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Escaping set and Julia set
Let

f : C→ C

be a transcendental entire map.
The escaping set is defined as

I (f ) = {z ∈ C : |f n(z)| → ∞ as n→∞},

while the Julia set J(f ) is

J(f ) = {z ∈ C : {f n}∞n=1 is not a normal family in any nbhd of z}.

• J(f ) = ∂I (f ) (Eremenko 1989)
• J(f ) = I (f ) for f ∈ B (Eremenko and Lyubich 1992)

B = {maps with bounded set of critical and asymptotic values}



Dimension of escaping set and Julia set

The exponential map is defined as

Eλ(z) = λez , z ∈ C, λ ∈ C \ {0}.

• The Julia sets of exponential maps have Hausdorff dimension 2
(Mcmullen 1987)
• Since then, many results on the dimension of J(f ), I (f ) and

their dynamically defined subsets (Bergweiler, Bishop,
Karpińska, Kotus, Mayer, Osborne, Pawelec, Peter,
Rempe-Gillen, Rippon, Rottenfußer, Rückert, Schleicher,
Schubert, Sixsmith, Stallard, Urbański, Waterman, Zdunik,
Zheng, Zimmer,...)



Various kinds of escaping
• Fast escaping set (Bergweiler and Hinkkanen 1999)

A(f ) = {z ∈ I (f ) : |f n+l(z)| ≥ Mn
f (R), n ∈ N, for some l ≥ 0}

for Mf (r) = max|z|=r |f (z)|.
• Moderately slow escaping set (Rippon and Stallard 2011)

M(f ) = {z ∈ I (f ) : lim sup
n→∞

1
n

log log |f n(z)| <∞}

• Slow escaping set (Rippon and Stallard 2011)

L(f ) = {z ∈ I (f ) : lim sup
n→∞

1
n

log |f n(z)| <∞}

Theorem (Bergweiler, Karpińska, Stallard 2009, Rippon and
Stallard 2014)
Fast escaping set has Hausdorff dimension 2 for f ∈ B of finite
order or ‘not too large’ infinite order.



Sets with prescribed escape rate

For sequences a = (an)∞n=1, b = (bn)∞n=1 with 0 < an ≤ bn let

Ia(f ) = {z : |f n(z)| ≥ an for large n ∈ N},
I b(f ) = {z : |f n(z)| ≤ bn for large n ∈ N},
I ba (f ) = {z : an ≤ |f n(z)| ≤ bn for large n ∈ N}.

Remark
To guarantee that the sets are consideration are not empty, one
usually assumes that the sequence a is admissible, which roughly
means an+1 < Mf (an).



Some results on I ba (f )

• I
b
a (Eλ) 6= ∅ for every admissible sequence a = (an)∞n=1 with
an →∞ and bn = can, c > 1 (Rempe 2006)
• The same holds for arbitrary transcendental entire (or

meromorphic) maps f (Rippon and Stallard 2011)
• dimH(I (f ) ∩ I b(f )) ≥ 1 for every transcendental entire map f

in the class B and bn →∞ (Bergweiler and Peter 2013)

Remark
The Julia sets of exponential maps contain hairs (Devaney and
Krych 1984, Devaney and Tangerman 1986, Schleicher and Zimmer
2003). For exponential maps with an attracting fixed point the
Julia set is the union of hairs together with their endpoints (Aarts
and Oversteegen 1993). The hairs without endpoints are contained
in the fast escaping set (Rempe, Rippon and Stallard 2010).



Results on I ba (Eλ)

In 2016 Sixsmith proved that dimH I
b
a (Eλ) ≤ 1 for admissible

sequences a = (an)∞n=1 with an →∞ and bn = can for c > 1.
Moreover, he showed dimH I

b
a (Eλ) = 1 in the following cases:

(a) an = c1R
n and bn = c2R

n, c1, c2 > 0, R > 1
(b) an = n(log+)p(n) and bn = Rn, where (log+)p denotes the p-th

iterate of log+, for p ∈ N, R > 1,
(c) an = en(log+)p(n) and bn = ee

pn
for p ∈ N,

(d) log an+1
log(a1···an) = 0, bn = can for large c > 1.

Remark
In the cases (a)–(b) the sets I ba (Eλ) are contained in the slow
escaping set, while in the cases (c)–(d) they are in the moderately
slow escaping set.



