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INTRODUCTION TO HOLOMORPHIC ITERATION

f : S → S holomorphic, S = C or S = Ĉ.

f n = f ◦ n. . . ◦ f

Totally invariant partition of S :

Fatou set: Set of stability (normality). Open. F(f ).

Julia set: Chaotic set. Closed. J (f ) = S ∖ F(f ).

Escaping set: points which escape to ∞. I(f ).
Fatou components: connected components of the Fatou set.
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FATOU COMPONENTS

THEOREM (Fatou)

U simply-connected invariant Fatou component. Possibilities:

1. f n|U → z0 ∈ U
Attracting basin
|f ′(z0)| < 1

2. f n|U → z0 ∈ ∂U
Parabolic basin

f ′(z0) = 1

3. f|U ∼ e2πiθz , θ /∈ Q
Siegel disk

4. f transcendental,
f n|U → ∞
Baker domain
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DYNAMICS INSIDE A FATOU COMPONENT

φ φ

g
D D

U Uf

φ : D → U (Riemann map) and f|U ∼ g , where g : D → D holomorphic

Tools to study the dynamics of g : D → D holomorphic:

Denjoy-Wolff Theorem
If g is not a rotation, all orbits converge to the same point p ∈ D.

Cowen’s classification
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DYNAMICS OF g : D → D. Cowen’s classification

Assume g is holomorphic and not conjugate to a rotation.
Then, there exists an absorbing domain where g is conjugate to ϕ : Ω → Ω (Möbius).

1. Ω = C
ϕ(z) = λz , |λ| < 1.
(elliptic)

2. Ω = C
ϕ(z) = z + 1.
(doubly-parabolic)

3. Ω = H
ϕ(z) = λz , λ > 1.
(hyperbolic)

4. Ω = H
ϕ(z) = z ± 1.
(simply-parabolic)
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DYNAMICS INSIDE A FATOU COMPONENT

(a) Siegel disk
(irrational rotation)

(b) Attracting basin
(elliptic)

(c) Parabolic basin
(doubly-parabolic)

For Baker domains, doubly-parabolic, hyperbolic and simply-parabolic
types are possible ⇝ classification of Baker domains
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QUESTION: Dynamics on ∂U?

φ φ

g
D D

U U
f

Intuitive idea: study g|∂D.

But g and φ may not be defined on ∂D...
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INNER FUNCTIONS

DEFINITION: Radial limit

Let g : D → D holomorphic, e iθ ∈ ∂D. The radial limit of g at e iθ is:

g∗(e iθ) := lim
r→1−

g(re iθ).

THEOREM (Fatou)

For Lebesgue-almost every θ, g∗(e iθ) exists.

DEFINITION: Inner function

A holomorphic function g : D → D is an inner function if
∣∣g∗(e iθ)

∣∣ = 1,
for Lebesgue-almost all θ.

g∗ induces a dynamical system almost everywhere on ∂D.
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ERGODICITY AND RECURRENCE

Ergodic properties of measurable maps

Let (X ,A, µ) be a measure space and T : X → X measurable. Then we
say that T is:

ergodic, if for every A ∈ A such that T−1(A) = A, there holds
µ(A) = 0 or µ(X ∖ A) = 0.

recurrent, if for every A ∈ A and µ-almost every x ∈ A, T n(x) ∈ A
for infinitely many n’s.

THEOREM1

If T is ergodic and recurrent with respect to the Lebesgue measure, then
Lebesgue-almost every point has a dense orbit.

1General result in ergodic theory. A proof can be found in Aaronson. Introduction
to Infinite Ergodic Theory.
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QUESTION: Dynamics on ∂U?
Measure on ∂U. The harmonic measure

φ φ

g
D D

U Uf

φ may not be defined on ∂D...

DEFINITION: Harmonic measure

Let U ⊂ Ĉ be simply-connected and let φ : D → U be a Riemann map,
such that φ(0) = z ∈ U. The harmonic measure ω of ∂U with base
point z is the image under φ of the normalized Lebesgue measure of ∂D.

With this measure, we only need to study g∗ : ∂D → ∂D.
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Let U ⊂ Ĉ be simply-connected and let φ : D → U be a Riemann map,
such that φ(0) = z ∈ U. The harmonic measure ω of ∂U with base
point z is the image under φ of the normalized Lebesgue measure of ∂D.

With this measure, we only need to study g∗ : ∂D → ∂D.
10 / 22



ERGODIC PROPERTIES OF INNER FUNCTIONS

INNER FUNCTION FATOU COMPONENT Ergodicity Recurrence

Rational rotation ✗ ✓

Irrational rotation Siegel disk ✓ ✓

Elliptic * Attracting basin ✓ ✓

Doubly-parabolic * Parabolic b./Baker d. ✓ ?
Hyperbolic Baker domain ✗ ✗

Simply-parabolic Baker domain ✗ ✗

* In case of degree d < ∞, the boundary map is conjugate to x 7→ dx mod 1.

