2023 GRAPH ALGEBRAS @ Bedlewo

Conjugacy and continuous orbit equivalence of graphs

A directed graph is (E°, E', r, s) where r,s: $E' \rightarrow E^{\circ}$ are renge and source meps. (15). () (V-+0

$$\underline{I}: \quad \underbrace{\text{Dynamics appear as infinite path space}}_{E^{\infty}} = \{ eoele_{2} \dots : e_i \in E^{i}, r(e_i) = s|e_i+i \} \text{ Hien} \}$$

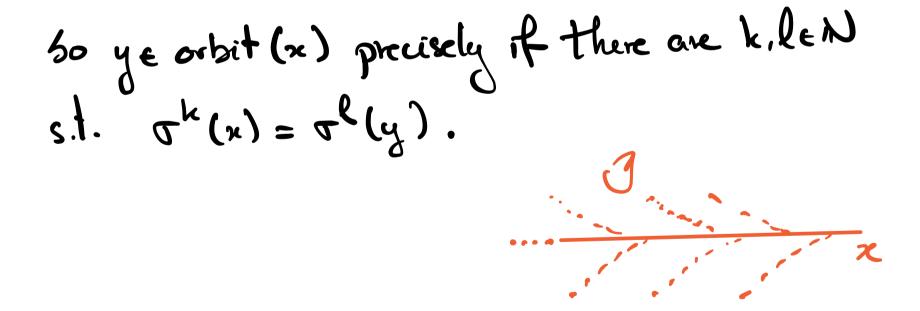
$$with the shift \tau_{E}(eoele_{2} \dots) = e_i e_{2} \dots$$

$$F: \quad \underbrace{e_i f_{s}}_{s} \underbrace{e_{i}}_{s} = \{ e^{o} \} u \} e^{i} f_{g}^{g} : neN \} u \} \underbrace{e_{i}}_{s} \underbrace{e_{i}}_{s} = e_{i} e_{i} f_{i}^{N}$$

$$F^{o} = \{ e^{o} \} u \} e^{i} f_{g}^{g} : neN \} u \} \underbrace{e_{i}}_{s} \underbrace{e_{i}}_{s} e^{i} = e_{i} e_{i} f_{i}^{N}$$

$$F^{o} = e^{o} \int u \} e^{i} f_{g}^{g} : neN \} u \} \underbrace{e_{i}}_{s} \underbrace{e_{i}}_{s} e^{i} e^{$$

The orbit of $x \in \partial E$ is orbit(x) = $\bigcup \sigma_E^{-l} \sigma_E^{k}(x)$ k,len



$$\begin{aligned} \underline{\lambda}: & \text{The graph groupoid of } (\partial E, T_E) \text{ it} \\ G_E &= \left\{ (x, k-l, y): \begin{array}{l} x, y \in \partial E, \ k, l \in \mathbb{N}, \\ T^k(x) = T^k(y) \end{array} \right. \\ \\ & T^k(x) = T^k(y) \end{aligned}$$
with writ space $G_E^{(0)} = \left\{ (x, o, x) : x \in \partial E \right\} = \partial E, \\ \\ \\ \text{and} \\ \\ \cdot (x, p, y)(y, q, z) = (x, p+q, z) \end{aligned}$

$$(x, p, y)^{-1} = (y, -p, x)$$

3: The graph C-algebra C(E) is
The groups of C-algebra C(GE):
a C'-completion of Ce(GE) with

$$f + g(\chi) = \overline{Z} f(\alpha) g(\beta)$$

 $\alpha\beta = \chi = Z(M_{+}, \beta, V), M, V \in \mathcal{F}$
 $f'(\chi) = \overline{f(\chi^{-1})} = Z(M_{+}, \beta, V), M, V \in \mathcal{F}$
 $f'(\chi) = \overline{f(\chi^{-1})} = Z(M_{+}, \beta, V)$

A homomorphism
$$h: \partial E \rightarrow \partial F$$
 is a conjugacy
if
 $\cdot ho \sigma_E(x) = \sigma_F \cdot h(x)$ for $x \in \partial E^{>1}$

