set (Bergweiler and Hinkkanen 1999)

$$
A(f)=\left\{z \in I(f):\left|f^{n+I}(z)\right| \geq M_{f}^{n}(R), n \in \mathbb{N}, \text { for some } I \geq 0\right\}
$$ for $M_{f}(r)=\max _{|z|=r}|f(z)|$.

- Moderately slow escaping set (Rippon and Stallard 2011)

$$
M(f)=\left\{z \in I(f): \limsup _{n \rightarrow \infty} \frac{1}{n} \log \log \left|f^{n}(z)\right|<\infty\right\}
$$

- Slow escaping set (Rippon and Stallard 2011)

$$
L(f)=\left\{z \in I(f): \limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|f^{n}(z)\right|<\infty\right\}
$$

Theorem (Bergweiler, Karpińska, Stallard 2009, Rippon and Stallard 2014)
Fast escaping set has Hausdorff dimension 2 for $f \in \mathcal{B}$ of finite order or 'not too large' infinite order.

Sets with prescribed escape rate

For sequences $\underline{a}=\left(a_{n}\right)_{n=1}^{\infty}, \underline{b}=\left(b_{n}\right)_{n=1}^{\infty}$ with $0<a_{n} \leq b_{n}$ let

$$
\begin{aligned}
& \underline{I_{a}(f)}=\left\{z:\left|f^{n}(z)\right| \geq a_{n} \text { for large } n \in \mathbb{N}\right\} \\
& \underline{\underline{b}}(f)=\left\{z:\left|f^{n}(z)\right| \leq b_{n} \text { for large } n \in \mathbb{N}\right\} \\
& \underline{\underline{\underline{b}} \underline{\underline{b}}}(f)=\left\{z: a_{n} \leq\left|f^{n}(z)\right| \leq b_{n} \text { for large } n \in \mathbb{N}\right\}
\end{aligned}
$$

Remark
To guarantee that the sets are consideration are not empty, one usually assumes that the sequence \underline{a} is admissible, which roughly means $a_{n+1}<M_{f}\left(a_{n}\right)$.

Some results on $\operatorname{lb}(f)$

- $\underline{\underline{\underline{b}}}\left(E_{\lambda}\right) \neq \emptyset$ for every admissible sequence $\underline{a}=\left(a_{n}\right)_{n=1}^{\infty}$ with $a_{n} \rightarrow \infty$ and $b_{n}=c a_{n}, c>1$ (Rempe 2006)
- The same holds for arbitrary transcendental entire (or meromorphic) maps f (Rippon and Stallard 2011)
- $\operatorname{dim}_{H}(I(f) \cap I \underline{b}(f)) \geq 1$ for every transcendental entire map f in the class \mathcal{B} and $b_{n} \rightarrow \infty \quad$ (Bergweiler and Peter 2013)

Remark

The Julia sets of exponential maps contain hairs (Devaney and Krych 1984, Devaney and Tangerman 1986, Schleicher and Zimmer 2003). For exponential maps with an attracting fixed point the Julia set is the union of hairs together with their endpoints (Aarts and Oversteegen 1993). The hairs without endpoints are contained in the fast escaping set (Rempe, Rippon and Stallard 2010).

Results on $\operatorname{Ib}\left(E_{\lambda}\right)$

In 2016 Sixsmith proved that $\operatorname{dim}_{H} \underline{\underline{\underline{b}}}\left(E_{\lambda}\right) \leq 1$ for admissible sequences $\underline{a}=\left(a_{n}\right)_{n=1}^{\infty}$ with $a_{n} \rightarrow \infty$ and $b_{n}=c a_{n}$ for $c>1$. Moreover, he showed $\operatorname{dim}_{H} l \frac{b}{a}\left(E_{\lambda}\right)=1$ in the following cases:
(a) $a_{n}=c_{1} R^{n}$ and $b_{n}=c_{2} R^{n}, c_{1}, c_{2}>0, R>1$
(b) $a_{n}=n^{\left(\log ^{+}\right)^{p}(n)}$ and $b_{n}=R^{n}$, where $\left(\log ^{+}\right)^{p}$ denotes the p-th iterate of $\log ^{+}$, for $p \in \mathbb{N}, R>1$,
(c) $a_{n}=e^{n\left(\log ^{+}\right)^{p}(n)}$ and $b_{n}=e^{e^{\rho n}}$ for $p \in \mathbb{N}$,
(d) $\frac{\log a_{n+1}}{\log \left(a_{1} \cdots a_{n}\right)}=0, b_{n}=c a_{n}$ for large $c>1$.

