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Main aim
We present some results that can be regarded as a contribution
to the study of the algebraic structure of skew left braces. Such
structure has proved to be useful as a source of set-theoretic
solutions of the Yang-Baxter equation.
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Approach
Description of a skew left brace in terms of a triply factorised
group obtained from the action of the multiplicative group on
the additive group.

Adolfo Ballester-Bolinches Triply factorised groups and the structure of skew left braces



Introduction
Skew left braces

Triply factorised groups

Basic concepts
Skew left braces and derivations

Skew left braces
Basic concepts

Definition
A skew left brace is a set B with two binary operations, + and ·,
such that (B,+) is a group, (B, ·) is a group, and

a(b + c) = ab − a + ac for all a, b, c ∈ B. (*)

L. Guarnieri and L. Vendramin.
Skew-braces and the Yang-Baxter equation.
Math. Comp., 86(307):2519–2534, 2017.

Skew left braces are extremely useful to produce and study bijective
non-degenerate set-theoretic solutions of the Yang-Baxter equation.
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An example: B is a trivial skew left brace if (B,+) is a
group and the operations + and · coincide.
If X is a class of groups, we shall say that a skew left brace
is of X -type of (B,+)belongs to X .
Rump’s left braces are exactly the skew left braces of
abelian type.

W. Rump.
Braces, radical rings, and the quantum Yang-Baxter equation.
J. Algebra, 307, 153–170 (2007).
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Proposition
If B is a skew left brace, we have an action
λ : (B, ·) −→ Aut(B,+) defined by λ(a) = λa, where

λa(b) = −a + ab for all a, b ∈ B.

This is called the lambda map of B.

Note that
a + λa(b) = ab for all a, b ∈ B,
a + b = a · λa−1(b) = a · λ−1

a (b) for all a, b ∈ B.
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Suppose that a group (C, ·) acts on a group (K ,+) by means
the group homomorphism λ : C −→ Aut(K ).
A derivation associated to λ is a map δ : C −→ K satisfying the
following equation:

δ(ce) = δ(c) + λc(δ(e)), c,e ∈ C.

If B is a brace, the identity map idB : (B, ·) −→ (B,+) is a
derivation associated to lambda map.
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Theorem
Suppose that there exists an action λ : (C, ·) −→ Aut(K ,+) and
that δ : (C, ·) −→ (K ,+) is a bijective derivation with respect
to λ. Then we can define an addition on C via
b + c = δ−1(δ(b) + δ(c)) and (C,+, ·) becomes a skew left
brace.
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Lemma

Let (C, ·) and (K ,+) be two groups.
Suppose that δ : C −→ K is a derivation associated to an action
λ of C on K and that L is a C-invariant subgroup of K (for
instance, this happens when L is a characteristic subgroup
of K ).
Then δ−1(L) is a subgroup of C.
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Assume that (K ,+) is finite and nilpotent and δ is bijective.
Then

For every set of primes π, K has a characteristic Hall
π-subgroup Kπ.
Then Cπ = δ−1(Kπ) is a Hall π-subgroup of C = (B, ·).
Therefore C is soluble.

Theorem ( see Etingof, Schedler, Soloviev)

The multiplicative group (B, ·) of a finite brace of nilpotent type
is soluble.
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P. Etingof, T. Schedler, A. Soloviev.
Set-theoretical solutions to the quantum Yang-Baxter equation
Duke Math. J., 100, 169–209 (1999).
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Suppose that a group (C, ·) acts on a group (K ,+) by means
the group homomorphism λ : C −→ Aut(K ).
Let us consider the corresponding semidirect product

G = [K ]C = {(k , c) | k ∈ K , c ∈ C}.

Note that (k1, c1)(k2, c2) = (k1 + λc1(k2), c1c2), k1, k2 ∈ K , c1,
c2 ∈ C.
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Assume that δ : C −→ K be is a bijective derivation associated
to λ. Consider

D = {(δ(c), c) | c ∈ C}.

Lemma
The set D is a subgroup of G = [K ]C such that G = KD = DC
and K ∩ D = D ∩ C = 1.

We obtain that G is a trifactorised group.
Note that α : C −→ D given by α(c) = (δ(c), c), c ∈ C, is a
group isomorphism.
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Theorem
Suppose that C is a finite nilpotent group. Then K is soluble.