Summary of different results in:
Aaronson. Ergodic theory for inner functions of the upper half plane.
Aaronson. A remark on the exactness of inner functions.
Barański, Fagella, Jarque, Karpińska. Escaping points in the boundaries of Baker domains.
Bourdon, Matache, Shapiro. On the convergence to the Denjoy-Wolff point.
Doering, Mañé. The dynamics of inner functions.
Hamilton. Absolutely continuous conjugacies of Blaschke products.

Shub, Sullivan. Expanding endomorphisms of the circle revisited.
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THE EXAMPLE: f (z) = z + e−z

Figure: On the left, the dynamical plane of f (z) = z + e−z . On the right, a zoom of it.

Previously studied in:
Baker, Doḿınguez. Boundaries of unbounded Fatou components of entire functions.
Fagella, Henriksen. Deformation of entire functions with Baker domains.

Barański, Fagella, Jarque, Karpińska. Escaping points in the boundaries of Baker domains.
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THE EXAMPLE: f (z) = z + e−z

Semiconjugacy to h(w) = we−w

z 7→ f (z) = z + e−z

w=e−z

−−−−−→

w 7→ h(w) = we−w

z f (z) = z + e−z

w h(w) = we−w

f

w=e−z w=e−z

h

∗ Figures courtesy of Christian Henriksen 13 / 22



THE EXAMPLE: f (z) = z + e−z

The parabolic basin of h(w) = we−w

A0

0 is a parabolic fixed point for h

Singular values: 0, 1
e

hn( 1e ) → 0, as n → ∞

F(h) = A, parabolic basin of 0

A0, immediate parabolic basin

THEOREM (Baker-Doḿınguez, Fagella-Henriksen)

R+ ⊂ A0, so A0 is unbounded

R− ⊂ J (h)

h has degree 2 on A0 and h|A0
∼ g(z) = 3z2+1

z2+3 (doubly-parabolic)
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THE EXAMPLE: f (z) = z + e−z

The dynamical plane of f

–16–16 –14–14 –12–12 –10–10 –8–8 –6–6 –4–4 –2–2 22 44 66 88 1010 1212 1414 1616

–10–10

–8–8

–6–6

–4–4

–2–2

22

44

66

88

00

y = 2πy = 2π

y = -2 πy = -2 π

y = πy = π

y = -πy = -π

y = 0y = 0

y = 3πy = 3π

y = -3 πy = -3 π

f (z + 2kπi) = f (z) + 2kπi , for all z ∈ C
The lines {Im z = kπ}k∈Z are invariant

In each strip {(2k − 1)π < Im z < (2k + 1)π}k∈Z, there is one preimage
of A0, which is a doubly-parabolic Baker domain Uk
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THE EXAMPLE: f (z) = z + e−z

The dynamical plane of f

–7–7 –6–6 –5–5 –4–4 –3–3 –2–2 –1–1 11 22 33 44 55 66 77

–4–4

–3–3

–2–2

–1–1

11

22

33

00

y = πy = π

y = -πy = -π

y = 0y = 0

y = π / 2y = π / 2

y = -(π / 2)y = -(π / 2)

V
S

L+

L−

S := {z ∈ C : − π ≤ Im z ≤ π}
f : f −1(S) ∩ S → S proper map of degree 2

U := U0 ⊂ S , doubly-parabolic invariant Baker domain

ω-almost every orbit is dense and I(f ) ∩ ∂U has zero measure

Goal: Study the boundary of the Baker domain U and its dynamics 16 / 22



THE EXAMPLE: f (z) = z + e−z

Accesses to infinity from U

DEF: Accessible points and accesses

A point v ∈ ∂U is accessible if there exists a curve γ ⊂ U such that γ(t) → v .
A homotopy class (with fixed endpoints) of such curves is called an access.

THEOREM (Baker-Doḿınguez)

Accesses from U to ∞ are defined by the preimages of R+ under f .

Idea of the proof: Fix φ : D → U (Riemann) s.t. φ(0) = 0 and φ(R ∩ D) = R.

φ

−1 1 (DW) φ∗(1)φ∗(−1)

g f{
e iθ ∈ ∂D : φ∗(e iθ) = ∞

}
=

{
e iθ ∈ ∂D : gn(e iθ) = 1

}
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THE EXAMPLE: f (z) = z + e−z

Accessibility of periodic points

THEOREM

Let z0 ∈ ∂U be periodic under f , i.e. f p(z0) = z0, for some p. Then z0 is
accessible.