Remark

In the cases (a)-(b) the sets $I \frac{\underline{a}}{\underline{b}}\left(E_{\lambda}\right)$ are contained in the slow escaping set, while in the cases (c)-(d) they are in the moderately slow escaping set.

Remarks

Points with bounded and unbounded trajectories

Let

$$
K(f)=\left\{z \in J(f):\left\{f^{n}(z)\right\}_{n=1}^{\infty} \text { is bounded }\right\}
$$

- $\operatorname{dim}_{H}\left(K\left(E_{\lambda}\right)\right)>1 \quad$ (Karpińska 1999)
- $\operatorname{dim}_{H}\left(J\left(E_{\lambda}\right) \backslash I\left(E_{\lambda}\right)\right) \in(1,2)$ for hyperbolic exponential maps (Urbański and Zdunik 2003)
- $\operatorname{dim}_{H}(K(f))>1$ for $f \in \mathcal{B} \quad$ (B, Karpińska and Zdunik 2009)
- $\operatorname{dim}_{H}(J(f) \backslash(I(f) \cup K(f))>1$ for $f \in \mathcal{B} \quad$ (Osborne and Sixsmith 2016)

Symbolic itineraries
In 2006 Karpińska and Urbański computed the Hausdorff dimension of subsets of $A\left(E_{\lambda}\right)$ consisting of points whose symbolic itineraries (describing the imaginary part of $f^{n}(z)$) grow to infinity at a given rate. Possible values of dimension cover [1, 2].

Setup

We consider non-autonomous exponential iteration

$$
E_{\underline{\lambda}}=\left(E_{\lambda_{n}} \circ \cdots \circ E_{\lambda_{1}}\right)_{n=1}^{\infty}
$$

for $\underline{\lambda}=\left(\lambda_{n}\right)_{n=1}^{\infty} \subset \Lambda^{\mathbb{N}}$, where $\Lambda \subset \mathbb{C} \backslash\{0\}$. We assume that $\bar{\Lambda}$ is a compact set in $\mathbb{C} \backslash\{0\}$ and set

$$
\lambda_{\min }=\inf _{\lambda \in \Lambda}|\lambda|, \quad \lambda_{\max }=\sup _{\lambda \in \Lambda}|\lambda| .
$$

For $\underline{a}=\left(a_{n}\right)_{n=1}^{\infty}, \underline{b}=\left(b_{n}\right)_{n=1}^{\infty}$ with $0<a_{n} \leq b_{n}$ we consider

$$
I \underline{\underline{a}}\left(E_{\underline{\lambda}}\right)=\left\{z: a_{n} \leq\left|E_{\lambda_{n}} \circ \cdots \circ E_{\lambda_{1}}(z)\right| \leq b_{n} \text { for large } n \in \mathbb{N}\right\} .
$$

Remark

The sequences \underline{a} and \underline{b} need not tend to infinity and need not be increasing. We only assume $\left(a_{1} \cdots a_{n}\right)^{\frac{1}{n}} \rightarrow \infty$.