Remarks
Points with bounded and unbounded trajectories
Let

K (f ) = {z ∈ J(f ) : {f n(z)}∞n=1 is bounded}.

• dimH(K (Eλ)) > 1 (Karpińska 1999)
• dimH(J(Eλ) \ I (Eλ)) ∈ (1, 2) for hyperbolic exponential maps

(Urbański and Zdunik 2003)
• dimH(K (f )) > 1 for f ∈ B (B, Karpińska and Zdunik 2009)
• dimH(J(f ) \ (I (f ) ∪ K (f )) > 1 for f ∈ B (Osborne and

Sixsmith 2016)

Symbolic itineraries
In 2006 Karpińska and Urbański computed the Hausdorff dimension
of subsets of A(Eλ) consisting of points whose symbolic itineraries
(describing the imaginary part of f n(z)) grow to infinity at a given
rate. Possible values of dimension cover [1, 2].



Setup
We consider non-autonomous exponential iteration

Eλ = (Eλn ◦ · · · ◦ Eλ1)∞n=1

for λ = (λn)∞n=1 ⊂ ΛN, where Λ ⊂ C \ {0}. We assume that Λ is a
compact set in C \ {0} and set

λmin = inf
λ∈Λ
|λ|, λmax = sup

λ∈Λ
|λ|.

For a = (an)∞n=1, b = (bn)∞n=1 with 0 < an ≤ bn we consider

I ba (Eλ) = {z : an ≤ |Eλn ◦ · · · ◦ Eλ1(z)| ≤ bn for large n ∈ N}.

Remark
The sequences a and b need not tend to infinity and need not be
increasing. We only assume (a1 · · · an)

1
n →∞.



Definition
A sequence (an)∞n=1 is admissible, if an > 100λmax and
an+1 ≤ |λn+1|eqan for large n and a constant q < 1.
If an →∞, then the condition reduces to an+1 ≤ eqan , q < 1.

We study the Hausdorff (dimH) and packing (dimP) dimension of
the sets I ba (Eλ).

Remark
We have

dimH ≤ dimP .

Moreover,

dimB(I ba (Eλ) ∩ D(0, r)) = dimP I ba (Eλ)

for every large r > 0, where dimB denotes the upper box dimension
(Rippon and Stallard 2005).



Theorem (B and Karpińska 2020)

If an > 100λmax for large n and lim inf
n→∞

(
log bn+1

an+1

a1 · · · an

) 1
n

= 0, then

dimH I ba (Eλ) ≤ 1.

In particular, this holds provided

lim
n→∞

(a1 · · · an)1/n =∞ and lim inf
n→∞

log log bn+1
an+1

log(a1 · · · an)
< 1

or

lim sup
n→∞

(a1 · · · an)1/n =∞ and lim sup
n→∞

log log bn+1
an+1

log(a1 · · · an)
< 1.

Remark
In Theorem 8 we can allow λmin = 0.



Theorem (B and Karpińska 2020)
If (an)∞n=1 is admissible, lim

n→∞
(a1 · · · an)1/n =∞ and bn ≥ can for

c > 1, then

1 + inf
x

lim inf
n→∞

φn(x) ≤ dimH I ba (Eλ) ≤ 1 + sup
x

lim inf
n→∞

φn(x),

1 + inf
x

lim sup
n→∞

ψn(x)≤ dimP I ba (Eλ) ≤ 1 + sup
x

lim sup
n→∞

ψn(x),

where x = (x1, x2, . . .) ∈ [a1, b1]× [a2, b2]× · · · and

φn(x) =
log
(

min(log b2
a2
, x1) · · ·min(log bn

an
, xn−1)

)
log(x1 · · · xn)− log min(log bn+1

an+1
, xn)

,

ψn(x) =
log
(

min(log b2
a2
, x1) · · ·min(log bn+1

an+1
, xn)

)
log(x1 · · · xn)

.



Corollary
If (an)∞n=1 is admissible, lim

n→∞
(a1 · · · an)1/n =∞ and bn ≥ can for

c > 1, then

1 ≤ dimH I ba (Eλ) ≤ 1 + lim inf
n→∞

log
(

log b1
a1
· · · log bn

an

)
log(a1 · · · an−1) + log+ an

log(bn+1/an+1)

,

1 ≤ dimP I ba (Eλ) ≤ 1 + lim sup
n→∞

log
(

log b1
a1
· · · log bn+1

an+1

)
log(a1 · · · an)

.