A conjugacy h:
$$\partial E \rightarrow \partial F$$
 induces
• a groupsid incomplian of: $G_E \rightarrow G_F$
 $(\kappa, p, y) \leftrightarrow (h(-), p, h(y))$
s.t. $\mathcal{A}|_{G_E} = h$, and
• a \star -isomerphism $f: C(E) \rightarrow C'(F)$ s.t.
 $\rightarrow f(f) = f \circ f^{-1}$ for $f \in C_c(G_E)$
 $\rightarrow f(g) = f \circ f^{-1}$ for $g \in C_c(\partial E)$

$$\begin{aligned} & \mathcal{I}_{E}^{(n)} \\ & \mathcal{T}_{F}^{k} \cdot h(x) = \mathcal{T}^{k_{E}(x)} \cdot h \circ \mathcal{T}_{E}(x), & \text{for } x \in \partial E^{>1} \\ & \mathcal{T}_{E}^{k_{F}(y)} \cdot h^{-1}(y) = \mathcal{T}^{k_{F}(y)} \cdot h^{-1} \cdot \mathcal{T}_{E}(y) & \text{for } y \in \partial F^{>1} \end{aligned}$$

Example:

+ ? and ??. are cont. orb.eq.

- 1 ? end ? ??????? are not cont. orb. eq.

¿ Hou de ve characterise conjugary?

B-Cortren:
For a finite (consticl) graph E, there is
completely positive map
$$\tau_E: \dot{C}(E) \rightarrow C'(E)$$

$$\tau_{E}(x) = \sum_{\substack{f \in E'}} S_{e} x S_{f}^{*}$$

and $lC(E), D(E), \tau_E)$ determines (E°, τ_E) up to conjugacy.

Need new idea to generalise!

A conjugacy h:
$$\partial E \rightarrow \partial F$$
 induces
• a groupsid isomorphism $f: G_E \rightarrow G_F$
 $(x, p, y) \rightarrow (h(z), p, h(y))$
st. $c_F \circ f = c_E$, $c_E: (x, p, y) \rightarrow P$.
• a $t-isomorphism f: C(E) \rightarrow C'(F)$ s.t.
 $f \circ \chi_z^E = \chi_z^E \circ f$ for $z \in T$

-

The canonical caugele
$$c_E: G_E \rightarrow \mathbb{Z}$$

 $c_E(x, k-h, y) = k-l$
induces the canonical gauge action $\mathbb{T} \sim C(E)$.
If $f \in C_0(\partial E, \mathbb{Z})$, then $c_F: G_E \rightarrow \mathbb{Z}$
 $c_f(x, k-l, y) = \sum_{i=0}^{k-1} f(\tau_E^i(x_i)) - \sum_{j=0}^{l-1} f(\tau_E^j(y_j))$
induces a gauge action $\mathbb{T} \approx C(E)$ weighted by f .

Here, E and F are not conjugate, but
(
$$\dot{C}(E), D(E), \chi^E$$
) $\cong (\dot{C}(F), D(F), \chi^F)$.
can gauge action

Theorem (Notsconcito, Armstrong-B-Carbon-Eilers)
The graphs
$$E$$
 and F are conjugate iff
there is \pm -isomorphism $\dot{C}(E) - i \dot{C}(F)$ that
intertwines all gauge actions weighted by
 $C(DE,Z)$ and $C_0(DF,Z)$.
 $f \in C(DF,Z)$

$$\mathcal{E}(\mathcal{C}(\mathcal{G}_{\mathcal{E}}): \mathcal{X}_{2}^{\mathcal{E},\mathcal{F}}(\mathcal{E})(\mathcal{X}) = \mathcal{Z} \quad \mathcal{E}(\mathcal{X}), \mathcal{E}(\mathcal{T}), \mathcal{E}(\mathcal{F})$$

B-Carlson: The even and odd shifts are continuously orbit equivalent.