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is admissible, if $a_{n}>100 \lambda_{\max }$ and
$a_{n+1} \leq\left|\lambda_{n+1}\right| e^{q a_{n}}$ for large n and a constant $q<1$.
If $a_{n} \rightarrow \infty$, then the condition reduces to $a_{n+1} \leq e^{q a_{n}}, q<1$.
We study the Hausdorff $\left(\operatorname{dim}_{H}\right)$ and packing $\left(\operatorname{dim}_{P}\right)$ dimension of the sets $I \frac{b}{\underline{a}}\left(E_{\underline{\lambda}}\right)$.
Remark
We have

$$
\operatorname{dim}_{H} \leq \operatorname{dim}_{P}
$$

Moreover,

$$
\overline{\operatorname{dim}}_{B}\left(I_{\underline{\underline{b}}}^{\underline{b}}\left(E_{\underline{\lambda}}\right) \cap \mathbb{D}(0, r)\right)=\operatorname{dim}_{P} \underline{l \underline{\underline{b}}}\left(E_{\underline{\lambda}}\right)
$$

for every large $r>0$, where $\overline{\operatorname{dim}}_{B}$ denotes the upper box dimension (Rippon and Stallard 2005).

Theorem (B and Karpińska 2020)

If $a_{n}>100 \lambda_{\text {max }}$ for large n and $\liminf _{n \rightarrow \infty}\left(\frac{\log \frac{b_{n+1}}{a_{n+1}}}{a_{1} \cdots a_{n}}\right)^{\frac{1}{n}}=0$, then

$$
\operatorname{dim}_{H} \underline{\underline{\underline{a}}\left(\frac{b}{b}\right.}\left(E_{\underline{\lambda}}\right) \leq 1 .
$$

In particular, this holds provided

$$
\lim _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=\infty \quad \text { and } \quad \liminf _{n \rightarrow \infty} \frac{\log \log \frac{b_{n+1}}{a_{n+1}}}{\log \left(a_{1} \cdots a_{n}\right)}<1
$$

or

$$
\limsup _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=\infty \quad \text { and } \quad \limsup _{n \rightarrow \infty} \frac{\log \log \frac{b_{n+1}}{a_{n+1}}}{\log \left(a_{1} \cdots a_{n}\right)}<1
$$

Remark

In Theorem 8 we can allow $\lambda_{\text {min }}=0$.

Theorem (B and Karpińska 2020)
If $\left(a_{n}\right)_{n=1}^{\infty}$ is admissible, $\lim _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=\infty$ and $b_{n} \geq c a_{n}$ for $c>1$, then

$$
\begin{aligned}
& 1+\inf _{x} \liminf _{n \rightarrow \infty} \phi_{n}(x) \leq \operatorname{dim}_{H} I \underline{\underline{\underline{b}}}\left(E_{\underline{\lambda}}\right) \leq 1+\sup _{x} \liminf _{n \rightarrow \infty} \phi_{n}(x), \\
& 1+\inf _{x} \limsup _{n \rightarrow \infty} \psi_{n}(x) \leq \operatorname{dim} P I \underline{\underline{\underline{b}}}\left(E_{\underline{\lambda}}\right) \leq 1+\sup _{x} \limsup _{n \rightarrow \infty} \psi_{n}(x),
\end{aligned}
$$

where $x=\left(x_{1}, x_{2}, \ldots\right) \in\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots$ and

$$
\begin{aligned}
& \phi_{n}(x)=\frac{\log \left(\min \left(\log \frac{b_{2}}{a_{2}}, x_{1}\right) \cdots \min \left(\log \frac{b_{n}}{a_{n}}, x_{n-1}\right)\right)}{\log \left(x_{1} \cdots x_{n}\right)-\log \min \left(\log \frac{b_{n+1}}{a_{n+1}}, x_{n}\right)} \\
& \psi_{n}(x)=\frac{\log \left(\min \left(\log \frac{b_{2}}{a_{2}}, x_{1}\right) \cdots \min \left(\log \frac{b_{n+1}}{a_{n+1}}, x_{n}\right)\right)}{\log \left(x_{1} \cdots x_{n}\right)}
\end{aligned}
$$