If, additionally, log bn+1
an+1
≤ Can for C > 1 (e.g. if bn ≤ aCn ) for large

n, then

dimH I ba (Eλ) = 1,

dimP I ba (Eλ) ≥ 1 + lim sup
n→∞

log
(

log b1
a1
· · · log bn+1

an+1

)
log(b1 · · · bn)

.



Corollary
Suppose (an)∞n=1 is admissible, lim

n→∞
(a1 · · · an)1/n =∞ and

bn ≥ can for c > 1.

(a) If lim
n→∞

log log
bn+1
an+1

log an
= 0, then dimH I

b
a (Eλ) = dimP I

b
a (Eλ) = 1.

(b) If lim inf
n→∞

log log
bn+1
an+1

log an
< 1, then dimH I

b
a (Eλ) = 1.

(c) If lim inf
n→∞

log log
bn+1
an+1

log bn
≥ 1, then dimP I

b
a (Eλ) = 2.

(d) If lim inf
n→∞

log log
bn+1
an+1

log bn
> 1, then dimH I

b
a (Eλ) = dimP I

b
a (Eλ) = 2.

Remark
The assertions (b)–(c) imply that if dimP I

b
a (Eλ) < 2, then

dimH I
b
a (Eλ) = 1.



Moderately slowly escaping points

Corollary

(a) If an > 100λmax for large n, lim
n→∞

(a1 · · · an)
1
n =∞ and

lim inf
n→∞

(log bn)1/n <∞, then dimH I
b
a (Eλ) ≤ 1.

(b) If, additionally, (an)∞n=1 is admissible and bn ≥ can for c > 1,
then dimH I

b
a (Eλ) = 1.

In particular, if (an)∞n=1 is admissible, bn ≥ can for c > 1 and
I
b
a (Eλ) is contained in the moderately slow escaping set

M(Eλ) = {z ∈ I (Eλ) : lim sup
n→∞

1
n

log log |Eλn ◦ · · · ◦ Eλ1(z)| <∞},

then dimH I
b
a (Eλ) = 1.



Points with exact growth rate

Definition
We say that the iterations of a point z ∈ C under Eλ have growth
rate a = (an)∞n=1, if z ∈ I

ca
a/c(Eλ) for some constant c > 1, i.e.

an
c
≤ |Eλn ◦ · · · ◦ Eλ1(z)| ≤ can

for large n.

Corollary

(a) If a = (an)∞n=1 is admissible and lim
n→∞

(a1 · · · an)1/n =∞, then
the set of points with growth rate a has Hausdorff dimension 1.

(b) If a = (an)∞n=1 is admissible and lim
n→∞

an =∞, then the set of
points with growth rate a has Hausdorff and packing
dimension 1.



Precise dimension formulas

Theorem
If (an)∞n=1 is admissible, lim

n→∞
(a1 · · · an)1/n =∞, bn ≥ can for

c > 1 and lim
n→∞

log bn
log an

= 1, then

dimH I ba (Eλ) = 1,

dimP I ba (Eλ) = 1 + lim sup
n→∞

log
(

log b1
a1
· · · log bn+1

an+1

)
log(a1 · · · an)

.



Theorem
For every D ∈ [1, 2] there exist a = (an)∞n=1, b = (bn)∞n=1 with
an →∞, bn ≥ an, such that

dimH I ba (Eλ) = 1, dimP I ba (Eλ) = D.

Proof.
If an+1 = ena

d
n for d ∈ [0, 1), bn = a

1+ 1
n

n , then
dimH I

b
a (Eλ) = 1, dimP I

b
a (Eλ) = 1 + d .

If an+1 = ena
(n−1)/n
n , bn = a

1+ 1
n

n , then
dimH I

b
a (Eλ) = 1, dimP I

b
a (Eλ) = 2.



Annular itineraries
Let f : C→ C be a transcendental entire map, Rs , s ≥ 0, be a
sequence of positive numbers increasing to infinity and

As = {z ∈ C : Rs ≤ |z | < Rs+1}.