THEOREM

Let e iθ ∈ ∂D be periodic under g , i.e. gp(e iθ) = e iθ for some p > 1.
Then, φ∗(e iθ) exists and it is a periodic point of period p.

Consequence: Characterization of periodic points in ∂U.
A point z ∈ ∂U satisfies f p(z) = z for some p ≥ 1 if, and only if,
z = φ∗(e iθ) for some e iθ ∈ ∂D satisfying gp(e iθ) = e iθ.

18 / 22
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THE EXAMPLE: f (z) = z + e−z

The escaping set in ∂U

S := {z ∈ C : − π ≤ Im z ≤ π}

f
2 : 1

Ŝ := {z ∈ S : f n(z) ∈ S , for all n}

U ⊂ Ŝ and f|U has degree 2 ⇒ Ŝ ∩ F(f ) = U

∂U ⊂ Ŝ ∩ J (f )

⇝ Is it true ∂U = Ŝ ∩ J (f )?

Two ways of escaping to ∞ in Ŝ

I+
S :=

{
z ∈ I(f ) ∩ Ŝ : ∃ {nk}k s.t. Re f nk (z) → +∞

}
I−
S :=

{
z ∈ I(f ) ∩ Ŝ : ∃ {nk}k s.t. Re f nk (z) → −∞

} I(f )∩ Ŝ = I+
S ⊔ I−

S

I+
S = U
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I+
S :=

{
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z ∈ I(f ) ∩ Ŝ : ∃ {nk}k s.t. Re f nk (z) → +∞

}
I−
S :=

{
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THE EXAMPLE: f (z) = z + e−z

The escaping set in ∂U

Ŝ := {z ∈ S : f n(z) ∈ S , for all n}
f

ϕ0

f

ϕ1

S0 := S ∩H+ S1 := S ∩H−

To z ∈ Ŝ , we associate a sequence k = {kn}n (its itinerary) such that
f n(z) ∈ Sj if and only if kn = j , with j = 0 or 1.

THEOREM

For every sequence k = {kj}j , kj ∈ {0, 1}, there exists a curve γk ⊂ S whose

points belong to I−
S , with itinerary k and γk ⊂ ∂U.
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To z ∈ Ŝ , we associate a sequence k = {kn}n (its itinerary) such that
f n(z) ∈ Sj if and only if kn = j , with j = 0 or 1.

THEOREM

For every sequence k = {kj}j , kj ∈ {0, 1}, there exists a curve γk ⊂ S whose

points belong to I−
S , with itinerary k and γk ⊂ ∂U.

20 / 22



THE EXAMPLE: f (z) = z + e−z

The escaping set in ∂U
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For every sequence k = {kj}j , kj ∈ {0, 1}, there exists a curve γk ⊂ S whose

points belong to I−
S , with itinerary k and γk ⊂ ∂U.
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Ŝ := {z ∈ S : f n(z) ∈ S , for all n}
f

ϕ0

f

ϕ1

S0 := S ∩H+ S1 := S ∩H−
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THE EXAMPLE: f (z) = z + e−z

Further questions

Describing the topology of ∂U

✓ Characterization of accesses to ∞ in ∂U (in terms of the inner function)
✓ Accessibility of periodic points in ∂U
⇝ Which other points are accessible from U?

⇝ Do all non-accessible points in ∂U escape to ∞?2

Describing the dynamics in ∂U
✓ Characterization of periodic points in ∂U (in terms of the inner function)

⇝ Are periodic points dense in ∂U?2

✓ Construction of curves of escaping points in ∂U
⇝ Which other points in ∂U escape to ∞?

⇝ Which points in ∂U have dense orbit?

2 Conjectured in Barański, Fagella, Jarque, Karpińska. Escaping points in the boundaries

of Baker domains.
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of Baker domains.
21 / 22



THE EXAMPLE: f (z) = z + e−z

Further questions

Describing the topology of ∂U
✓ Characterization of accesses to ∞ in ∂U (in terms of the inner function)
✓ Accessibility of periodic points in ∂U
⇝ Which other points are accessible from U?

⇝ Do all non-accessible points in ∂U escape to ∞?2

Describing the dynamics in ∂U
✓ Characterization of periodic points in ∂U (in terms of the inner function)

⇝ Are periodic points dense in ∂U?2

✓ Construction of curves of escaping points in ∂U
⇝ Which other points in ∂U escape to ∞?

⇝ Which points in ∂U have dense orbit?

2 Conjectured in Barański, Fagella, Jarque, Karpińska. Escaping points in the boundaries
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Thank you for your attention!!!
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