Corollary

If $\left(a_{n}\right)_{n=1}^{\infty}$ is admissible, $\lim _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=\infty$ and $b_{n} \geq c a_{n}$ for $c>1$, then
$1 \leq \operatorname{dim}_{H} I \underline{\underline{b}}\left(E_{\underline{\lambda}}\right) \leq 1+\liminf _{n \rightarrow \infty} \frac{\log \left(\log \frac{b_{1}}{a_{1}} \cdots \log \frac{b_{n}}{a_{n}}\right)}{\log \left(a_{1} \cdots a_{n-1}\right)+\log ^{+} \frac{a_{n}}{\log \left(b_{n+1} / a_{n+1}\right)}}$,
$1 \leq \operatorname{dim}_{P} I \frac{\underline{b}}{\underline{a}}\left(E_{\underline{\lambda}}\right) \leq 1+\limsup _{n \rightarrow \infty} \frac{\log \left(\log \frac{b_{1}}{a_{1}} \cdots \log \frac{b_{n+1}}{a_{n+1}}\right)}{\log \left(a_{1} \cdots a_{n}\right)}$.
If, additionally, $\log \frac{b_{n+1}}{a_{n+1}} \leq C a_{n}$ for $C>1$ (e.g. if $\left.b_{n} \leq a_{n}^{C}\right)$ for large n, then

$$
\begin{aligned}
& \operatorname{dim}_{H} I \underline{\underline{b}}\left(E_{\underline{\lambda}}\right)=1 \\
& \operatorname{dim}_{P} I_{\underline{a}}^{\underline{a}}\left(E_{\underline{\lambda}}\right) \geq 1+\limsup _{n \rightarrow \infty} \frac{\log \left(\log \frac{b_{1}}{a_{1}} \cdots \log \frac{b_{n+1}}{a_{n+1}}\right)}{\log \left(b_{1} \cdots b_{n}\right)}
\end{aligned}
$$

Corollary

Suppose $\left(a_{n}\right)_{n=1}^{\infty}$ is admissible, $\lim _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=\infty$ and $b_{n} \geq c a_{n}$ for $c>1$.
(a) If $\lim _{n \rightarrow \infty} \frac{\log \log \frac{b_{n+1}}{a_{n+1}}}{\log a_{n}}=0$, then $\operatorname{dim}_{H} l \underline{\underline{b}}\left(E_{\underline{\lambda}}\right)=\operatorname{dim}_{P} l \underline{\underline{a}}\left(E_{\underline{\lambda}}\right)=1$.
(b) If $\liminf \log _{n \rightarrow \infty} \frac{\log \log \frac{b_{n+1}}{a_{n+1}}}{\log a_{n}}<1$, then $\operatorname{dim}_{H} \underline{\underline{\underline{b}}}\left(E_{\underline{\lambda}}\right)=1$.
(c) If $\liminf _{n \rightarrow \infty} \frac{\log \log \frac{b_{n+1}}{a_{n+1}}}{\log b_{n}} \geq 1$, then $\operatorname{dim}_{P} I \underline{\underline{\underline{b}}}\left(E_{\underline{\lambda}}\right)=2$.
(d) If $\liminf _{n \rightarrow \infty} \frac{\log \log \frac{b_{n+1}}{a_{n+1}}}{\log b_{n}}>1$, then $\operatorname{dim}_{H} l \underline{\underline{\underline{b}}}\left(E_{\underline{\lambda}}\right)=\operatorname{dim}_{P} I \underline{\underline{\underline{b}}}\left(E_{\underline{\lambda}}\right)=2$.

Remark

The assertions (b)-(c) imply that if $\operatorname{dim}_{P} \underline{l}_{\underline{a}}^{\underline{b}}\left(E_{\underline{\lambda}}\right)<2$, then $\operatorname{dim}_{H} I \underline{\underline{a}}\left(E_{\underline{\lambda}}\right)=1$.

