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INTRODUCTION TO HOLOMORPHIC ITERATION

f:' S — S holomorphic, S = C or S = C.

ff=fo.".of

Totally invariant partition of S:
Fatou set: Set of stability (normality). Open. F(f).
Julia set: Chaotic set. Closed. J(f) =S ~\ F(f).
Escaping set: points which escape to co. Z(f).

Fatou components: connected components of the Fatou set.
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FATOU COMPONENTS

THEOREM (Fatou)

U simply-connected invariant Fatou component. Possibilities:

1L f,>20€elU

27i6
Attracting basin 3. flu~eTz,0¢Q

If'(20)] <1 Siegel disk

2. fiy, > 20 €0U \ ] / ‘fl’.v f transcendental,
Parabolic basin U — 00

f'(z0) =1 Baker domain
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DYNAMICS INSIDE A FATOU COMPONENT
T
00

@: D — U (Riemann map) and fjy ~ g, where g: D — ID holomorphic
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DYNAMICS INSIDE A FATOU COMPONENT
o
0@

@: D — U (Riemann map) and fjy ~ g, where g: D — ID holomorphic

Tools to study the dynamics of g: D — ID holomorphic:

m Denjoy-Wolff Theorem
If g is not a rotation, all orbits converge to the same point p € D.

m Cowen's classification
4/22



DYNAMICS OF g: D — ID. Cowen'’s classification

Assume g is holomorphic and not conjugate to a rotation.

Then, there exists an absorbing domain where g is conjugate to ¢: Q — Q (Mdbius).

1. a=C
o(z) = Az, [N\ < L.
(elliptic)

2.Q=C
o(z)=z+ 1.
(doubly-parabolic)

3.0=H
o(z) = Az, A > 1.
(hyperbolic)

4. Q=H
o(z)=z+ 1
(simply-parabolic)
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DYNAMICS INSIDE A FATOU COMPONENT

&

(a) Siegel disk (b) Attracting basin (c) Parabolic basin
(irrational rotation) (elliptic) (doubly-parabolic)
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DYNAMICS INSIDE A FATOU COMPONENT

(a) Siegel disk (b) Attracting basin (c) Parabolic basin
(irrational rotation) (elliptic) (doubly-parabolic)

For Baker domains, doubly-parabolic, hyperbolic and simply-parabolic
types are possible
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DYNAMICS INSIDE A FATOU COMPONENT

(a) Siegel disk (b) Attracting basin (c) Parabolic basin
(irrational rotation) (elliptic) (doubly-parabolic)

For Baker domains, doubly-parabolic, hyperbolic and simply-parabolic
types are possible ~ classification of Baker domains
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QUESTION: Dynamics on 0U?

12 ¥
D D
- & .
Intuitive idea: study gjsp.
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QUESTION: Dynamics on 0U?
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OO

Intuitive idea: study gjsp.

But g and ¢ may not be defined on JD...
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INNER FUNCTIONS

DEFINITION: Radial limit

Let g: D — D holomorphic, e’ € OD. The radial limit of g at e’ is:

g*(eie) = lim g(reie).

r—1—

8/22



INNER FUNCTIONS

DEFINITION: Radial limit

Let g: D — D holomorphic, e’ € OD. The radial limit of g at e’ is:

g*(eie) = lim g(reie).

r—1—

THEOREM (Fatou)

For Lebesgue-almost every 6, g*(e?) exists.

8/22



INNER FUNCTIONS

DEFINITION: Radial limit

Let g: D — D holomorphic, e’ € OD. The radial limit of g at e’ is:
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THEOREM (Fatou)

For Lebesgue-almost every 6, g*(e?) exists.

DEFINITION: Inner function

A holomorphic function g: D — I is an inner function if |g*(e)| = 1,
for Lebesgue-almost all 6.
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INNER FUNCTIONS

DEFINITION: Radial limit

Let g: D — D holomorphic, e’ € OD. The radial limit of g at e’ is:

ey = lim g(re™).

r—1—

g"(

THEOREM (Fatou)

For Lebesgue-almost every 6, g*(e?) exists.

DEFINITION: Inner function

A holomorphic function g: D — I is an inner function if |g*(e)| = 1,
for Lebesgue-almost all 6.

g™ induces a dynamical system almost everywhere on OD.
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ERGODICITY AND RECURRENCE

Ergodic properties of measurable maps

Let (X, A, 1) be a measure space and T: X — X measurable. Then we
say that T is:
m ergodic, if for every A € A such that T~1(A) = A, there holds
u(A) =0 or u(X < A)=0.
m recurrent, if for every A € A and p-almost every x € A, T"(x) € A
for infinitely many n's.

!General result in ergodic theory. A proof can be found in Aaronson. Introduction

to Infinite Ergodic Theory.
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ERGODICITY AND RECURRENCE

Ergodic properties of measurable maps

Let (X, A, 1) be a measure space and T: X — X measurable. Then we
say that T is:

m ergodic, if for every A € A such that T~1(A) = A, there holds
u(A) =0 or u(X < A)=0.

m recurrent, if for every A € A and p-almost every x € A, T"(x) € A
for infinitely many n's.