Rs

Rs+1

As

Definition (Rippon and Stallard 2015)
Annular itinerary of a point z ∈ C is a sequence s(z) = (sn)∞n=0
defined by the condition f n(z) ∈ Asn , n ≥ 0.



Annular itineraries in non-autonomous iteration

s(z) = (sn)∞n=0 ⇐⇒ Eλn ◦ · · · ◦ Eλ1(z) ∈ Asn .

For given symbolic sequence s = (sn)∞n=0 let

Is(Eλ) = {z ∈ C : s(z) = s}

Fact

Is(Eλ) = I ba (Eλ) for an = Rsn , bn = Rsn+1.

Definition
We say that a sequence s = (sn)∞n=0 is admissible, if the sequence
(an)∞n=1, an = Rsn , is admissible.



Case Rs = R s

As = {z ∈ C : Rs ≤ |z | < Rs+1} for a large R > 1.

Theorem
(a) If lim sup

n→∞
s1+···+sn

n =∞, then dimH Is(Eλ) ≤ 1.

(b) If s is admissible and lim
n→∞

s1+···+sn
n =∞, then

dimH Is(Eλ) = dimP Is(Eλ) = 1.

Proof.
dim Is(fλ) = dim I

b
a (fλ) for an = Rsn , bn = Rsn+1.

Remark
This answers a question from [Sixsmith 2016].



Case Rs = R sκ

As = {z ∈ C : Rsκ ≤ |z | < R(s+1)κ} for a large R > 1, κ > 1.

Theorem
(a) If lim sup

n→∞

sκ1 +···+sκn
n =∞ and s is admissible, then

dimH Is(Eλ) ≤ 1.
(b) If lim

n→∞
sn =∞ and s is admissible, then:

dimH Is(Eλ) = 1,

dimP Is(Eλ) = 1 +
κ− 1
logR

lim sup
n→∞

log sn+1

sκ1 + · · ·+ sκn
,

dimP Is(Eλ) < 2− 1
κ
.

Proof.
dim Is(Eλ) = dim I

b
a (Eλ) for an = Rsκn , bn = R(sn+1)κ .



Theorem
For every D ∈ [1, 2− 1

κ) there exists a sequence s = (sn)∞n=0 with
sn →∞ such that

dimH Is(Eλ) = 1, dimP Is(Eλ) = D.

Proof.
If sn+1 = R

d
κ−1 s

κ
n for d ∈ [0, 1− 1

κ), then s is admissible and
dimH Is(Eλ) = 1, dimP Is(Eλ) = 1 + d .



Proofs of main theorems – preliminaries

For a fixed N ≥ 0 let

An = log
aN+n

|λN+n|
, Bn = log

bN+n

|λN+n|
, ∆n = Bn − An,

Sn = {z : An ≤ Re(z) ≤ Bn}

Fact

aN+n ≤ |EλN+n
(z)| ≤ bN+n ⇐⇒ z ∈ Sn.

Consequently, dim I
b
a (Eλ) = lim

N→∞
dim JN = sup

N
dim JN for

JN = {z : EλN+n
◦ · · · ◦ EλN (z) ∈ Sn+1 for n ≥ 0}.



Proofs of main theorems – notation
For a small fixed δ > 0, j ≥ 0, k ∈ Z let

K
(n)
j ,k = [jδ, (j + 1)δ)×

[
− π

2
− Arg λN+n + 2kπ,

π

2
− Arg λN+n + 2kπ

]
,

U
(n)
j = EλN+n

(K
(n)
j ,k ) = {z : |λN+n|e jδ ≤ |z | < |λN+n|e(j+1)δ, Re(z) ≥ 0}.

Q
(n)
k = {z ∈ C : An ≤ Re(z) ≤ Bn, ∆nk ≤ Im(z) ≤ ∆n(k + 1)},

g
(n)
k inverse branches of EλN+n

.

Sn

K
(n)
j ,k

Q
(n)
k

An Bn



Proofs of the main theorems – construction

EλN EλN+1 EλN+n−1 EλN+n

S1 Sn+1Sn

U
(n−1)
jn−1 U

(n)
jnK

(0)
j0,k0

K
(1)
j1,k1

K
(n)
jn,kn

K
(n+1)
jn+1,kn+1

U
(0)
j0

g
(0)
k0

g
(1)
k1

g
(n−1)
kn−1

g
(n)
kn



Thank you for attention!