Moderately slowly escaping points

Corollary

(a) If $a_{n}>100 \lambda_{\text {max }}$ for large $n, \lim _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{\frac{1}{n}}=\infty$ and $\liminf _{n \rightarrow \infty}\left(\log b_{n}\right)^{1 / n}<\infty$, then $\operatorname{dim}_{H} \frac{\underline{\underline{b}}}{\underline{\underline{(}}}\left(E_{\underline{\lambda}}\right) \leq 1$.
(b) If, additionally, $\left(a_{n}\right)_{n=1}^{\infty}$ is admissible and $b_{n} \geq c a_{n}$ for $c>1$, then $\operatorname{dim}_{H} \operatorname{l} \frac{\underline{b}}{\underline{b}}\left(E_{\lambda}\right)=1$.

In particular, if $\left(a_{n}\right)_{n=1}^{\infty}$ is admissible, $b_{n} \geq c a_{n}$ for $c>1$ and $I_{\underline{\underline{b}}}^{\underline{b}}\left(E_{\boldsymbol{\lambda}}\right)$ is contained in the moderately slow escaping set

$$
M\left(E_{\underline{\lambda}}\right)=\left\{z \in I\left(E_{\underline{\lambda}}\right): \limsup _{n \rightarrow \infty} \frac{1}{n} \log \log \left|E_{\lambda_{n}} \circ \cdots \circ E_{\lambda_{1}}(z)\right|<\infty\right\},
$$

then $\operatorname{dim}_{H} I_{\underline{a}}^{\underline{b}}\left(E_{\underline{\lambda}}\right)=1$.

Points with exact growth rate

Definition

We say that the iterations of a point $z \in \mathbb{C}$ under $E_{\underline{\lambda}}$ have growth rate $\underline{a}=\left(a_{n}\right)_{n=1}^{\infty}$, if $z \in I_{\underline{a} / c}^{c \underline{a}}\left(E_{\underline{\lambda}}\right)$ for some constant $\underline{c}>1$, i.e.

$$
\frac{a_{n}}{c} \leq\left|E_{\lambda_{n}} \circ \cdots \circ E_{\lambda_{1}}(z)\right| \leq c a_{n}
$$

for large n.
Corollary
(a) If $\underline{a}=\left(a_{n}\right)_{n=1}^{\infty}$ is admissible and $\lim _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=\infty$, then the set of points with growth rate \underline{a} has Hausdorff dimension 1 .
(b) If $\underline{a}=\left(a_{n}\right)_{n=1}^{\infty}$ is admissible and $\lim _{n \rightarrow \infty} a_{n}=\infty$, then the set of points with growth rate a has Hausdorff and packing dimension 1.

Precise dimension formulas

Theorem
If $\left(a_{n}\right)_{n=1}^{\infty}$ is admissible, $\lim _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=\infty, b_{n} \geq c a_{n}$ for
$c>1$ and $\lim _{n \rightarrow \infty} \frac{\log b_{n}}{\log a_{n}}=1$, then
$\operatorname{dim}_{H} I \underline{\underline{a}}\left(E_{\underline{\lambda}}\right)=1$,

$$
\operatorname{dim}_{P} I \underline{\underline{\underline{a}}}\left(E_{\underline{\lambda}}\right)=1+\limsup _{n \rightarrow \infty} \frac{\log \left(\log \frac{b_{1}}{a_{1}} \cdots \log \frac{b_{n+1}}{a_{n+1}}\right)}{\log \left(a_{1} \cdots a_{n}\right)} .
$$

Theorem
For every $D \in[1,2]$ there exist $\underline{a}=\left(a_{n}\right)_{n=1}^{\infty}, \underline{b}=\left(b_{n}\right)_{n=1}^{\infty}$ with $a_{n} \rightarrow \infty, b_{n} \geq a_{n}$, such that

$$
\operatorname{dim}_{H} l \underline{\underline{b}}\left(E_{\underline{\lambda}}\right)=1, \quad \operatorname{dim}_{P} I_{\underline{a}}^{\underline{b}}\left(E_{\underline{\lambda}}\right)=D .
$$