THEOREM!

If T is ergodic and recurrent with respect to the Lebesgue measure, then
Lebesgue-almost every point has a dense orbit.

!General result in ergodic theory. A proof can be found in Aaronson. Introduction
to Infinite Ergodic Theory.
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QUESTION: Dynamics on 0U?

Measure on QU. The harmonic measure
90‘ “P
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 may not be defined on 9D...
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QUESTION: Dynamics on 0U?

Measure on QU. The harmonic measure
90‘ “P
D D
__ &g

 may not be defined on 9D...

DEFINITION: Harmonic measure

Let U c C be simply-connected and let ¢: D — U be a Riemann map,
such that ¢(0) = z € U. The harmonic measure w of QU with base
point z is the image under ¢ of the normalized Lebesgue measure of 0.

With this measure, we only need to study g*: 9D — JD. 102



ERGODIC PROPERTIES OF INNER FUNCTIONS

INNER FUNCTION | FATOU COMPONENT | Ergodicity | Recurrence
Rational rotation X v
Irrational rotation Siegel disk v v

Elliptic * Attracting basin v v
Doubly-parabolic * Parabolic b./Baker d. v ?
Hyperbolic Baker domain X X
Simply-parabolic Baker domain X X

* In case of degree d < oo, the boundary map is conjugate to x — dx mod 1.

Summary of different results in:
Aaronson. Ergodic theory for inner functions of the upper half plane.
Aaronson. A remark on the exactness of inner functions.

Baranski, Fagella, Jarque, Karpiiska. Escaping points in the boundaries of Baker domains.

Bourdon, Matache, Shapiro. On the convergence to the Denjoy-Wolff point.
Doering, Mafié. The dynamics of inner functions.

Hamilton. Absolutely continuous conjugacies of Blaschke products.

Shub, Sullivan. Expanding endomorphisms of the circle revisited.

11/22



THE EXAMPLE: f(z) = z + e*

Figure: On the left, the dynamical plane of f(z) = z+e™%. On the right, a zoom of it.

Previously studied in:
Baker, Dominguez. Boundaries of unbounded Fatou components of entire functions.
Fagella, Henriksen. Deformation of entire functions with Baker domains.
Baranski, Fagella, Jarque, Karpiiska. Escaping points in the boundaries of Baker domains.
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THE EXAMPLE: f(z) =z + e *

w

Semiconjugacy to h(w) = we™

w=e" %
—
w— h(w) = we™"
z— S f(2)=z+e*
w:e_zJ/ Jw_ez
h —w
w ———— h(w) = we

* Figures courtesy of Christian Henriksen 13/22



THE EXAMPLE: f(z) =z + e *

w

The parabolic basin of h(w) = we™

m 0 is a parabolic fixed point for h

Singular values: 0, £

h"(1) =0, as n = o0

F(h) = A, parabolic basin of 0

m Ay, immediate parabolic basin
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THE EXAMPLE: f(z) =z + e *

w

The parabolic basin of h(w) = we™

m 0 is a parabolic fixed point for h

Singular values: 0, £

h"(1) — 0, as n — o

e

F(h) = A, parabolic basin of 0

m Ay, immediate parabolic basin

\\ A

THEOREM (Baker-Dominguez, Fagella-Henriksen)

m R, C Ay, so Ag is unbounded
s R_C J(h)
m h has degree 2 on Ag and hj4, ~ g(z) = 32#:31 (doubly-parabolic)

14 /22



THE EXAMPLE: f(z) = z + e~

The dynamical plane of f

Y

-10

m f(z+2kmi) = f(z) + 2kni, for all z € C
m The lines {Im z = k7}, ., are invariant

m In each strip {(2k — 1)7 <Im z < (2k 4 1)}, there is one preimage

of Ag, which is a doubly-parabolic Baker domain Uy
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THE EXAMPLE: f(z) = z + e~

The dynamical plane of f

mS={zeC: —7<Imz<n}

mf:f1(S)NS — S proper map of degree 2

m U := Uy CS, doubly-parabolic invariant Baker domain

m w-almost every orbit is dense and Z(f) N AU has zero measure

Goal: Study the boundary of the Baker domain U and its dynamics
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THE EXAMPLE: f(z) = z+ e~Z

Accesses to infinity from U

DEF: Accessible points and accesses

A point v € 9U is accessible if there exists a curve v C U such that v(t) — v.
A homotopy class (with fixed endpoints) of such curves is called an access.
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THE EXAMPLE: f(z) = z+ e~Z

Accesses to infinity from U

DEF: Accessible points and accesses

A point v € 9U is accessible if there exists a curve v C U such that v(t) — v.
A homotopy class (with fixed endpoints) of such curves is called an access.

THEOREM (Baker-Dominguez)

Accesses from U to oo are defined by the preimages of R, under f.

Idea of the proof: Fix ¢: D — U (Riemann) s.t. ¢(0) =0 and o(RND) =R.
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THE EXAMPLE: f(z) = z+ e~Z

Accessibility of periodic points

THEOREM

Let zp € QU be periodic under f, i.e. fP(z) = zp, for some p. Then zj is
accessible.
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Accessibility of periodic points

THEOREM

Let zp € QU be periodic under f, i.e. fP(z) = zp, for some p. Then zj is
accessible.