Since C ∼= D, C and D are nilpotent
By a result of Kegel and Wielandt, G = CD is soluble.
Hence K 6 G is soluble.
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Theorem
Assume that F is a saturated formation of finite groups and
G = KC = KD = DC is a finite group. Suppose further that K is
a normal nilpotent subgroup of G. Then C and D belongs to F
if and only if G belongs to F .
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Theorem
Suppose that G = [K ]C = KD = DC is a trifactorised group
such that K ∩ D = D ∩ C = {(0,1)}. Then there exists a
bijective derivation δ : C −→ K associated with the action of C
on K such that D = {(δ(c), c) | c ∈ C}.
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In the following, we will use multiplicative notation in the
semidirect product. Given k , l ∈ K and c ∈ C,

(k + l ,1) 7→ kl ,
(−k ,1) 7→ k−1,

(λc(k),1) 7→ ckc−1 = kc−1
(here ug = g−1ug).
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Theorem

Let G = [K ]C = KD = DC with D 6 G, K ∩ D = D ∩ C = {1},
δ : C −→ K , the corresponding derivation. Suppose that E 6 C
and L = δ(E) P G. Then the following are equivalent:

1 E P C. 2 [E ,C] ⊆ E. 3 [K ,E ] ⊆ L.
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Lemma

Let G = [K ]C = KD = DC with D 6 G, K ∩ D = D ∩ C = {1},
and let δ : C −→ K be the corresponding derivation. Suppose
that H is a subgroup of K such that H is normalised by C. Let
c, e ∈ C, k = δ(c), l = δ(e). Suppose that three of the
elements [k ,e], [k , l], [c, l] and δ([c,e]) belong to H. Then so
does the other one.
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Rump noted that two-side braces of abelian type correspond to
radical rings. Hence braces can be regarded as generalisations
of radical rings and techniques of ring theory may be applied to
some extend.
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Definition
Let B be a brace.
Define a ∗ b = −a + ab − b = λa(b)− b, a, b ∈ B.

If a is regarded as an element of C = (B, ·) and b is regarded
as an element of K = (B,+), then a ∗ b corresponds in
G = [K ]C to

aba−1b−1 = [a−1,b−1] ∈ [C,K ] ⊆ K .
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Definition
If X , Y ⊆ B, X ∗ Y is the subgroup of K generated by
{x ∗ y | x ∈ X , y ∈ Y}.

If X corresponds to a subgroup E of C and Y to a subgroup H
of K , this can be identified with the subgroup

〈{[e−1,h−1] | e ∈ E ,h ∈ H}〉 = [E ,H] 6 K .
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Theorem
Let B be a brace of abelian type. Then B a two-sided brace if
and only if (B,+, ∗) is a radical ring.
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Definition
A subgroup I of K is said to be a left ideal if λa(I) ⊆ I for all
a ∈ B, or equivalently, if B ∗ I is a subgroup of I.
Moreover, the left ideal I is called a strong left ideal if I is a
normal subgroup of K .

A. Konovalov, A. Smoktunowicz, and L. Vendramin.
On skew braces and their ideals.
Exp. Math., p. 110 (2018).

E. Jespers, L. Kubat, A. Van Antwerpen, and L. Vendramin.
Factorizations of skew braces.
Math. Ann., 375, 1649–1663 (2019).
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If I is a left ideal of B, corresponding to L 6 K , then L is
C-invariant and so E = δ−1(L) 6 C and [L,C] ⊆ L.
If I is a strong left ideal of B, then L P G.
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Definition
An ideal of B is a left ideal I of B such that aI = Ia and
a + I = I + a for all a ∈ B.