Proof.
If $a_{n+1}=e^{n a_{n}^{d}}$ for $d \in[0,1), b_{n}=a_{n}^{1+\frac{1}{n}}$, then $\operatorname{dim}_{H} l \underline{\underline{a}}\left(E_{\underline{\lambda}}\right)=1, \operatorname{dim}_{P} l \underline{\underline{a}}\left(E_{\underline{\lambda}}\right)=1+d$.
If $a_{n+1}=e^{n a_{n}^{(n-1) / n}}, b_{n}=a_{n}^{1+\frac{1}{n}}$, then
$\operatorname{dim}_{H} l \underline{\underline{a}}\left(E_{\underline{\lambda}}\right)=1, \operatorname{dim}_{P} l \underline{\underline{a}}\left(E_{\underline{\lambda}}\right)=2$.

Annular itineraries

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a transcendental entire map, $R_{s}, s \geq 0$, be a sequence of positive numbers increasing to infinity and

$$
\mathcal{A}_{s}=\left\{z \in \mathbb{C}: R_{s} \leq|z|<R_{s+1}\right\} .
$$

Definition (Rippon and Stallard 2015)
Annular itinerary of a point $z \in \mathbb{C}$ is a sequence $\underline{s}(z)=\left(s_{n}\right)_{n=0}^{\infty}$ defined by the condition $f^{n}(z) \in \mathcal{A}_{s_{n}}, n \geq 0$.

Annular itineraries in non-autonomous iteration

$$
\underline{s}(z)=\left(s_{n}\right)_{n=0}^{\infty} \Longleftrightarrow E_{\lambda_{n}} \circ \cdots \circ E_{\lambda_{1}}(z) \in \mathcal{A}_{s_{n}} .
$$

For given symbolic sequence $\underline{s}=\left(s_{n}\right)_{n=0}^{\infty}$ let

$$
\mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=\{z \in \mathbb{C}: \underline{s}(z)=\underline{s}\}
$$

Fact

$$
\mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=1 \underline{\underline{\underline{b}}}\left(E_{\underline{\lambda}}\right) \quad \text { for } \quad a_{n}=R_{s_{n}}, \quad b_{n}=R_{s_{n}+1} .
$$

Definition
We say that a sequence $\underline{s}=\left(s_{n}\right)_{n=0}^{\infty}$ is admissible, if the sequence $\left(a_{n}\right)_{n=1}^{\infty}, a_{n}=R_{s_{n}}$, is admissible.

Case $R_{s}=R^{s}$

$$
\mathcal{A}_{s}=\left\{z \in \mathbb{C}: R^{s} \leq|z|<R^{s+1}\right\} \quad \text { for a large } R>1 .
$$

Theorem
(a) If $\limsup _{n \rightarrow \infty} \frac{\sin _{1}+\cdots+s_{n}}{n}=\infty$, then $\operatorname{dim}_{H} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right) \leq 1$.
 $\operatorname{dim}_{H} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=\operatorname{dim}_{P} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=1$.

Proof.
$\operatorname{dim} \mathcal{I}_{\underline{s}}\left(f_{\boldsymbol{\lambda}}\right)=\operatorname{dim} I_{\underline{\underline{b}}}^{\underline{b}}\left(f_{\underline{\lambda}}\right) \quad$ for $\quad a_{n}=R^{s_{n}}, b_{n}=R^{s_{n}+1}$.
Remark
This answers a question from [Sixsmith 2016].

Case $R_{s}=R^{s^{\kappa}}$

$$
\mathcal{A}_{s}=\left\{z \in \mathbb{C}: R^{s^{\kappa}} \leq|z|<R^{(s+1)^{\kappa}}\right\} \quad \text { for a large } R>1, \kappa>1 .
$$

