Cohomology, bundles and representations.
Problem: how can bundles twist over a space?

I. Fundamental group.

We consider loops in X (continuous maps $S^{1} \rightarrow X, s_{0} \mapsto x_{0}$) up to homotopy.

Maps $f_{0}, f_{1}: Y \rightarrow X$ are homotopic, if there exists
$F: Y \times[0,1] \rightarrow X$ such that $F(y, 0)=f_{0}(y), F(y, 1)=f_{1}(y)$.

Definition.
The fundamental group of $X-\pi_{1}(X)$ - is the set of homotopy classes of loops in X.

With the following multiplication this set is a group:

Example: $\pi_{1}\left(S^{1}\right)$.

Fact: Every map $S^{1} \rightarrow S^{1}$ is homotopic to exactly one $\varphi_{n} . \pi_{1}\left(S^{1}\right) \cong \mathbf{Z}$.
A map $X \rightarrow Y$ induces a homomorphism $\pi_{1}(X) \rightarrow \pi_{1}(Y)$.

Application: Brouwer's fixed point theorem for D^{2}.
Every (continuous) map $f: D^{2} \rightarrow D^{2}$ has a fixed point.
If not:

II. Homology

Higher dimensional cycles in X may have different shapes:

Idea:

- do not specify shape a priori;
- use simplices to build all possible shapes.
- Simplex:
$\Delta^{n}=\operatorname{Conv}\left(e_{0}, e_{1}, \ldots, e_{n}\right)$ in \mathbf{R}^{n}

- Singular simplex in $X: \operatorname{map} \sigma: \Delta^{n} \rightarrow X$.

- n-chain group of X : free abelian group with the set of all singular n-simplices in X as basis.

$$
S_{n} X=\left\{\sum_{\text {finite }} a_{i} \sigma_{i} \mid \sigma_{i}: \Delta^{n} \rightarrow X\right\}
$$

- Boundary $\partial \sigma$ of $\sigma: \Delta^{n} \rightarrow X$:
Δ^{n} has $n+1$ facets; restrict σ to them and form formal sum.

- Extend to a homomorphism $\partial=\partial_{n}: S_{n} X \rightarrow S_{n-1} X$.

$$
\partial\left(\sum a_{i} \sigma_{i}\right)=\sum a_{i} \partial\left(\sigma_{i}\right)
$$

- An n-cycle is a $c \in S_{n} X$ satisfying $\partial c=0$.

- Two cycles "detect the same hole" if their difference is a boundary.

Cycles $c, c^{\prime} \in S_{n} X$ are called homologous if $c-c^{\prime}=\partial u$ for some $u \in S_{n+1} X$.

- The n-th homology group of X :

$$
H_{n} X=\text { cycles } / \text { boundaries }=\operatorname{ker} \partial_{n} / \operatorname{im} \partial_{n+1}
$$

- If X is a simplicial complex (spaces glued from simplices along faces), then the simplices from the complex suffice to compute homology. Example. S^{2}

Fact. For a finite simplicial complex the homology

- is finitely generated;
- vanishes above the dimension of the complex.
- Application: Brouwer for D^{n}

Every (continuous) map $f: D^{n} \rightarrow D^{n}$ has a fixed point.

III. Cohomology

- n-cochains in X (with coefficients in an abelian group A):
- maps from the set of singular n-simplices in X to A;
- homomorphisms $S_{n} X \rightarrow A$

$$
S^{n} X=\operatorname{Hom}\left(S_{n} X, A\right)
$$

- Coboundary map: $d=d^{n}: S^{n} X \rightarrow S^{n+1} X$.

- Cohomology group: $H^{n}(X, A)=\operatorname{ker} d^{n} / \operatorname{im} d^{n-1}$.
- Pairing:

$$
\begin{aligned}
& H_{n} X \times H^{n}(X, A) \rightarrow A \\
& ([c],[\varphi]) \longmapsto \varphi(c) \quad(=\langle[c],[\varphi]\rangle)
\end{aligned}
$$

- Maps: $f: X \rightarrow Y$ induces $f^{*}: H^{n}(Y, A) \rightarrow H^{n}(X, A)$.