L. Guarnieri and L. Vendramin.
Skew-braces and the Yang-Baxter equation.
Math. Comp., 86(307):2519–2534, 2017.

Adolfo Ballester-Bolinches Triply factorised groups and the structure of skew left braces



Introduction
Skew left braces

Triply factorised groups

Skew left braces and trifactorised groups
Substructures of skew left braces
Nilpotency

Triply factorised groups
Substructures of skew left braces

Ideals of skew left braces are true analogues of normal
subgroups in groups and ideals in rings. In fact, if I is an
ideal of B, we can construct the quotient skew left brace
B/I.
Suppose that the left ideal I corresponds to L 6 K and to
E = δ−1(L) 6 C.
Then I is an ideal of B if, and only if, LE P G.
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We have seen that the star operation on a brace B can be
considered as the commutator operation on the trifactorised
group associated with B.
As nilpotency in groups can be defined in terms of iterated
commutators, it seems natural to try to define nilpotency and
some generalisations of nilpotency in braces in terms of
iterated star operations.
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We define inductively:

L0(X ,Y ) = Y ; Ln(X ,Y ) = X ∗ Ln−1(X ,Y ) (n > 1);
R0(X ,Y ) = X , Rn(X ,Y ) = Rn−1(X ,Y ) ∗ Y (n > 1);

We have that

Ln(X ,Y ) = [[Y ,X ],X ], ...,X ] = [Y ,X , ...,X ] (X appears n times)

in the semidirect product G = [K ]C, where X is regarded as a
subgroup of C and Y as a subgroup of K .
We also note that Ln(B,B) = Bn+1 for all n, the radical series
of B defined by Rump in his 2007 paper.
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Definition
A left brace B is called left nilpotent if Ln(B,B) = 0 for some n.

Theorem (Smoktunowicz)
A finite left brace of abelian type is left nilpotent if and only if the
multiplicative group (B, ·) is nilpotent.

A. Smoktunowicz.
On Engel groups, nilpotent groups, rings, braces and Yang-Baxter
equation.
Trans. Amer. Math. Soc., 370(9), 6535–6564 (2018).
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Smoktunovicz’s result still holds for finite braces of nilpotent
type as it was shown by Cedó, Smoktunowicz and Vendramin.

F. Cedó, A. Smoktunowicz, and L. Vendramin.
Skew left braces of nilpotent type.
Proc. London. Math. Soc., 118(6), 1367–1392 (2019).
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In the sequel, we will consider finite braces of nilpotent type.

Definition
We say that B is left π-nilpotent (π a set of primes) if for some n
we have that Ln(B,Bπ) = 0.
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Theorem
Suppose that C = (B, ·) has a nilpotent Hall π-subgroup. Then
B is left π-nilpotent if and only if C is π-nilpotent.
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Case π = {p}, p a prime.

H. Meng, A. Ballester-Bolinches, and R. Esteban-Romero.
Left braces and the quantum Yang-Baxter equation.
Proc. Edinburgh Math. Soc., 62 (2019), 595–608.

E. Acri, R. Lutowski, L. Vendramin.
Retractability of solutions to the Yang-Baxter equation and
p-nilpotency of skew braces.
Internat. J. Algebra Comput., 30 (2020), 91–115.
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Theorem

Suppose that a brace of abelian type B can be decomposed as
the sum of two ideals that are left nilpotent as left braces. Then
B is left nilpotent.
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Definition
Given a finite left brace B, the left-Fitting ideal l-F(B) of B is the
largest ideal that, as a left brace, is left nilpotent. It coincides
with the ideal generated by all ideals of B that, as left braces,
are left nilpotent.
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Definition
Let B be a skew left brace. B is called right nilpotent if
Rn(B,B) = 0 for some n.
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Theorem
(B, rB) is a multipermutation solution if, and only if, B is of
nilpotent type and right nilpotent.

F. Cedó, A. Smoktunowicz and L. Vendramin.
Skew left braces of nilpotent type.
Proc. London Math. Soc., 118 (2019), 1367–1392.
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Definition
If π is a set of primes, we say that B is right π-nilpotent when for
some n we have that Rn(Bπ,B) = 0.
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Theorem
Suppose that B is a skew left brace of nilpotent type, the Hall
π-subgroup Gπ = KπCπ of the trifactorised group associated
with B is nilpotent, and that Cπ is an abelian normal Hall
π-subgroup of C. Then B is right π-nilpotent.
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We have not been able to prove or disprove the existence of a
right Fitting-like ideal. However, we have:

Theorem
Let B be a left brace that can be factorised as the product of an
ideal I1 that is trivial as a left brace and a strong left ideal I2 that
is right nilpotent as a left brace. Then B is right nilpotent.
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