THEOREM

Let e/ € OD be periodic under g, i.e. gP(e?) = e for some p > 1.
Then, p*(e?) exists and it is a periodic point of period p.
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THE EXAMPLE: f(z) = z+ e~Z

Accessibility of periodic points

THEOREM

Let zg € QU be periodic under f, i.e. fP(zy) = zp, for some p. Then z is
accessible.

THEOREM

Let e/ € OD be periodic under g, i.e. gP(e?) = e for some p > 1.
Then, go*(e’g) exists and it is a periodic point of period p.

Consequence: Characterization of periodic points in 0U.
A point z € QU satisfies fP(z) = z for some p > 1 if, and only if,

z = ¢*(e'?) for some e’ € OD satisfying gP(e'?) = €.
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THE EXAMPLE: f(z) =z + e *

The escaping set in OU

S={zeC: —7<Imz <7}

f

D T
D .

I
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THE EXAMPLE: f(z) = z+ e~Z

The escaping set in U

S={zeC: —7<Imz <7}

f

) T
D .

I

5:={z€S:f"(z) €S, for all n}
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THE EXAMPLE: f(z) = z+ e~Z

The escaping set in U

S={zeC: —7<Imz <7}

D) e
> _

5:={z€S:f"(z) €S, for all n}

I

= UcCSand fiu has degree 2
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The escaping set in OU

S={zeC: —7<Imz <7}

D) e
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I

5:={z€S:f"(z) €S, for all n}
= UcCSand fiy has degree 2 = SNF(f)=U

= OU C 5N J(f)
~ Is it true OU = SN J(f)?
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THE EXAMPLE: f(z) = z+ e~Z

The escaping set in OU

S={zeC: —7<Imz<7}

f
2:1 7

I

5:={z€S:f"(z) €S, for all n}
= UcCSand fiy has degree 2 = SNF(f)=U
= OU C 5N J(f)
~ Is'it true U = SN J(f)?

Two ways of escaping to oo in S

il

= {z €eI()NS: I{nc}, s.t. Re f*(z) — —|—oo}

Iy = {z €eI(f)NS: I{nc}, s.t. Re f*(z) — —oo} .
1



THE EXAMPLE: f(z) = z+ e~Z

The escaping set in OU

S={zeC: —7<Imz<7}

f
2:1 7

I

5:={z€S:f"(z) €S, for all n}
= UcCSand fiy has degree 2 = SNF(f)=U
= OU C 5N J(f)
~ Is'it true U = SN J(f)?

Two ways of escaping to oo in S

T = {z € I(f) ns: I{nc}, s.t. Re f*(z) — —I—oo} n I(f)m§:2; UZg
= m I =U
Is = {z €Z(f)NS: I{nk}, s.t. Re f*(z) — —oo}
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THE EXAMPLE: f(z) =z + e *

The escaping set in OU

S5:={zeS:f"(z) €8S, for all n}

f
/N
—

%0

VYYRYY
)*

b1
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THE EXAMPLE: f(z) =z + e *

The escaping set in OU

S5:={zeS:f"(z) €8S, for all n}

f
/N
—

%0

VYYRYY
)*

1
501250H+ S =SNH"™
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THE EXAMPLE: f(z) = z+ e~Z

The escaping set in U

S5:={zeS:f"(z) €8S, for all n}

f
—

e—_
%0

f
—

U U

e—_
b1

501250H+ S =SNH"™

To z € 5, we associate a sequence k = {kn}, (its itinerary) such that
f"(z) € §; if and only if k, = j, with j =0 or 1.
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THE EXAMPLE: f(z) = z+ e~Z

The escaping set in OU

S5:={zeS:f"(z) €8S, for all n}

f
/N
e’

%0

f
—

e—_
b1

So =SNH" S =SNnH™
To z € 5, we associate a sequence k = {kn}, (its itinerary) such that
f"(z) € §; if and only if k, = j, with j =0 or 1.
For every sequence k = {k;},, k; € {0,1}, there exists a curve 7 C S whose
points belong to Zg , with itinerary k and vy, C OU.

td .y
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THE EXAMPLE: f(z) = z+ e~Z

Further questions

m Describing the topology of 0U

2 Conjectured in Baranski, Fagella, Jarque, Karpiriska. Escaping points in the boundaries

of Baker domains.
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THE EXAMPLE: f(z) = z+ e~Z

Further questions

m Describing the topology of 0U
v Characterization of accesses to co in QU (in terms of the inner function)
v Accessibility of periodic points in QU
~~ Which other points are accessible from U?
~+ Do all non-accessible points in QU escape to co??

m Describing the dynamics in 0U
v Characterization of periodic points in QU (in terms of the inner function)
~ Are periodic points dense in QU??
v Construction of curves of escaping points in QU
~» Which other points in QU escape to co?

~~ Which points in QU have dense orbit?

2 Conjectured in Baranski, Fagella, Jarque, Karpiriska. Escaping points in the boundaries

of Baker domains.
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Thank you for your attention!!!
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