- Multiplication (A-ring).

- Example: $\underset{\uparrow}{\mathbf{C} P^{2}}$ vs $S^{2} \vee S^{4} \times \operatorname{dim}$ subspaces of \mathbb{C}^{2}

$$
\begin{array}{cccccccccc}
n: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
\mathbb{C} P^{2}: & \mathbb{1} & 0 & \mathbb{Z} & 0 & \mathbb{Z} & 0 & 0 & \cdots & H_{*} \\
S^{2} v S^{4}: & \mathbb{Z} & 0 & \mathbb{Z} & 0 & \mathbb{Z} & 0 & 0 & \ldots & \text { or } \\
y & & H^{*} \\
y^{2}=0
\end{array}
$$

Flat bundles
How to build a flat bundle?
Ingredients:

- fibre F (vector space, topological space, simplicial complex,...);
- group G acting on F (gluing group);
- base B (topological space);
- open cover $\mathcal{U}=\left\{U_{i}\right\}$ of B;
- locally constant functions $g_{i j}: U_{i} \cap U_{j} \rightarrow G$ (gluing functions);

total space E
projection map π
base $\stackrel{\rightharpoonup}{B}$
- for each $b \in B$ the fibre $E_{b}=\pi^{-1}(b)$ "is" F.
- for b, b^{\prime} close the fibres $E_{b}, E_{b^{\prime}}$ have a privileged identification.
- Monodromy representation: $\pi_{1}(X) \rightarrow G$.

Fact. There is a bijection between:

- isomorphism classes of flat G-bundles over B;
- $\operatorname{Hom}\left(\pi_{1}(X), G\right) /$ conjugation.
- Bundles pull back:

$$
\begin{aligned}
& \left(f^{*} E\right)_{x}=E_{f(x)}
\end{aligned}
$$

- Characteristic classes:

To every flat G-bundle E over any base B we assign a cohomology class $c(E) \in H^{k} B$, so that for every $f: X \rightarrow Y$ and every bundle E over Y we have

$$
c\left(f^{*} E\right)=f^{*} c(E)
$$

V. Construction for $S L(2, K)$

Suppose we have a flat bundle with

$$
G=S L(2, K), \quad F=K^{2}, \quad B=\infty
$$

- Modify the fibre:
$K^{2} \longrightarrow \mathbf{P}^{1}(K)=\left\{L<K^{2} \mid \operatorname{dim} L=1\right\} \longrightarrow \Delta_{\mathbf{P}^{1}(K)}$-infinite simplex

- Section.
$s(0), s(1), s(2)$
span a triangle in $\Delta_{\mathbf{P}^{1}(K)}$
defined up to G-action

Let φ be a G-invariant 2-cocycle on $\Delta_{\mathbf{P}^{1}(K)}$; then $\varphi(s(0), s(1), s(2))$ is well-define. We define a class $s^{*} \varphi \in H^{2}(B, A)$ by

$$
\left(s^{*} \varphi\right)(0,1,2)=\varphi(s(0), s(1), s(2))
$$

Fact. The cohomology class $s^{*} \varphi$ does not depend on the choice of s.

- How to get φ and A ?
(we put $\Delta=\Delta_{\mathbf{P}^{1}(K)}$; by $C_{*} \Delta$ we denote simplicial chains)
- $\varphi(c)=c \in C_{2} \Delta \quad$ (not a cocycle: $d \varphi(t)=\varphi(\partial t)=\partial t$)
- $\varphi(c)=[c] \in C_{2} \Delta / \operatorname{im}\left(\partial_{3}\right) \quad$ (is a cocycle, but is not G-invariant)
- $\varphi(c)=[c] \in C_{2} \Delta /\left\langle\operatorname{im}\left(\partial_{3}\right), c-g c\right\rangle_{g \in G, c \in C_{2} \Delta}=: A$

We got a G-invariant cocycle φ with coefficients in A.