Theorem
(a) If $\limsup _{n \rightarrow \infty} \frac{s_{1}^{\kappa}+\cdots+s_{n}^{\kappa}}{n}=\infty$ and \underline{s} is admissible, then $\operatorname{dim}_{H} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right) \leq 1$.
(b) If $\lim _{n \rightarrow \infty} s_{n}=\infty$ and \underline{s} is admissible, then:

$$
\begin{aligned}
& \operatorname{dim}_{H} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=1 \\
& \operatorname{dim}_{P} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=1+\frac{\kappa-1}{\log R} \limsup _{n \rightarrow \infty} \frac{\log s_{n+1}}{s_{1}^{\kappa}+\cdots+s_{n}^{\kappa}}, \\
& \operatorname{dim}_{P} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)<2-\frac{1}{\kappa} .
\end{aligned}
$$

Proof.
$\operatorname{dim} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=\operatorname{dim} I \underline{\underline{\underline{b}}}\left(E_{\underline{\lambda}}\right) \quad$ for $\quad a_{n}=R^{s_{n}^{\kappa}}, b_{n}=R^{\left(s_{n}+1\right)^{\kappa}}$.

Theorem
For every $D \in\left[1,2-\frac{1}{\kappa}\right)$ there exists a sequence $\underline{s}=\left(s_{n}\right)_{n=0}^{\infty}$ with $s_{n} \rightarrow \infty$ such that

$$
\operatorname{dim}_{H} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=1, \quad \operatorname{dim}_{P} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=D .
$$

Proof.
If $s_{n+1}=R^{\frac{d}{\kappa-1} s_{n}^{\kappa}}$ for $d \in\left[0,1-\frac{1}{\kappa}\right.$), then \underline{s} is admissible and $\operatorname{dim}_{H} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=1, \operatorname{dim}_{P} \mathcal{I}_{\underline{s}}\left(E_{\underline{\lambda}}\right)=1+d$.

Proofs of main theorems - preliminaries

For a fixed $N \geq 0$ let

$$
\begin{gathered}
A_{n}=\log \frac{a_{N+n}}{\left|\lambda_{N+n}\right|}, \quad B_{n}=\log \frac{b_{N+n}}{\left|\lambda_{N+n}\right|}, \quad \Delta_{n}=B_{n}-A_{n}, \\
S_{n}=\left\{z: A_{n} \leq \operatorname{Re}(z) \leq B_{n}\right\}
\end{gathered}
$$

Fact

$$
a_{N+n} \leq\left|E_{\lambda_{N+n}}(z)\right| \leq b_{N+n} \Longleftrightarrow z \in S_{n} .
$$

Consequently, $\operatorname{dim} l \underline{\underline{b}}\left(E_{\underline{\lambda}}\right)=\lim _{N \rightarrow \infty} \operatorname{dim} J_{N}=\sup _{N} \operatorname{dim} J_{N}$ for

$$
J_{N}=\left\{z: E_{\lambda_{N+n}} \circ \cdots \circ E_{\lambda_{N}}(z) \in S_{n+1} \text { for } n \geq 0\right\}
$$

Proofs of main theorems - notation

For a small fixed $\delta>0, j \geq 0, k \in \mathbb{Z}$ let
$K_{j, k}^{(n)}=[j \delta,(j+1) \delta) \times\left[-\frac{\pi}{2}-\operatorname{Arg} \lambda_{N+n}+2 k \pi, \frac{\pi}{2}-\operatorname{Arg} \lambda_{N+n}+2 k \pi\right]$, $U_{j}^{(n)}=E_{\lambda_{N+n}}\left(K_{j, k}^{(n)}\right)=\left\{z:\left|\lambda_{N+n}\right| e^{j \delta} \leq|z|<\left|\lambda_{N+n}\right| e^{(j+1) \delta}, \operatorname{Re}(z) \geq 0\right\}$. $Q_{k}^{(n)}=\left\{z \in \mathbb{C}: A_{n} \leq \operatorname{Re}(z) \leq B_{n}, \Delta_{n} k \leq \operatorname{lm}(z) \leq \Delta_{n}(k+1)\right\}$, $g_{k}^{(n)}$ inverse branches of $E_{\lambda_{N+n}}$.

Proofs of the main theorems - construction

Thank you for attention!