- What is A ?

Fact. Triangles in Δ modulo G-action correspond to elements of \dot{K} / \dot{K}^{2}.

$$
\begin{aligned}
& V_{0}, v_{1}, v_{2} \in K^{2} \rightarrow\left\langle v_{0}\right\rangle,\left\langle v_{1}\right\rangle,\left\langle v_{2}\right\rangle \in \mathbb{P}^{1}(K) \\
& \text { g } \downarrow
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\binom{\lambda^{2} a}{1}\right\rangle
\end{aligned}
$$

Relation from the boundaries of tetrahedra:

$$
\begin{array}{r}
{[a]+[b]=[a+b]+[a b(a+b)], \quad a, b, a+b \in \dot{K} .} \\
\left\langle v_{0}\right\rangle,\left\langle v_{1}\right\rangle,\left\langle v_{2}\right\rangle,\left\langle v_{3}\right\rangle \xrightarrow{\longrightarrow}\left\langle\binom{ 1}{0}\right\rangle\left\langle\binom{ 0}{1}\right\rangle,\left\langle\binom{ a}{1}\right\rangle,\left\langle\binom{ b}{1}\right\rangle
\end{array}
$$

It is convenient to impose an extra (alternation) relation $[-a]=-[a]$. Then we get

$$
A \cong \mathbf{Z}\left[\dot{K} / \dot{K}^{2}\right] /\langle[a]+[b]=[a+b]+[a b(a+b)],[-a]=-[a]\rangle
$$

This is Witt's description of the Witt ring of quadratic forms $W(K) \ldots$

Examples: $W(\mathbb{R}) \simeq \mathbb{Z} ; W\left(\mathbb{F}_{q}\right) \simeq \mathbb{Z} / 4$ if $q \equiv 3 \bmod 4$

VI. Properties of the Witt class g holes (genus g)

Suppose that E is an $S L(2, K)$-bundle over $B=$

We defined a cohomology class $W(E) \in H^{2}(B, W(K))$.
In $H_{2} B$ we have the fundamental class [B]: the sum of all triangles in a triangulation.

Evaluate $W(E)$ on $[B]$:

$$
w(E):=\langle W(E),[B]\rangle \in W(K) .
$$

In other words: to any representation of $\pi_{1}(B)$ in $S L(2, K)$ we have assigned an element of $W(K)$.

- What are the possible values of $w(E)$?

Fundamental ideal: $I=I(K) \subset W(K)$ is the set of classes $\sum n_{i}\left[a_{i}\right]$ for which $\sum n_{i}$ is even.

Fact. $w(E) \in I^{2}$.
Example 1.
$K=\mathbf{R}$. Then $W(K)=\mathbf{Z}, I=2 \mathbf{Z}, I^{2}=4 \mathbf{Z}$ - therefore $4 \mid w(E)$. Moreover, for a surface of genus g we have $|w(E)| \leq 4 g$ (Milnor-Wood).

Example 2.
$K=\mathbf{Q}$. Then $I^{2}=\mathbf{Z} \oplus \bigoplus_{p \text { prime }} \mathbf{Z} / 2$.
Then $w(E)$ corresponds to an integer and a finite set of primes.
Question. What finite collections of primes do appear?

- Twists - operations that change the bundle.

Let ℓ be a closed curve in B.
Let $A \in S L(2, K)$ commute with the monodromy of E along ℓ.

a twist by A

We get a new bundle - a twist of E, denoted $\tau_{\ell, A}(E)$
Fact. $w\left(\tau_{\ell, A}(E)\right)=w(E)$.
Question. Suppose that $w(E)=w\left(E^{\prime}\right)$. Can E^{\prime} be obtained from E by a sequence of twists?

Remark.
In some sense w is the universal twist-invariant characteristic class.

